376 research outputs found

    GPU-accelerated discontinuous Galerkin methods on hybrid meshes

    Full text link
    We present a time-explicit discontinuous Galerkin (DG) solver for the time-domain acoustic wave equation on hybrid meshes containing vertex-mapped hexahedral, wedge, pyramidal and tetrahedral elements. Discretely energy-stable formulations are presented for both Gauss-Legendre and Gauss-Legendre-Lobatto (Spectral Element) nodal bases for the hexahedron. Stable timestep restrictions for hybrid meshes are derived by bounding the spectral radius of the DG operator using order-dependent constants in trace and Markov inequalities. Computational efficiency is achieved under a combination of element-specific kernels (including new quadrature-free operators for the pyramid), multi-rate timestepping, and acceleration using Graphics Processing Units.Comment: Submitted to CMAM

    A short note on a Bernstein-Bezier basis for the pyramid

    Full text link
    We introduce a Bernstein-Bezier basis for the pyramid, whose restriction to the face reduces to the Bernstein-Bezier basis on the triangle or quadrilateral. The basis satisfies the standard positivity and partition of unity properties common to Bernstein polynomials, and spans the same space as non-polynomial pyramid bases in the literature.Comment: Submitte

    Serendipity and Tensor Product Affine Pyramid Finite Elements

    Get PDF
    Using the language of finite element exterior calculus, we define two families of H1H^1-conforming finite element spaces over pyramids with a parallelogram base. The first family has matching polynomial traces with tensor product elements on the base while the second has matching polynomial traces with serendipity elements on the base. The second family is new to the literature and provides a robust approach for linking between Lagrange elements on tetrahedra and serendipity elements on affinely-mapped cubes while preserving continuity and approximation properties. We define shape functions and degrees of freedom for each family and prove unisolvence and polynomial reproduction results.Comment: Accepted to SMAI Journal of Computational Mathematic

    A Comparison of High Order Interpolation Nodes for the Pyramid

    Get PDF
    The use of pyramid elements is crucial to the construction of efficient hex-dominant meshes. For conforming nodal finite element methods with mixed element types, it is advantageous for nodal distributions on the faces of the pyramid to match those on the faces and edges of hexahedra and tetrahedra. We adapt existing procedures for constructing optimized tetrahedral nodal sets for high order interpolation to the pyramid with constrained face nodes, including two generalizations of the explicit Warp and Blend construction of nodes on the tetrahedron.Comment: Submitted to SIAM:SIS
    • …
    corecore