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Abstract

Reconstruction of polygons from visibility information is known to be a difficult problem in general. In this
paper, we consider a special case: reconstruction of orthogonal polygons from horizontal and vertical visibility
information and show that this reconstruction can be performed in O(n logn) time.  2002 Elsevier Science B.V.
All rights reserved.

Keywords:Visibility graph; Reconstruction; Orthogonal polygon

1. Introduction

The visibility graph of a simple polygon traditionally consists of a vertex for each corner of the
polygon with an edge joining a pair of vertices if the corresponding corners are internally visible. Polygon
reconstructionresults attempt to build a polygon consistent with a given visibility graph. The general
polygon reconstruction problem was shown to be in PSPACE by Everett [4], who also characterized the
visibility graph of spiral polygons. However, a general characterization of visibility graphs of simple
polygons has proven elusive; see for example, the paper by Everett and Corneil [1].

Some authors have investigated the effect of adding extra information to make these problems more
tractable. O’Rourke and Streinu [8] defined a richer combinatorial structure called the vertex-edge
visibility graph which includes edge-to-edge visibility. Wismath [12] introduced an extended visibility
structure called thestab graphand showed how parallel line segments can be efficiently reconstructed
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from it. The stab information relied on in the current paper is a weaker model of visibility than the
stab graph defined there. Everett, Hurtado and Noy [2] have considered stronger variants of stabbing
information and investigated the properties of the polygon that can then be derived.

Horizontal and vertical visibility information in orthogonal polygons was first studied by Booth and
O’Rourke [7]. In their paperRealization of Visibility Trees, they characterized how the two sets of
visibility information must mesh in order to form a proper orthogonal polygon. Other related results
includeCross-ratios and Angles Determine a Polygonby Snoeyink [9] theBar Visibility Graphsstudied
by Wismath [11] and independently by Tamassia and Tollis [10], and results pertaining to external
visibility graphs by Everett, Lubiw and O’Rourke [3]. Although results in this area are primarily of
theoretical interest, applications to orthogonal polygons and constrained visibility include VLSI design,
robotics and GIS.

In this paper we consider the special case of reconstructing an orthogonal polygon from pure visibility
information, namely thestabs(i.e., the horizontally or vertically visible sides) of the vertices of the
polygon. Both internal and external visibility information is supplied. An algorithm that reconstructs an
orthogonal polygon from such information in O(n logn) time is presented.

1.1. Definitions and preliminaries

Initially, we assume that the orthogonal polygon to be reconstructed is simple, has more than four
sides and that no pair of sides of the polygon is collinear. In Section 4, the collinearity assumption will
be removed.

Associated with each corner (or equivalently for the purpose of this paper, vertex)v of a simple
unknown polygonP are twostabs, namely the first sides ofP encountered if the two sides ofP at v

were extended. For an orthogonal polygon (aligned with theX andY axes) these stabs are horizontal
and vertical. Letv1, v2, . . . , vn denote the corners of an orthogonal polygonP with sidesvivi+1. Define
hstab(v) as the first side ofP encountered by extending the horizontal side ofP incident atv. Similarly
vstab(v) is the first side encountered vertically fromv. Both interior and exterior visibilities are provided
– the symbol “∞” is used to denote a stab that encounters no side ofP .

Given a known orthogonal polygonP , theconstructionof the stab information can be computed in
O(n logn) time via a straightforward line sweep algorithm. The problem described here is the opposite of
this construction: Given only the set of stabs of a realizable unknown orthogonal polygon, reconstruct the
polygon. Note that stabbing information does notuniquelydetermine an orthogonal polygon, but rather
partitions polygons into equivalence classes.

Orthogonal Polygon Reconstruction (OPR). Let V = {v1 . . . vn, n > 4} denote a set of vertices of an
unknown orthogonal polygon in clockwise order. Inputshstab(vi) andvstab(vi), i = 1,2, . . . , n, for this
unknown polygon are given. Computex andy coordinates(xi, yi) for each vertexvi that produce an
orthogonal polygon consistent with the stabbing information.

See Fig. 1 for an example of the input given and a resulting reconstructed polygon.
The first stage of the algorithm to solve the OPR problem identifies each vertex as eitherconvexor

reflex.1 Only the horizontal stab information is required.

1 A convexcorner has an internal angle ofΠ/2 radians, while areflexcorner has an internal angle of 3Π/2.
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Fig. 1. An example of the OPR problem.

The second stage of the algorithm computes two partial orders representing thex andy dimensions
based on the stabbing and convexity information and subsequently assigns (integer) coordinates to the
vertices, yielding an orthogonal polygon consistent with the inputs. Both horizontal and vertical stab
information is utilized.

2. Properties of orthogonal polygons

Before describing the reconstruction algorithm, some properties of orthogonal polygons are consid-
ered, in particular, the types of rectangles formed from the horizontal stabs.

An orthogonal polygon with only the horizontal stabbing rays drawn, partitions the plane into a
collection of rectangles as in Fig. 2.

For the assumption of no collinear sides, any orthogonal polygon has a unique top-most and a unique
bottom-most side. These sides bound degenerate rectangles as shown in Fig. 4; they will be labelled type
0 rectangles and can be efficiently identified.

The following lemma characterizes the horizontal rectangles created with the orthogonal polygon and
its horizontal stabs.

Lemma 1. Aside from the two type 0 rectangles, rectangles of types 1 through 12 are the only possible
rectangles created from the sides of an orthogonal polygon and its horizontal stabs.

Proof. Every rectangle has exactly four corners. It is possible that zero to three of those corners
correspond to vertices of the polygon. The assumption that the polygon has more than four sides
eliminates the possibility that all four corners of the rectangle correspond to vertices of the polygon.
At each corresponding corner the polygon could turn toward or away from the rectangle, as shown
in Fig. 5. Those rectangles with stabs to infinity are assumed to be completed by a ‘pseudo’ side at
infinity. Depending on how the stabs hit the sides of the polygon, twelve different types of rectangles, as
enumerated in Fig. 3, are possible. Horizontally and vertically symmetric situations are ignored.

• Case 0. Whenzerocorners of a rectangle correspond to vertices of the polygon, a type 12 rectangle
is created.

• Case 1. With onecorner of a rectangle corresponding to a vertex of the polygon, the two possible
directions (toward and away) at that corner result in the creation of rectangle types 10 and 11.
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Fig. 2. An orthogonal polygon with horizontal stabs.

Fig. 3. The twelve possible horizontal rectangles.

Fig. 4. The two type 0 rectangles.

Fig. 5. Turning toward and away from rectangle.

Fig. 6. Two vertices correspond to rectangle corners.

• Case 2. When two corners of a rectangle correspond to vertices of the polygon, they could be on
opposite sides of the rectangle, or vertically adjacent or horizontally adjacent, as shown in Fig. 6.
– If the corresponding corners are on opposite corners, a type 4, 5 or 6 rectangle is formed.
– If the corresponding corners are together vertically, a type 1, 2 or 3 rectangle is formed.
– When the corresponding corners are horizontally adjacent, the polygon sides can only turn toward

the rectangle and be consecutive sides of the polygon. If either or both turned away, a stab would
be created that defines part of the rectangle, and the vertex would then not correspond to a corner
of the rectangle. If both turned away from the rectangle and were not consecutive sides of the
polygon, collinear sides would be created. The one rectangle obtained here is a type 9 rectangle.

• Case 3. If threecorners of a rectangle correspond to vertices of the polygon:
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Fig. 7. A vertex is part of 3 rectangles.

Fig. 8. Two orientations of rectangles around a vertex.

– Two of the three vertices cannot turn away from the rectangle, since this would result in an
orthogonal polygon with collinear sides.

– There could be one vertex turning away from the rectangle, and two turning toward it. However,
since there are no collinear sides, the three vertices must be consecutive sides of the polygon, thus
forming a type 7 rectangle.

– The three vertices could all turn toward the rectangle. Again the three vertices must then be
consecutive sides of the polygon, resulting in a type 8 rectangle.

Therefore, there are exactly twelve possible configurations of rectangles created from the sides and
horizontal stabs of an orthogonal polygon, as enumerated in Fig. 3.✷
Lemma 2. Every vertex of the polygon is part of exactly three horizontal rectangles.

Proof. Refer to Fig. 7. There is one horizontal rectangle above and one below every horizontal stab, and
one rectangle behind the vertex.✷
Corollary 3. Around each vertex, there is either:

• one horizontal rectangle above and two below it, or
• two horizontal rectangles above and one below it.

Proof. Since these are the horizontal rectangles created by the horizontal stabs, these are the only
possible configurations. See Fig. 8.✷

3. Reconstruction from stab information

In this section, we present an algorithm to reconstruct an unknown orthogonal polygon (i.e., solve the
OPR problem) given only its stab information.

From the horizontal stabbing information alone, it is possible to determine the types of rectangles
incident upon each vertex and hence whether the vertex must ultimately appear as convex or reflex in the
polygon. Next, horizontal and vertical information is used to compute two partial orders, for thex andy

coordinates of the vertices, and a final layout of the polygon is performed.
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3.1. Identification of rectangles

The previous characterizations are used to form and identify the type of each horizontal rectangle. The
identification of all rectangles of type 0 to type 11 will be shown to be an O(n) step, but identification
of type 12 rectangles requires O(n logn) time. This classification will subsequently be used to determine
the convexity/reflexity of each vertex.

In the algorithm described below,hstab(vi) returns the side stabbed by the horizontal stab from vertex
vi . Definehstab(vi).ver to be the first (clockwise) vertex on the vertical side that is stabbed byhstab(vi).
The boolean functionIsHoriz(vivi+1) determines whether the sidevivi+1 is horizontal or not. A simple
modulus calculation can be used to calculateIsHoriz(vivi+1). If vi is the current polygon vertex, then
vi+1 andvi−1 (modulon arithmetic) respectively refer to the next and previous vertices of the polygon.
Refer to Fig. 3 while reading the descriptions.

Identifying the types 0 through 11 rectangles can be achieved by testing the following conditions for
a vertexvi :

• Type 0:hstab(vi) = ∞ andhstab(vi+1) = ∞ AND IsHoriz(vivi+1)

• Type 1:hstab(vi) = hstab(vi+1) AND NOT IsHoriz(vivi+1)

• Type 2:hstab(vi) = hstab(vi+2)

• Type 3:hstab(vi) = hstab(vi+3)

• Type 4:hstab(vhstab(vi).ver).ver= vi OR hstab(vhstab(vi).ver−1).ver= vi+1

• Type 5:hstab(vhstab(vi).ver−1).ver= vi ORhstab(vhstab(vi).ver+2).ver= vi−1

• Type 6:hstab(vhstab(vi).ver+2).ver= vi−2 OR hstab(vhstab(vi).ver−1).ver= vi+1

• Type 7:hstab(vi).ver= vi+2 OR hstab(vi).ver= vi−3

• Type 8:hstab(vi).ver= vi+3 OR hstab(vi).ver= vi−4

• Type 9:hstab(vi).ver= hstab(vi+1).ver+ 2 ORhstab(vi).ver= hstab(vi−1).ver− 2
• Type 10:hstab(vhstab(vi).ver) = hstab(vi+1) OR hstab(vhstab(vi .ver+1)) = hstab(vi−1)

• Type 11:hstab(vhstab(vi).ver−1) = hstab(vi+1) OR hstab(vhstab(vi).ver+2) = hstab(vi−1)

For a vertexvi , detecting the types 0 through 11 rectangles incident uponvi requires O(1) time.

• Type 12: A type 12 rectangle is formed when two pairs of vertices have common horizontal
stabs. (That is,hstab(vi) = hstab(vj+1) and hstab(vi+1) = hstab(vj ), and IsHoriz(vivi+1) and
IsHoriz(vj vj+1)). Detecting this type of rectangle requires examining all horizontal stabs to each
vertical side. Since it is possible that O(n) stabs could hit one side (as in Fig. 11, for example), it
might appear that this operation could take O(n2) time. However, in Section 3.2, a data structure is
presented that reduces the overall time needed to identify all the type 12 rectangles to O(n logn) time
in total.

3.2. Algorithm – determine convex/reflex

The following algorithm determines the convexity of the vertices from the incident horizontal
rectangles computed in the previous section. Each horizontal rectangle defined by the sides of the
unknown polygon and its horizontal stabs contains two, three or four vertices of the polygon (see Fig. 2
for example). The convexity properties of the involved vertices are not independent. For each vertex,vi ,



L. Jackson, S.K. Wismath / Computational Geometry 23 (2002) 69–83 75

the algorithm maintains two sets,same[vi] andopposite[vi]. Ultimately, all the vertices on a rectangle
containingvi will be included in eithersame[vi] or opposite[vi]. These two sets indicate whether those
vertices have the same or opposite convexity asvi . In the final step, by carefully merging all these sets
the algorithm assigns the labelconvexor reflexto each vertex.

This stage is described in three parts: classifying types 0 through 11 rectangles and identifying the
vertices on each, identifying vertices on type 12 rectangles, and finally determining the convexity of each
of the vertices.

3.2.1. Classify and identify rectangles: types 0 to 11
This part of the algorithm traverses through the vertices checking each horizontal stab for inclusion

as part of any type 0 through 11 rectangles. For each vertex,vi , the other vertices on the same rectangle
are appended to either thesame[vi] or opposite[vi] set and the number of rectangles to which it has been
assigned are counted.

• Initialize: For each vertexvi, i = 1,2, . . . , n, do:
– number_of_rectangles[vi] := 0.
– initialize same[vi] to the empty set.
– initialize opposite[vi] to the empty set.

• Classify/Identify: For each vertexvi, i = 1,2, . . . , n, do:
– if the conditions (Section 3.1) identifying types 0 to 11 rectangles are met:

For every vertex,vj , around the rectangle
incrementnumber_of_rectangles[vj ].

For every pair of vertices on the rectangle:
update thesameor oppositesets appropriately.

Analysis: The initialize andclassify/identifyloops each use O(n) time. Also, the space used by the
routines is bounded by O(n).

Label any vertex that has been assigned to three rectangles asclassifiedand the rest asunclassified.
The next section will use thisclassified/unclassifiedlabelling to identify the type 12 rectangles.

3.2.2. Identify rectangles: type 12
Any vertex that is nowunclassifiedmust be part of some type 12 rectangle. The difficulty is identifying

which other stabs are also part of this same rectangle; refer to Fig. 9. The stabs2 that is on the other end
of the horizontal side froms1 can be identified in constant time using the ordering of the vertices. The
two stabss3 ands4 of the same rectangle are more difficult to determine.

It is critical that these type 12 rectangles be computed and processed, to ensure that thesameand
oppositesets are complete.

Fig. 9. A type 12 rectangle.



76 L. Jackson, S.K. Wismath / Computational Geometry 23 (2002) 69–83

Fig. 10. A polygon with vertices isolated by type 12 rectangles.

Definition 4 (Isolated group of vertices). Define anisolated group of verticesto be apropersubset,K , of
all the vertices of an orthogonal polygon such that these vertices appear in each other’ssameandopposite
sets, but not in thesameandoppositesets of any other vertices. Furthermore, thesameandoppositesets
of the vertices ofK do not contain any vertices that are not inK .

The necessity of identifying type 12 rectangles is illustrated by the polygon of Fig. 10. If type 12
rectangles are not considered, the marked vertices would be isolated. In the same figure, more vertices
would be isolated if we examined the vertical, instead of the horizontal rectangles of this polygon.

Even though the total number of all types of rectangles created by a polygon’s horizontal stabs is O(n),
there could be O(n) type 12 rectangles. A natural conjecture would be that each of the O(n) vertical sides
stabbed by type 12 rectangles, have only a constant number of such stabs. Vertical side,s, on the polygon
of Fig. 11 shows that this conjecture is incorrect and a more elaborate procedure is required.

This stage of the algorithm traverses the vertices several times. The first pass initializes counters and
binary search trees for each vertical side, while the second pass determines the number of type 12 vertices
that stab each vertical side. The third creates a binary tree for each vertical side and matches the vertices
on each type 12 rectangle. For every adjacent pair of type 12 vertices (e.g.,s1 s2 in Fig. 9) one vertex of
the pair is included in the binary tree of the vertical side stabbed by the other. When inserting into these
binary trees, a vertex to be inserted that already exists in the tree was placed there by the other pair of
type 12 vertices that stabbed the same vertical sides. This condition indicates that all four vertices of a
type 12 rectangle have been identified.

• Initialize: For each vertical side,vivi+1, i = 2,4, . . . , n, do:
– unclassified_count[vivi+1] := 0.
– initialize binary_tree[vivi+1] to empty.

• Count stabs: For each vertex,vi, i = 1,2, . . . , n, do:
– If (number_of_rectangles[vi] = 2) incrementunclassified_count[stab(vi)].

• Create Trees: For each vertex,vi, i = 1,2, . . . , n, do:
– if (number_of_rectangles[vi] = 2) AND (number_of_rectangles[vi+1] < 3)

if (unclassified_count[hstab(vi)] < unclassified_count[hstab(vi+1)])
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Fig. 11. A polygon with O(n) type 12 stabs to some vertical sides.

/* vertical sidehstab(vi) is the least stabbed of the two sides */
if (MEMBER(hstab(vi+1),binary_tree[hstab(vi)]))

– /* a type 12 rectangle has been found. */
– For every pair of vertices,vj andvk , on the rectangle:
– INSERT(vj ,same[vk])
– DELETE(hstab(vi+1),binary_tree[vi])
elseINSERT(hstab(vi+1),binary_tree[hstab(vi)]).

else /* vertical sidehstab(vi) is NOT the least stabbed of the two */
– if (MEMBER(hstab(vi),binary_tree[hstab(vi+1)]))
– /* a type 12 rectangle has been found. */
– For every pair of vertices,vj andvk , on the rectangle:
– INSERT(vj ,same[vk])
– DELETE(hstab(vi),binary_tree[vi+1])
elseINSERT(hstab(vi),binary_tree[hstab(vi+1)]).

Analysis: The initialize and count stabsloops are each O(n) loops. Thecreate treesloop is an
O(n logn) loop, since it is executedn times, and each binary tree could have O(n) entries in it. (Searching,
and inserting into a balanced binary tree of size O(n) requires O(logn) time.) Thus the overall time
needed by this part of the algorithm is O(n logn). However the space required here is only O(n), since
the number of entries in all the binary trees never exceedsn.

Thesameandoppositesets created in the algorithm of Section 3.2 are instrumental in solving the OPR
problem. By definition,same[v] is a set of vertices that share the same convexity ofv on some rectangle.
By applying thesamerelation on the elements of this set, we obtain a larger set of vertices that all have
the same convexity asv. In an analogous fashion, the set of all vertices with the opposite convexity ofv

can be constructed. It is by repeated application of thesameandoppositerelations, that these 2 sets can
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be extended until all vertices have been partitioned into those with the same or opposite convexity asv.
We use an inductive definition and note that no more thann applications are necessary.

Definition 5. Same and Opposite sets:
same1[v] = same[v].
opposite1[v] = opposite[v].
For k > 1,

samek[v] = {w | ∃u ∈ samek−1[v] andw ∈ same[u]} ∪ {w | ∃u ∈ oppositek−1[v] andw ∈ opposite[u]}.
oppositek[v] = {w | ∃u ∈ samek−1[v] andw ∈ opposite[u]} ∪ {w | ∃u ∈ oppositek−1[v] andw ∈ same[u]}.
same+[v] = samen[v]
opposite+[v] = oppositen[v].

The following lemma establishes that for an arbitrary vertexv, the two setssame+[v] andopposite+[v]
partition the vertices appropriately.

Lemma 6. For any vertexv:

• v ∪ same+[v] ∪ opposite+[v] = V , and
• same+[v] ∩ opposite+[v] = φ.

Proof (By induction). Base case: Number of vertices isn = 6. This is the smallest orthogonal polygon
in our problem. Every simple orthogonal polygon withn = 6 vertices has exactly one reflex vertex and
five convex vertices and is symmetric to the polygon in Fig. 12. Choosing the reflex vertex to bev,
all of the other vertices are inserted intoopposite[v] in Section 3.2.1. Hereopposite+[v] = opposite[v]
and same+[v] = φ. Alternately, choosing any one of the convex vertices asv, after the algorithm of
Section 3.2.1,same[v] will contain at least two of the convex vertices andsame+[v] will contain all
of the convex vertices exceptv. Opposite[v] = opposite+[v] = {the reflex vertex}. Thus establishing the
conditions forn = 6.

Induction: Assume Lemma 6 is true for polygons of sizek.
Let n = k + 2. The n vertex polygon can be reduced to a polygon of sizek by removing one

orthogonal earas shown in Fig. 13. An orthogonal polygon always has at least two orthogonal ears
as shown by O’Rourke [7, p. 47]. This follows from the fact that every orthogonal polygon is convexly
quadrilateralizable [6] and that the dual of this quadrilateralization will be a tree when the polygon has
no holes [7, Lemma 3.9]. Every tree has at least two nodes of degree one, or leaf nodes. These two
leaf nodes correspond to quadrilaterals of the convex quadrilateralization that are one of the forms of
Fig. 14 [7, Lemma 3.16]. We reduce ourn = k + 2 polygon to a polygon of sizek by removing one
of these two ears using a cut along the stab from the reflex vertex of this polygon that goes through

Fig. 12. An orthogonal polygon with 6 sides.
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Fig. 13. Creating ann = k + 2 orthogonal polygon. Fig. 14. Two quadrilaterals: correspond to leaf nodes of
dual of quadrilaterization.

the quadrilateral, as shown in Fig. 13. Removal of one ear will result in the loss of three vertices and
the inclusion of one new vertex, for an overall reduction in the polygon size of two vertices. Assume
the vertex,v, of Lemma 6 on the polygon of sizek was not vertexv1 of Fig. 13. By the induction
hypothesis we havev ∪ same+[v] ∪ opposite+[v] = V andsame+[v] ∩ opposite+[v] = φ. The algorithm
determineconvex/reflexof Section 3.2 will place verticesv2 andv3 of Fig. 13 in the same set (same+[v] or
opposite+[v]) of then = k + 2 polygon that containedv1 of the polygon of sizek, andv4 in the other set.

If vertex v, of Lemma 6 on the polygon of sizek was vertexv1 of Fig. 13, we must assume that
vertex v of the n = k + 2 polygon is one ofv2, v3 or v4 of Fig. 13. If v = v1 (respectivelyv = v2),
the determineconvex/reflex algorithm of Section 3.2 would result in an identicalsame+[v] for the
n = k + 2 polygon as for then = k polygon, with the addition ofv3 (respectivelyv2) and the loss
of v1 and an identicalopposite+[v] with the addition ofv4. A similar argument could be made if
v = v4 except that thesame+[v] set of the polygon of sizek would be switched with theopposite+[v]
set of then = k + 2 polygon and vice versa. Again, the induction hypothesis is used to ensure that
v ∪ same+[v] ∪ opposite+[v] = V andsame+[v] ∩ opposite+[v] = φ. ✷
3.3. Determine convexity of vertices

The next stage of the algorithm starts with any vertex,v, that has a stab to infinity, marks it asconvex,
and initializes a queue (calledto_be_done) with this vertex. Then a loop is created that dequeues a vertex,
v, from the front of the queue, marks the vertices insame[v] with the same convexity asv, and those
in opposite[v] as opposite tov. For each of these vertices, if they were not previously marked, they are
enqueued to the back of the queue. The loop continues until theto_be_donequeue is empty.

• initialize to_be_doneto be anEMPTYqueue.
• Initialize: For each vertex,vi, i = 1,2, . . . , n, do:

– has_been_queued[vi] := FALSE
– if (hstab(vi) = ∞) and (to_be_done= EMPTY)

ENQUEUE(vi, to_be_done)
has_been_queued[vi] := TRUE
vertex[vi] := convex

• Determine Convexity: While (to_be_done�= EMPTY) do:
– vi := DEQUEUE(to_be_done)
– for every vertex,vj , in same[vi] do:

if NOT(has_been_queued[vj ])
ENQUEUE(vj , to_be_done)
has_been_queued[vj ] := TRUE
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if (vertex[vi] = convex) thenvertex[vj ] := convex
elsevertex[vj ] := reflex

– for every vertex,vj , in opposite[vi] do:
if NOT(has_been_queued[vj ])

ENQUEUE(vj , to_be_done)
has_been_queued[vj ] := TRUE

if (vertex[vi] = convex) thenvertex[vj ] := reflex
elsevertex[vj ] := convex

Analysis: The initialize loop runs in O(n) time. Thedetermine convexityloop is executed exactlyn
times, as the loop does not terminate until the queue is empty, which will only happen when all are
marked. Each vertex is put onto the queue once, and pulled off once, and each iteration requires constant
time. Therefore, this entire stage of the algorithm uses O(n) time.

Lemma 7. The algorithm of Section 3.3 correctly determines the convexity of the vertices of the polygon.

Proof. The vertices with stabs to infinity are clearly convex vertices. The algorithm simply identifies all
the vertices in thesame+[v] set as a vertex,v, with a stab to infinity as convex, and all the vertices inv’s
opposite+[v] as reflex. Lemma 6 ensures that no vertex will be both convex and reflex, and no vertices
are missed. ✷

Thus, the time required to determine the convexity of then vertices is dominated by the O(n logn)

step needed to identify the type 12 rectangles; and the space requirement is O(n).

3.4. Algorithm – embed polygon

The final stage in the reconstruction process is to obtain an actual embedding of the orthogonal
polygon. The algorithm creates two lists, representing the relationships between thex andy coordinates
of all vertices. One list{xmin, . . . , xmax} represents thex coordinates of each of the vertical sides, the other
list {ymin, . . . , ymax} represents they coordinates of the horizontal sides. These two lists will be created in
such a way that placing the sides on thex andy coordinates, the result will be an orthogonal polygon. The
two lists cannot be established uniquely, since it is not possible to determine the relationships between the
stabs on opposite sides of a segment. Placing all vertices on these coordinates, however, does reconstruct
an orthogonal polygon that respects the input information.

(1) Find the four extreme segments, that is, segments with both horizontal and vertical stabs to infinity.
The two vertical segments must be located atxmin andxmax, while the two horizontal ones must be
at ymin andymax. Start with a horizontal extreme segment, assign it toymin, then follow through the
polygon order, assigning the other three extreme segments toxmin, ymax andxmax. These assignments
will lay out the polygon so that its vertices are in clockwise order. O(n) time is needed.

(2) The segment that runs horizontally alongymin is laid out from right to left. Call this aleft segment.
The next segment on the polygon, a vertical segment, must be anupsegment and the corner between
the two must be a convex corner.
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Fig. 15. Predecessor segments and preceding vertices.

Name the sides of the polygonh1, v1, h2, v2, . . . , hn/2, vn/2 around the polygon. For a horizontal
(respectively vertical) segment, define itspredecessor segmentto be the horizontal (respectively
vertical) segment immediately before it. (hi ’s predecessor ishi−1, andvj ’s predecessor isvj−1.) On
any segment, vertical or horizontal, define itstwo preceding verticesto be the two vertices between
hi andhi−1 or betweenvi andvi−1. Fig. 15 shows a horizontal segment and a vertical segment and
their respective predecessor segments. In each case, verticesx andy are the preceding vertices to the
segment.
For each of the remaining segments on the polygon, if the preceding vertices have the same convexity,
the segment must be oriented opposite to its predecessor segment in the same dimension. If the
preceding vertices have opposite convexity, the segment is oriented the same as its predecessor
segment in the same dimension. In this way, assignup/down, left/right to each segment of the
polygon. Again, this step uses a total of O(n) time and space.

(3) Create two digraphs,X andY (representing the two partial orders of the sides ofP ), with a node in
theX graph for each vertical side, and a node in theY graph for each horizontal side. Add arcs as
follows:
• On theX graph, direct arcs from the node corresponding to thexmin side to every other node, and

from all nodes to the node corresponding to thexmax side.
• For everyright (respectivelyleft) segment in the polygon, add an arc in theX digraph from the

node corresponding to the side containing the first (respectively second) endpoint to the node
corresponding to the side containing the second (respectively first) endpoint.

• For every stab to aright (respectivelyleft) segment add an arc from the node corresponding
to the side containing the first (respectively second) endpoint of the stabbed segment, to the
node corresponding to the side containing the endpoints of the stabbing segment, and another
from the node corresponding to the side containing the endpoints of the stabbing segment to the
node corresponding to the side containing the second (respectively first) endpoint of the stabbed
segment.

TheX digraph contains less than 5n/2− 2 arcs. The arcs for theY digraph are created in a similar
fashion, substitutingup for right anddownfor left. Creating the two digraphs is easily accomplished
in a total of O(n) time and space.

(4) Topologically sort each digraph to order the nodes from minimum to maximum in O(n) time.
(5) Assignx andy integer track numbers (unique integers chosen from the range[1, . . . , n/2]) to the

nodes indexed according to the previous topological sorts. Follow around the polygon laying each
vertex on its respective tracks, putting a segment between each pair of consecutive vertices. The
resulting orthogonal polygon respects the given stabs and has no collinear sides. This step also uses
O(n) time.
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Thus the layout algorithm uses O(n) time and space. This stage was inspired by the final stage of an
algorithm by Booth and O’Rourke that realizes labeled edge visibility trees [7]. In that work, Booth and
O’Rourke have established the correctness of the method.

Theorem 8. The OPR problem can be solved inO(n logn) time.

Proof. The three main stages of the algorithm have:

• Identified the types of rectangles created by the sides and horizontal stabs of an orthogonal polygon.
Lemma 6 ensures this can be done. The algorithm requires O(n logn) time.

• Determined the convexity of each of the vertices. Lemma 7 shows the algorithm is correct. The
algorithm requires O(n) time.

• Embedded the polygon in the plane. This algorithm uses the same technique as Booth and O’Rourke
used in their work on Edge Visibility Trees. The algorithm used O(n) time. ✷

4. The collinear sides assumption

The previous algorithms assume that the orthogonal polygon has no collinear sides. Allowing collinear
sides is a natural extension of this problem.

Lemma 1 of Section 2 showed that rectangles of types 0 through 12 (Fig. 3) were the only possible
rectangles created from the sides of an orthogonal polygon and its horizontal stabs. If collinear sides
were possible, the number of rectangle types would increase. Cases 0, 1 and most of case 2 of that proof,
did not rely on this assumption, so those cases contain the complete set of rectangles. However, part of
case 2, and cases 3 and 4 both used this assumption, so the additional rectangles of Fig. 16 would be
introduced. Algorithmically, checking each of these additional types of rectangles is no more difficult
than checking each of types 0 through 11.

It is possible, however, that along eachstab of each rectangle any number of collinear sides could
exist, as shown in Fig. 17. Rechecking each rectangle type, allowing for the possibilities of such sides
complicates the process. An algorithm that allows collinear sides but runs in O(n2) time is presented
in [5].

Fig. 16. Extra rectangles possible with collinear sides.

Fig. 17. Collinear sides along thestabsof a type 1 rectangle.
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5. Conclusion

An algorithm was presented that reconstructs an orthogonal polygon when only the horizontal and
vertical stabs of its vertices are known. The algorithm runs in O(n logn) time if the polygon has no
collinear sides. An interesting open problem is to reduce the time to classify type 12 rectangles (and
hence the overall algorithm) to o(n logn), or alternately to prove a lower bound of�(n logn).
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