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Numerical hyperinterpolation over

nonstandard planar regions∗

Alvise Sommariva and Marco Vianello1

August 3, 2016

Abstract

We discuss an algorithm (implemented in Matlab) that computes
numerically total-degree bivariate orthogonal polynomials (OPs) given
an algebraic cubature formula with positive weights, and constructs
the orthogonal projection (hyperinterpolation) of a function sampled at
the cubature nodes. The method is applicable to nonstandard regions
where OPs are not known analytically, for example convex and concave
polygons, or circular sections such as sectors, lenses and lunes.

2000 AMS subject classification: 41A63, 42C05, 65D10, 65D32

Keywords: multivariate orthogonal polynomials, positive cubature, hyperinterpo-

lation, nonstandard planar regions.

1 Introduction

Orthogonal polynomials (OPs) are an important area of applied and compu-
tational mathematics. In the one-dimensional case, the subject has reached
a substantial maturity, that from the numerical point of view is well rep-
resented, for example, by Gautschi’s reference work on computation and
approximation of OPs and related methods, such as Gaussian quadrature,
together with the OPQ Matlab suite; cf. [14].

In the multivariate case, the subject has been knowing recently a fast
progress, especially on the theoretical side, with an important reference
in the seminal book by Dunkl and Xu [13], but is still far from matu-
rity. Computation of multivariate OPs (and related orthogonal projec-
tions/expansions) over nonstandard regions is still a challenging problem.
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It is worth quoting the Hermitian Lanczos method for bivariate OPs with
respect to a discrete inner product, studied in [22]. More recently, an in-
teresting approach, based on an inverse eigenvalue problem to compute re-
currence coefficients, has been proposed in [31] and tested on the square.
On the other hand, a symbolic approach has been developed in [11], namely
the MOPS library has been implemented for various computations involving
classical multivariate OPs. In general, however, numerical codes devoted to
multivariate OPs do not seem to be widely available.

In the present paper we pursue a basic orthogonalization approach,
resorting to new algebraic cubature formulas based on product Gaussian
quadrature on various nonstandard geometries, such as convex and con-
cave polygons [26], circular sections (sectors, zones, lenses, lunes) [7]-[9].
We compute families of corresponding OPs by a two-step orthogonaliza-
tion procedure, aimed at facing as much as possible ill-conditioning of the
underlying Vandermonde-like matrices.

We provide a Matlab implementation of the method, and we make nu-
merical tests on the quoted regions, in particular concerning discretized or-
thogonal projection of functions sampled at the cubature nodes, a method
called “hyperinterpolation”, originally introduced in the seminal paper by
Sloan [25] as a good multivariate alternative to polynomial interpolation.
Applications of positive cubature, multivariate OPs and hyperinterpolation
arise, for example, in optical design [2], and geomathematics [20]. Our Mat-
lab codes for positive cubature on nonstandard regions, multivariate OPs
and hyperinterpolation are available at [5].

2 Computing multivariate OPs

In principle, the numerical computation of an OP basis could be done by
the Gram-Schmidt process starting from any polynomial basis, as soon as
the underlying inner product (with respect to some finite positive measure)
is computable itself. In practice, however, severe instabilities can occur, de-
pending strongly on the choice of the initial basis, which in turn determines
the conditioning of the corresponding Vandermonde and Gram matrices. As
known, ill conditioning is particularly severe, for example, dealing with the
standard monomial basis.

Assume that a positive (i.e., with positive weights) cubature formula of
polynomial degree of exactness (at least) 2n be available on a given compact
domain (or manifold) Ω ⊂ R

d, and let us term M = M2n the cardinality of
such a formula,

∫

Ω
f(x) dµ =

M
∑

i=1

wi f(xi) , ∀f ∈ P
d
2n(Ω) , (1)

where P
d
m(Ω) denotes the vector subspace of total degree polynomials in d
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real variables of total degree not exceeding m, restricted to Ω, and dµ =
σ(x) dx, is an absolutely continuous measure with density σ ∈ L1

+(Ω).
Given a polynomial basis span(p1, . . . , pN ) = P

d
n(Ω), consider the corre-

sponding rectangular Vandermonde-like matrix

Vp = (vij) = (pj(xi)) ∈ R
M×N , N = Nn = dim(Pd

n(Ω)) , (2)

and the diagonal M ×M matrix

√
W =











√
w1 0 . . . 0
0

√
w2 . . . 0

...
...

. . .
...

0 0 . . .
√
wM











. (3)

Observe that Gp = (ghk) = (
√
WVp)

t
√
WVp is a positive definite Gram

matrix for the inner product generated by the measure dµ,

ghk =

M
∑

i=1

√
wiph(xi)

√
wipk(xi) =

∫

Ω
ph(x)pk(x) dµ , 1 ≤ h, k ≤ N . (4)

Then, the matrix
√
WVp and thus Vp are full-rank, and we can apply the

QR factorization

√
WVp = QR , Q ∈ R

M×N , R ∈ R
N×N , (5)

where Q is an orthogonal matrix and R an upper triangular nonsingular ma-
trix. This means that the polynomial basis (φ1, . . . , φN ) = (p1, . . . , pN )R−1

is orthonormal, since the corresponding Vandermonde-like matrix, say Vφ =
VpR

−1, satisfies the property

Gφ = (
√
WVφ)

t(
√
WVφ) = QtQ = I ,

that is, the Gram matrix of the new basis is the identity. Of course, the
triangular matrix R−1 is nothing else than the coefficient matrix for a change
of basis, corresponding to the Gram-Schmidt orthogonalization process with
respect to the inner product in (4).

Working with finite precision arithmetic, the situation can be quite dif-
ferent. If the original Vandermonde-like matrix Vp is severely ill-conditioned,
the matrix Q is not numerically orthogonal. However, when the condition-
ing (in the 2-norm) is below (or even not much greater) than the reciprocal
of machine precision (rule of thumb), it is well known that a second QR fac-
torization, say Q = Q1R1, succeeds in producing a matrix Q1 orthogonal up
to an error close to machine precision. This phenomenon is known as “twice
is enough” in the framework of numerical orthogonalization, cf., e.g., [18].
A key point is that the second orthogonalization is applied to a matrix that,
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even though not orthogonal, is much better conditioned than the original
one (under the conditions above).

Since we are not only interested in obtaining an orthogonal matrix, but
also in determining the right change of basis, we apply the rule of “twice is
enough” in the following way

√
WVφ =

√
WVpR

−1 = Q1R1 , (6)

where Vφ = VpR
−1 is well conditioned, so that the Vandermonde-like matrix

Vq = VpR
−1R−1

1 (7)

becomes nearly orthogonal, i.e.,

(q1, . . . , qN ) = (p1, . . . , pN )R−1R−1
1 (8)

is a nearly orthonormal polynomial basis on K with respect to the inner
product in (4). Here, “nearly orthogonal” means roughly that ‖Gq − I‖2 is
extremely small (not too far from machine precision), where

Gq = (
√
WVq)

t
√
WVq (9)

is the Gram matrix in the new basis.
Observe that if the original basis is “nested”, i.e. span(p1, . . . , pNs) =

P
d
s(Ω), 1 ≤ s ≤ n, then the (nearly) orthonormal basis (q1, . . . , qN ) inherits

the same property, since the matrices R and R1 are upper triangular.

2.1 Hyperinterpolation

Once a (nearly) orthonormal basis {qj} is at hand, by the cubature formula
we can also easily compute the discretized truncated orthogonal projection
on P

d
n(Ω) of a function f ∈ L2

dµ(Ω)

Lnf =

N
∑

j=1

cj qj , cj =

M
∑

i=1

wi qj(xi)f(xi) ≈
∫

Ω
qj(x)f(x) dµ . (10)

Setting c = (c1, . . . , cN )t and f = (f(x1, . . . , f(xM ))t, the coefficients {cj}
can be computed in vector form as

c = (WVq)
tf = V t

qWf . (11)

If the basis is only nearly orthonormal, this means that we are computing
an approximate solution c to the system of the normal equations (cf. (9))

Gqc
∗ = (WVq)

tf ,

or in other words that c∗ corresponds, in view of (11), to solve a system with
the identity matrix A = I perturbed by the matrix δA = Gq − I. Standard

4



estimates on the solution of systems with a perturbed matrix (cf., e.g., [29,
§7.2]) give then immediately

‖c − c∗‖2
‖c∗‖2

≤ ‖Gq − I‖2 , (12)

i.e., (11) gives the coefficients of the discretized orthogonal projection with
a relative error bounded by the “distance from orthogonality” (which is not
too far from machine precision).

In view of exactness of the formula at degree 2n, the polynomial Lnf
is a projection L2

dµ(Ω) → P
d
n(Ω), called hyperinterpolation; indeed, it is the

orthogonal projection with respect to the discrete inner product defined by
the cubature formula. This notion was introduced and studied by Sloan in
[25], where it is proved, for example, that for every f ∈ C(Ω)

‖Lnf − f‖L2

dµ
(Ω) ≤ 2µ(K)En(f ; Ω) → 0 , n→ ∞ , (13)

where En(f ; Ω) = inf{‖f − p‖∞ , p ∈ P
d
n(Ω)}.

Since then, multivariate hyperinterpolation has been successfully applied
in various instances, as an interesting alternative to polynomial interpola-
tion; cf., e.g., [1, 10, 19, 20].

A relevant quantity is also the uniform norm of Ln : C(Ω) → P
d
n(Ω), that

is the operator norm with respect to ‖f‖Ω = maxx∈Ω |f(x)|. Observing that

Lnf(x) =

N
∑

j=1

cj qj(x) =

N
∑

j=1

qj(x)

M
∑

i=1

wi qj(xi)f(xi) =

M
∑

i=1

f(xi)ψi(x) ,

where

ψi(x) = Kn(x,xi) = wi

N
∑

j=1

qj(x)qj(xi) ,

and Kn(x,y) is the reproducing kernel of Pd
n(Ω) with the underlying inner

product [13, Ch. 3], one can prove that

‖Ln‖ = sup
‖Lnf‖Ω
‖f‖Ω

= max
x∈Ω

M
∑

i=1

|ψi(x)| . (14)

Theoretical or numerical bounds for (14) allow to estimate the hyperinter-
polation convergence rate

‖Lnf − f‖Ω ≤ (1 + ‖Ln‖)En(f ; Ω) , (15)

as well as to study the response of hyperinterpolation to perturbations of
the sampled values, that is its stability.

In the numerical results section, we will show examples of hyperinter-
polation on planar compact domains apparently not treated before in the
numerical literature, for example polygons, and regions of the disk.
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2.2 Implementation

We have implemented the orthogonalization procedure in the bivariate case,
by a Matlab function named multivop. Such an implementation has been
discussed also in [33]. As we have seen above, there are two main ingredients:
the availability of a positive cubature formula on the compact domain, and
the availability of a polynomial basis that is not too badly conditioned. Our
standard general-purpose approach is to use the total-degree product Cheby-
shev basis of the smallest Cartesian rectangle containing the cubature nodes,
with the graded lexicographical ordering (cf. [13]). Otherwise, the code ac-
cepts a user-provided basis, through the call to a function that computes
the corresponding rectangular Vandermonde-like matrix at a given mesh of
points. The call to such a function is of the type V=myvand(deg,mymesh),
where deg is the polynomial degree, and mymesh a 2-column or array of mesh
points coordinates.

Since the first orthogonalization step has in practice the only purpose of
constructing a better conditioned basis, to improve efficiency we apply the
first QR factorization in (5) directly to the matrix Vp instead of

√
WVp. This

choice does not produce substantial differences from the numerical point of
view, but avoids to compute the matrix product

√
WVp, which corresponds

to scaling the matrix rows by the square roots of the cubature weights.
Such a scaling is performed only before the second orthogonalization step,
by storing the matrix

√
W in the Matlab sparse format.

Another key feature, in order to face ill-conditioning, is to compute the
Vandermonde-like matrix in the orthonormal basis by the Matlab operation
sequence Vq=(Vp/R)/R1; cf. [23] for the documentation on the Matlab /
(mrdivide) operator. This is not equivalent, numerically, either to compute
Vq=Vp*inv(R)*inv(R1), or Vq=Vp*inv(R1*R), or Vq=Vp/(R1*R); indeed, all
these three latter computations suffer from the possible ill-conditioning of R
(inherited from Vp), and do not ensure (near) orthogonality of sqrt(W)*Vq.

A drawback is given by the necessity of producing in output (and store
separately) both the upper triangular matrices R and R1, instead of the prod-
uct R1*R, for any further application that requires the orthonormal basis.

The structure of the Matlab function multivop is sketched in Table
4. Such a function computes also the hyperinterpolation coefficients array,
say cfs, of a function fun up to degree deg, cf. (10)-(11), as well as a
numerical estimate of the uniform norm of the hyperinterpolation operator,
cf. (14). Observe that the hyperinterpolant values at the cubature nodes
are hypval=Vq’∗cfs. In general, given a Vandermonde-like matrix in the
original basis on a given mesh, Up=myvand(deg,mymesh), the values of the
hyperinterpolant at that mesh can be computed as hypval=Uq’∗cfs, where
again R and R1 are “inverted” separately, Uq=(Up/R)/R1.
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3 Numerical examples

A key feature of the orthogonalization method described in the previous sec-
tion, is the availability of a positive cubature formula on the given compact
domain exact up to polynomial degree 2n, with as less nodes as possible
in view of efficiency. Indeed, all the matrix operations involved, in par-
ticular the QR factorizations, have a computational complexity essentially
proportional to the number of nodes (that is the number of rows of the
Vandermonde-like matrices).

Unfortunately, minimal cubature formulas, i.e., formulas that achieve a
given polynomial degree of exactness with a minimal number of nodes, are
known in few multivariate instances, and mainly on standard geometries; cf.,
e.g., [6] and references therein. It is worth recalling, however, that in recent
years some attention has been devoted to the computation of minimal or near
minimal formulas on virtually arbitrary geometries by suitable optimization
algorithms, which are also able to impose the positivity constraint; cf., e.g.,
[30, 32]. Cubature formulas with a given polynomial degree of exactness
and cardinality equal to the dimension of the corresponding polynomial
space, can be constructed by discrete extremal sets on various nonstandard
geometries (e.g., polygons), but in general, though numerically stable, they
present some negative weights; cf., e.g., [16], and [3] for the computation of
multivariate extremal sets of Fekete and Leja type.

On the other hand, several positive cubature formulas based on product
Gaussian quadrature have been obtained for the ordinary area or surface
measure on nonstandard geometries, via suitable geometric transformations;
cf., e.g., [7, 8, 17, 21, 27]. We present here some orthogonalization examples
that exploit such product type formulas.

All the numerical tests have been made in Matlab 7.7.0 with an Athlon
64 X2 Dual Core 4400+ 2.40GHz processor. The Matlab codes are available
online at [5].

3.1 Polygons

Orthogonal polynomials for the area measure on polygons seem to have
been computed only in the regular case, see, e.g., [12] where group theory
and rational exact arithmetics are used on the regular hexagon. In [26], a
triangulation-free positive cubature formula for the standard area measure
on a wide class of polygons was presented. The formula, implemented by the
Matlab function PolyGauss [5], is based on product Gaussian quadrature
by decomposition into trapezoidal panels, and works on all convex polygons,
as well as on a class of nonconvex polygons with a simple geometric charac-
terization [26, Rem. 4]. The cardinality for exactness degree n is bounded
by Ln2/4 +O(n), where L is the number of polygon sides.

Here, we apply such a formula to the computation of OPs on polygons
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by the function multivop. We consider two test polygons, see Figure 1-top,
and five test functions with different degree of regularity and variation rate,

f1(x, y) = (x+ y + 2)15 , f2(x, y) = cos(x+ y) , f3(x, y) = cos(5(x + y)) ,

f4(x, y) = ((x−0.5)2+(y−0.5)2)3/2 , f5(x, y) = ((x−0.5)2+(y−0.5)2)5/2 .
(16)

Observe that f1 is a polynomial, f2 and f3 are analytic functions, whereas
f4 ∈ C3 and f5 ∈ C5, with the singular point (0.5, 0.5) in the interior of both
polygons (it is also in the interior of one of the trapezoidal panels, where
the cubature nodes cluster more slowly than at the panel boundary). As
polynomial basis, we have used the total-degree product Chebyshev basis
of the smallest Cartesian rectangle containing the polygon, with the graded
lexicographical ordering. The dimension of the polynomial spaces is N =
dim(P2

n) = (n+ 1)(n + 2)/2.
It is worth stressing, see Figure 1-center, that while the matrix condi-

tioning increases exponentially, the two-step orthogonalization procedure is
able to get orthogonality up to an error close to machine precision.

The relative reconstruction error by hyperinterpolation is estimated as

(

∑M
i=1 wi(Lnf(xi)− f(xi))

2
)1/2

(

∑M
i=1 wif2(xi)

)1/2
≈

‖Lnf − f‖L2(Ω)

‖f‖L2(Ω)
. (17)

Notice that, as expected since Ln is a projection operator, the error on
the polynomial f1 becomes close to machine precision as soon as exact-
ness reaches the polynomial degree. The other errors are influenced by the
smoothness level of the functions, as expected from (13) and the fact that a
polygon is a “Jackson compact”, being a finite union of triangles.

We recall that a compact Ω ⊂ R
d which is the closure of an open bounded

set, is termed a Jackson compact if it admits a Jackson inequality, namely
for each k ∈ N there exist a positive integer mk and a positive constant ck
such that

nk En(f ; Ω) ≤ ck
∑

|i|≤mk

‖Dif‖Ω , n > k , ∀f ∈ Cmk(Ω) . (18)

Examples of Jackson compacts are d-dimensional cubes (with mk = k + 1)
and Euclidean balls (with mk = k). We refer the reader to [24] for a recent
survey on the multivariate Jackson inequality.

In Table 1, we report the number of nodes needed by PolyGauss to
ensure exactness degree 2n, together with the overall computing time of the
function multivop, for some values of the polynomial degree n.
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Figure 1: Top: cubature nodes for degree of exactness 40 on a 6-side convex
(left) and a 9-side nonconvex (right) polygon; Center: condition number
cond(Vp) (�) and orthogonality check ‖(WVq)

tWVq − I‖2 (◦) for the se-
quence of degrees n = 1, 2, . . . , 20; Bottom: reconstruction errors (17) by
hyperinterpolation of the five test functions (16): f1 (◦), f2 (�), f3 (△), f4
(∗), f5 (♦).
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3.2 Circular sections

In [4, 8], trigonometric interpolation and quadrature on subintervals of
the period have been studied; in particular, “subperiodic” Gaussian-type
quadrature formulas have been implemented. In [15], the quadrature prob-
lem has been inserted in the more general framework of sub-range Jacobi
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Table 1: Cardinality of the cubature formula (exactness degree 2n) and
computing time for the Matlab function multivop on the two test polygons
of Figure 1.

n 5 10 15 20

convex polyg

cardinality 252 792 1632 2772
cpu time 0.02s 0.17s 0.53s 1.67s

nonconvex polyg

cardinality 378 1188 2448 4158
cpu time 0.03s 0.28s 0.88s 2.70s

polynomials. These results have opened the way to the generation of prod-
uct Gaussian quadrature formulas for the area measure on several domains
constructed by circular arcs, such as circular segments, sectors, zones, and
more generally regions obtained by linear blending of circular/elliptical arcs.
The basic idea is that such regions are image of a rectangle by a suitable in-
jective analytic transformation, say σ : R → Ω, whose components belong to
the tensor-product space P1

⊗

T1, and thus any polynomial p ∈ P
2
n(Ω) cor-

responds to a tensorial algebraic-trigonometric polynomial p ◦ σ ∈ Pn
⊗

Tn

(where Tk denotes the space of trigonometric polynomials of degree not ex-
ceeding k, restricted to the relevant angular subinterval). By a change of
integration variables

∫

Ω
p(x) dx =

∫

R
p(σ(y))|detJσ(y)| dy,

we can obtain a product formula, observing that detJσ ∈ P1
⊗

T1 and has
constant sign. For details and examples we refer the reader to [7, 8].

The method has been also applied to regions related to a couple of over-
lapping disks with possibly different radii, such as lenses (intersection), dou-
ble bubbles (union) and lunes (difference), cf. [8, 9]. The cardinality of such
formulas for exactness degree n is cn2 + O(n), with c = 1 or c = 1/2 (and
even c = 1/4 by symmetry arguments in the special case of circular seg-
ments). All the corresponding Matlab codes are available at [5]. Concern-
ing applications it is worth recalling, for example, that bivariate orthogonal
polynomials and Gaussian quadrature on circular sections are useful tools
in optical design, cf., e.g., [2].

In Figure 2, we show the same numerical tests of Figure 1, on a circular
zone and on a circular lune. The dimension of the polynomial spaces is
N = dim(P2

n) = (n + 1)(n + 2)/2, and again we have chosen as starting
basis the total-degree product Chebyshev basis of the smallest Cartesian
rectangle containing the cubature nodes, with the graded lexicographical
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ordering. Observe that the singular point (0.5, 0.5) for f4 and f5, belongs to
the interior of both regions, where the cubature nodes cluster more slowly
than at the boundary. We recall that circular zones and lunes, as well as all
the arc-based regions quoted above, admit a multivariate Jackson inequality,
cf. [7, 9].

In these tests, the hyperinterpolation errors on the less regular functions
are higher than in the polygon examples. Such a behavior can be partially
explained by the fact that the cubature formula uses much less points, and
thus a less dense sampling, at the same degree of exactness (see Table 2).

In Figure 3 we report the uniform norm of the hyperinterpolation opera-
tor as a function of the degree n, for the four planar examples; cf. (14). Such
norm is evaluated numerically by the Matlab function multivop via a simple
matrix computation involving Vandermonde-like matrices in the (nearly) or-
thonormal basis (8), by a suitable control mesh. We have chosen as control
mesh the cubature nodes for exactness degree 4n, say {y1, . . . ,yH}, thus
computing, in view of (14),

‖Ln‖ ≈ max
x∈{yh}

M
∑

i=1

|ψi(x)| = ‖W (VpR
−1R−1

1 )(UpR
−1R−1

1 )t‖1 ,

where Vp is defined in (2) and Up = (uhj) = (pj(yh)) ∈ R
H×N . It is worth

stressing that the increase rate experimentally observed, ‖Ln‖ = O(n log n),
is not surprising at least concerning the disk sections, since it is compatible
with known theoretical estimates for hyperinterpolation over the whole disk
[19].

To conclude the planar examples, we increase the polynomial degree
taking n = 40 in all the test regions. The numerical results are displayed
in Table 3. In the polygon examples, we have extrapolated the condition
numbers of the Chebyshev-Vandermonde matrices by linear regression in log
scale, see Figures 1 and 2 bottom, since the cond function of Matlab under-
estimates the conditioning, giving values around the reciprocal of machine
precision.

Despite the severe ill-conditioning, the results are still acceptable, in par-
ticular near-orthogonality occurs. There is a big increase of the computing
time, explained by the fact that both, the number of cubature nodes as well
as the dimension of the polynomial space, are roughly proportional to n2.

3.3 Conclusions and future work

We have discussed a numerical method, based on standard numerical linear
algebra, that computes orthogonal polynomials (OPs) as well as the corre-
sponding hyperinterpolation operator with respect to an absolutely continu-
ous measure on a planar region, provided that an algebraic cubature formula
for the measure is known. The method is useful on nonstandard domains
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where an OP basis is not known analytically, such as for example general
polygons and regions of the disk.

In the present implementation, it could work also on (compact subsets
of) manifolds, as soon as a polynomial basis on the manifold is available, with
a not too ill-conditioned Vandermonde-like matrix at the cubature nodes.
For example, one might think applying the method to latitude-longitude
rectangles of the sphere (with spherical caps as a special case, cf. [17]),
using a basis of (n+ 1)2 spherical harmonics. The latter, however, tends to
be very ill-conditioned already at small degrees, since spherical harmonics
are orthogonal and thus well-conditioned only on the whole sphere.

A further step to manage such situations, could be that of generating
OPs that are tailored to a given discrete set, starting for example from
the product Chebyshev basis of the smallest parallelepiped containg the
set, and computing a suitable orthogonal polynomial basis by QR factoriza-
tion with column-pivoting of the (scaled) Chebyshev-Vandermonde matrix,
with possible rank-revealing (the rank being the dimension of the underlying
polynomial space).

Another interesting direction, especially when we should individuate
sampling nodes on a region to be used for the recovery of several func-
tions, is that of obtaining low-cardinality algebraic cubature formulas by
compression of the discrete measure corresponding to the original formula,
following the approach discussed in [28].

Acknowledgements. The authors wish to thank Gerard Meurant for some
helpful discussions.

Table 2: Cardinality of the cubature formula (exactness degree 2n) and
computing time for the Matlab function multivop on the two test regions
of Figure 2.

n 5 10 15 20

circular zone

cardinality 78 253 528 903
cpu time 0.01s 0.09s 0.30s 0.53s

circular lune

cardinality 78 253 528 903
cpu time 0.01s 0.08s 0.33s 0.51s
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Figure 2: Top: cubature nodes for degree of exactness 40 on a circular zone
(left) and on a circular lune (right); Center and Bottom: as in Figure 1 for
the zone and the lune.
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Table 4: Matlab function for OPs and hyperinterpolation.

function [R,R1,cfs,hyperr,hypnorm] = multivop(deg,nodes,weights,controlmesh);

% Vandermonde in the polynomial basis on the cubature nodes

V = myvand(deg,nodes);

% scaling matrices

S = sparse(diag(sqrt(weights))); W = sparse(diag(weights));

% orthogonalization process

[Q,R] = qr(V,0);

V = V/R;

[Q,R1] = qr(S*V,0);

% Vandermonde in the OP basis on the cubature nodes

V = V/R1;

% sampling a function at the cubature nodes

f = myfun(nodes);

% hyperinterpolation coefficients of the function

cfs = V’*(weights.*f);

% estimating the hyperinterpolation error

hyperr = sqrt(weights’*(V*cfs-f).^2)/sqrt(weights’*f.^2);

% Vandermonde in the OP basis on the control nodes

U = (myvand(deg,controlmesh)/R)/R1;

% estimating the uniform norm of the hyperinterpolation operator

hypnorm = norm(W*V*U’,1);

end
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