


Abstract

GPU-accelerated discontinuous Galerkin methods on hybrid meshes: applications in

seismic imaging

by

Zheng Wang

Seismic imaging is a geophysical technique assisting in the understand-

ing of subsurface structure on a regional and global scale. With the

development of computer technology, computationally intensive seismic

algorithms have begun to gain attention in both academia and indus-

try. These algorithms typically produce high-quality subsurface images or

models, but require intensive computations for solving wave equations.

Achieving high-fidelity wave simulations is challenging: first, numer-

ical wave solutions may su↵er from dispersion and dissipation errors in

long-distance propagations; second, the e�ciency of wave simulators is

crucial for many seismic applications. High-order methods have advan-

tages of decreasing numerical errors e�ciently and hence are ideal for wave

modelings in seismic problems.

Various high order wave solvers have been studied for seismic imag-

ing. One of the most popular solvers is the finite di↵erence time domain

(FDTD) methods. The strengths of finite di↵erence methods are the

computational e�ciency and ease of implementation, but the drawback of

FDTD is the lack of geometric flexibility. It has been shown that standard

finite di↵erence methods su↵er from first order numerical errors at sharp



iii

media interfaces.

In contrast to finite di↵erence methods, discontinuous Galerkin (DG)

methods, a class of high-order numerical methods built on unstructured

meshes, enjoy geometric flexibility and smaller interface errors. Addition-

ally, DG methods are highly parallelizable and have explicit semi-discrete

form, which makes DG suitable for large-scale wave simulations. In this

dissertation, the discontinuous Galerkin methods on hybrid meshes are

developed and applied to two seismic algorithms—reverse time migration

(RTM) and full waveform inversion (FWI).

This thesis describes in depth the steps taken to develop a forward DG

solver for the framework that e�ciently exploits the element specific struc-

ture of hexahedral, tetrahedral, prismatic and pyramidal elements. In

particular, we describe how to exploit the tensor-product property of hex-

ahedral elements, and propose the use of hex-dominant meshes to speed

up the computation.

The computational e�ciency is further realized through a combination

of graphics processing unit (GPU) acceleration and multi-rate time step-

ping. As DG methods are highly parallelizable, we build the DG solver

on multiple GPUs with element-specific kernels. Implementation details

of memory loading, workload assignment and latency hiding are discussed

in the thesis. In addition, we employ a multi-rate time stepping scheme

which allows di↵erent elements to take di↵erent time steps.

This thesis applies DG schemes to RTM and FWI to highlight the

strengths of the DG methods. For DG-RTM, we adopt the boundary value

saving strategy to avoid data movement on GPUs and utilize the memory

load in the temporal updating procedure to produce images of higher



qualities without a significant extra cost. For DG-FWI, a derivation of

the DG-specific adjoint-state method is presented for the fully discretized

DG system. Finally, sharp media interfaces are inverted by specifying

perturbations of element faces, edges and vertices.

Keyword: discontinuous Galerkin methods, high performance com-

puting, reverse time migration, full waveform inversion
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Chapter 1

Introduction

Seismology is the study of earthquakes and has contributed to the understanding

of Earth interiors. The development of modern seismology can be traced back to

the end of 19th century when researchers start to analyze the earthquake data using

travel time information [1]. With the development of the oil industry, seismology,

especially seismic imaging, began to play a role in the oil and gas exploration. Many

seismic imaging algorithms have been developed in the last several decades, and these

algorithms utilize the reflection of sound waves to reveal the underground structures.

In a seismic survey, sound-wave sources are generated by airguns or explosives, and

at the same time, seismic receivers are placed near the ground surface or sea surface

to collect the wave information. Seismologists use the recorded observation of sound

waves to deduce subsurface structures, which are used by geophysical interpreters to

predict the location of crude oil and natural gas.

In the last several decades, the exponential growth in computational capability

makes it feasible for computationally intensive algorithms to be employed in seismic

imaging. For instance, some seismic imaging algorithms such as reverse time mi-

gration (RTM) and full waveform inversion (FWI) require the wave equations to be

solved on large surveyed volumes and are computationally expensive.
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The wave equations solved in seismic imaging are a class of hyperbolic partial

di↵erential equations (PDEs) describing the physics of wave propagation. Due to

the di�culty of obtaining analytic solutions to wave equations on general domains,

researchers and engineers typically solve wave equations with numerical approxima-

tions. A large variety of numerical wave solvers, each of which has specific features,

have been developed. In this thesis, I study the discontinuous Galerkin time domain

(DGTD) methods as a candidate discretization of the wave equations.

Due to the requirement of solving wave equations multiple times in some seismic

algorithms, the e�ciency of the wave solver is crucial in seismic imaging. To address

the e�ciency issue, the experimented DGTD solver is built on hybrid meshes contain-

ing hexahedra, tetrahedra, prisms and pyramids to exploit the strengths of di↵erent

element types. The e�ciency of the DG solver is also studied on modern hardware

accelerators to further reduce the computational time cost. In this work, the graphics

processing units (GPUs) are employed as the main computational hardware.

This chapter provides an overview of two seismic imaging algorithms—reverse

time migration and full waveform inversion, and reviews DGTD methods and GPU

programming.

1.1 Seismic imaging

In a seismic survey, sound waves are typically generated by explosives, and receivers

such as geophones then detect and record the motion of the Earth as seismic data.

The task of seismic imaging is to utilize the seismic data to produce images of the

subsurface.

Various seismic algorithms haven been proposed to image the subsurface using

seismic data. The computational costs and image qualities vary from algorithm to

algorithm. Typically, the cheap algorithms (e.g. Kirchho↵ migration [2] and trav-
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eltime tomography [3]) produce low-quality results, while the expensive algorithms

(e.g. reverse time migration [4], least-square reverse time migration [5] and full wave-

form inversion [6]) may lead to high-quality images. In this section, we focus on the

introduction to reverse time migration (RTM) and full waveform inversion (FWI),

both of which are relatively expensive seismic algorithms.

Reverse time migration is one of the seismic imaging algorithms that require solv-

ing wave equations many times. Originated from Claerbout’s reflector mapping [7, 2],

RTM was early introduced in the 1980s [4, 8], and has been a topic of research for

decades [9]. At the first step, the wave equations must be e�ciently solved in RTM.

In this thesis, I focus on the acoustic wave equation (one class of wave equations)

in time domain, and its first order form is given by

@p(x, t)

@t

+ ⇢c

2r · v(x, t) = 0, x 2 Rd

, t 2 R+ (1.1a)

@v(x, t)

@t

+
1

⇢

rp(x, t) = 0, x 2 Rd

, t 2 R+ (1.1b)

where p(x, t) is the acoustic pressure, v(x, t) is the particle velocity, ⇢(x) is the media

density, c(x) is the phase velocity, and d = 1, 2, 3 is the dimension. More general cases

including elastic wave equations and frequency domain are referred to [6, 10].

A large variety of numerical methods are devoted to solving the wave equations.

Some popular methods are listed below.

• Finite di↵erence methods use Taylor expansion to approximate the derivatives

of a function at a certain point. For instance, a spatial first order derivative

may be approximated as

@f(x)

@x

⇡ f(x+ h)� f(x� h)

2h
,

which is known as a central finite di↵erence approximation [11]. Although weak
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in dealing with complicated geometry [12], the finite di↵erence method has a lot

of applications in seismic imaging due to its simplicity and e�ciency. Early work

of finite di↵erence in wave propagation can be traced back to 1970s [13, 14, 15],

and it continues to be a popular tool in recent seismic research [16].

• Pseudo-spectral methods employ a set of basis functions to globally approximate

PDE solutions. The pseudo-spectral method resembles spectral methods [17],

but it takes advantage of fast Fourier transformation (FFT) which improves

the computational e�ciency [10]. The pseudo-spectral method is not easy to be

parallelized due to its global approximation. Readers can refer to [18, 19] for a

detailed introduction to pseudo-spectral methods.

• Finite element methods partition the computational domain into many geo-

metric elements, and the solution is approximated in each element by a linear

combination of basis functions [20, 21]. The use of unstructured mesh gives

finite element methods geometric flexibility. However, the mass matrix of finite

element methods must be inverted in an explicit time stepping scheme, and in-

verting the mass matrix is expensive. Techniques such as mass lumping may be

introduced to avoid inverting the mass matrix, but it may also harm the accu-

racy of the solution [22]. An alternative to the standard finite element method is

the spectral element method [23, 24, 25], which resembles finite element meth-

ods but usually employs Lagrange polynomials and Gauss-Legendre-Lobatto

quadrature on rectangular and hexahedral elements. By restricting elements

types, the spectral element methods sacrifice some mesh flexibility to achieve

computational e�ciency.

• Discontinuous Galerkin time domain methods, which will be discussed later in

chapter 2, are suitable for seismic applications. In general, DG combines the
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features of finite element methods and finite volume methods. Compared to

finite di↵erence methods, DG has smaller interface error [26] and is amenable

to local adaptivity [27]. The studies of DG in seismology have been carried out

by many researchers. As a wave propagator for seismic imaging, DG has been

applied to acoustic, elastic, TTI and VTI problems [9, 28, 29, 30, 31].

In RTM, the wave equations are solved forward in time with source signals and

backward in time by providing the recorded seismic data as the external forcing of the

wave equation. The forward and backward solutions are then cross-correlated using

I(x) =

Z
T

0

p

S

(x, t)p
R

(x, t)dt, (1.2)

where p
S

and p

R

are the forward source field and backward receiver field respectively.

Expression (1.2) is also known as the imaging condition. The output of RTM is this

image I(x) which reports the subsurface structures.

The original migration imaging principle was recast in the early 1980s [32, 33] as

a local optimization problem which is known as the full waveform inversion. One

version of the imaging condition, which resembles (1.2), can be used to build the

gradient of the misfit function in the full waveform inversion.

Full waveform inversion is a procedure which utilizes the recorded data to recover

the physical parameters of the subsurface. Based on the numerical solution to the

wave equations, FWI iteratively improves the tomographic images using optimization

techniques [10]. Di↵erent from RTM which only images the subsurface structures

without realizing their physical properties, FWI does not only output the topology

of subsurface structures, but also inverts the magnitude of physical parameters.

To begin the introduction to FWI, we generalize the representation of wave equa-

tions. Given the physical parameter m(x) (such as media density ⇢ and velocity c

in equation (1.2)) with x 2 Rd (d = 1, 2, 3), we can solve the corresponding wave
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equations to obtain the solution u(x, t) (such as pressure p and particle velocity v in

(1.2)) with x 2 Rd and t 2 R+. The physical parameter m is called a model which

gives physical properties of the subsurface; the solution u is a wavefield which maps

space and time to the wave attributes. The wave equation is viewed as an operator

F acting on m to obtain u. We then write F [m] = u. During the wave propagation,

signals are recorded at receiver locations, and these are denoted by data d(t). For

example, if a receiver is placed at x
r

, we have d
r

(t) = u(x
r

, t). Typically, the data

consists of the information from many receivers, and hence data d(t) is a collection

of multiple data traces d
r

(t).

In FWI, the model m is the variable needs to be solved. The available information

is the data d produced by the true model mtrue and the corresponding source and

receiver configurations. The task of FWI is to minimize the mismatch between the

sampled synthetic wavefield F [m] and the recorded data d. To this end, a misfit

function is given by

J [m] =
1

2
hSF [m]� d, SF [m]� di

=
1

2
kSF [m]� dk22,

(1.3)

where S is a restriction operator that maps wavefields to traces at the receiver lo-

cations, k·k2 is the L

2 norm in space and time, and h·, ·i is the corresponding inner

product. In other words, we assume the equality SF [mtrue] = d holds, and want to

recover mtrue by solving the optimization problem (1.3).

The model m is then obtained by minimizing the misfit function J using an

optimization algorithm. Widely used optimization methods in FWI are steepest-

descent method, conjugate gradient method [34], Newton method, Gauss-Newton

method [35] and Quasi-Newton method [36].

These optimization methods require derivatives of J with respect to m. The
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derivatives of J is costly to compute in a conventional entry-by-entry manner, but

can be obtained through the adjoint-state method [10]. The adjoint-state method is a

well-known method for PDE-constrained optimization. In the adjoint-state method,

an adjoint variable, which is analogous to the Lagrangian multiplier, is introduced

to guide the computation of the gradient of the misfit function. A review of the

adjoint-state method in geophysical applications can be found in Plessix’s 2006 paper

[37]. For specific discrete problems, the adjoint-state method is dependent on the

PDE discretizations, and hence the specific derivation of the adjoint-state method

should be given for a certain class of problems. For example, Wilcox et al. [38] gave

the discrete form of the adjoint-state method in the context of DG-based hyperbolic

problems. In this thesis, I will also present a derivation of the adjoint-state method

for DG methods in chapter 4.

The minimization problem in FWI is ill-posed, and the FWI problem is not guar-

anteed to have a unique solution [6]. An example to explain this is a 1D reflection

model: assuming the velocity model has two di↵erent materials and there is one

source to emit a signal and one receiver to collect the reflected wave, we can always

tune the magnitude of the velocity model and the location of the reflector to produce

the same data. In addition, the misfit function in the FWI formulation may contain

many local minimums. As a local optimization scheme is typically used for FWI, the

numerical solutions may be trapped in local minima. This is sometimes known as the

cycle skipping issue [6]. Many techniques are proposed to formulate a better-posed

problem. Examples are using a regularization term to guide the optimization paths

[34, 39], using a di↵erent objective function [40], and applying frequency continuation

technique [41]. Due to the ill-posedness of the FWI formulation, the initial model

for FWI must be good enough to avoid the cycle skipping issue. Several algorithms

can be used to provide an initial guess such as reflection tomography [42], first-arrival
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traveltime tomography [3], and Laplace-domain inversion [43].

1.2 Discontinuous Galerkin methods

Both RTM and FWI require e�cient solvers for wave equations. In this thesis, I

explore the discontinuous Galerkin (DG) methods as potential wave solvers. As a

class of numerical methods for solving partial di↵erential equations, discontinuous

Galerkin methods resemble finite element methods in formulation but allow disconti-

nuity among elements. Introduced in 1973 by Reed and Hill [44], DG methods have

been applied to a diverse range of fields such as porous media flows [45], viscoelastic

flows [38], modeling of shallow water [46], electromagnetism [47], wave propagation

[9], and many others [48, 45]. DG methods have advantages over the finite element,

finite volume and finite di↵erence in several aspects [48, 47]:

• DG is a mesh-based method, and hence the unstructured mesh can handle

complicated geometries especially media interfaces. Symes and Vdovina [12]

noticed that the standard finite di↵erence method has first order interface error.

When the media has sharp interfaces, the convergence rate of FD becomes

only first order, thus destroying the high order convergence from the spatial

discretization. In contrast, Wang [26] numerically proved that DG has high

order interface errors when the mesh is aligned with the media interface.

• The mass matrices generated in DG formulation are block-diagonal, which saves

the computational cost of solving a linear system when using an explicit time-

stepping scheme.

• DG methods are particularly e�cient with high order discretization, thus suit-

able for high-frequency wave simulations.
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• DG methods are highly parallelizable, which makes DG well suited for large-

scale simulations in seismic imaging [9].

As a mesh-based method, DG methods solve PDEs on complicated geometries

partitioned by meshes. In particular, it is the triangle in 2 dimensional (2D) spaces

and the tetrahedron in 3 dimensional (3D) spaces that can easily approximate compli-

cated geometries. In this work, I employ the nodal discontinuous Galerkin methods

developed by Hesthaven and Warburton [47] to formulate a discretized system on

tetrahedral elements in 3D domains. The nodal DG technique has been applied to

many physics problems [49, 46, 50, 51]. In particular, its application in acoustic/elas-

tic waves, which is also the interest of this thesis, has been studied by many researchers

including Wang [26], Modave [9], Wilcox [31] and Matar [52].

Besides the nodal DG approach, various DG formulations have been studied for

wave problems. In 2003, Rivière and Wheeler [53] analyzed nonsymmetric interior

penalty DG formulation for second order wave equations, and it was also extended

to the symmetric interior penalty by Grote and others [54]. The dispersive and dis-

sipative properties of this interior penalty DG formulation, together with the prop-

erties of the general DG schemes, were studied by Ainsworth, Monk and Muniz [55].

In 2006, Dumbser and Käser applied DG methods with orthogonal bases to elas-

tic wave equations, where arbitrary high-order derivatives for flux calculation was

used. In 2015, Chan and Warburton [56] proposed Bernstein-Bezier DG methods

for wave problems. With the assumption of piece-wise constant physical parameters,

the Bernstein-Bezier DG methods introduced sparsity in the element-wise operators

and improved the overall performance on tetrahedral meshes. In 2016, Chan, Hewett

and Warburton developed weight-adjusted discontinuous Galerkin methods to reduce

computational cost for wave equations with smooth coe�cients [57].
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While tetrahedral elements benefit from their flexibility, hexahedral elements enjoy

a low computational cost brought by their tensor product property [58]. The DG

methods on hexahedral elements resemble spectral element methods (SEM) since their

solutions are both approximated by high degree Lagrange interpolants. Simulations

and analysis of SEM on wave propagation were studied in the 1990s [59, 60]. The

DG methods on hexahedra inherit many advantages from SEM and provide a wider

choice for basis functions by removing the continuity enforcement. However, the

mesh of only hexahedral elements is not amenable to complicated geometries, so a

combination of tetrahedral and hexahedral elements is a better choice regarding both

flexibility and e�ciency. In a hybrid mesh, tetrahedral elements can be utilized to

approximate the complicated geometry, and hexahedral elements should fill the rest

of the domain to improve the e�ciency and save the computational time cost. Since

a tetrahedron only has triangular faces while a hexahedron only has quadrangular

faces, prisms and pyramids must be introduced to glue tetrahedra and hexahedra in

a conforming mesh.

Early explorations of hybrid meshes using spectral/hp methods were carried out

by Sherwin [61], Warburton [62, 63] and Kirby [64]. Their work introduced a local co-

ordinate system, constructed orthogonal expansions, and studied applications mainly

in computational fluid dynamics and magnetohydrodynamics. The construction of

nodal elements on hybrid meshes (including polyhedra) was discussed by Gassner et

al. [65]. While the approximation spaces for hexahedral, prismatic and tetrahedral

elements from the early research have been widely accepted, the improvement of basis

functions for the pyramid has continuously been a research topic. In 1992, Bedrosian

[66] realized that polynomial basis functions su↵er from the singularity issue in a

vertex-mapped pyramid, and he thereby constructed low order basis for pyramids us-

ing rational expressions. After that, Bergot, Cohen and Durufle introduced their high
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order function basis for pyramids in [67, 68]. More recently, Chan and Warburton

[69] derived orthogonal bases for pyramidal elements which enabled diagonal mass

matrix in discontinuous Galerkin methods.

Due to the computational e�ciency of hexahedral elements, hex-dominant meshes

are well suited for large simulations, and hence various techniques were proposed to

assist the computation on hybrid meshes. In order to minimize the storage for time-

explicit DG methods, a low-storage curvilinear discontinuous Galerkin (LSC-DG)

method for prisms was introduced by Warburton [70, 71]. By dividing the basis

function by the square root of the Jacobian, the LSC-DG transforms the mass matrix

into an identity and hence avoids storing the mass matrix. For pyramids, the basis

functions can be constructed as orthogonal bases [69], which results in a diagonal

mass matrix and saves computational storage and time.

To further improve the computational e�ciency, a multi-rate time stepping tech-

nique has been adopted in my DG implementation. The multi-rate time stepping al-

lows di↵erent elements to take di↵erent time step sizes, which relaxes the global CFL

constraints into many local CFL constraints. The multi-rate time stepping technique

has been studied by many researchers including Gear and Wells [72], Warburton [73],

Gödel[74], Gandham [46] and Modave [9].

This thesis continues the e↵ort to develop discontinuous Galerkin methods on

hybrid meshes and utilizes computational techniques including multi-rate time step-

ping and multi-GPU implementation to accelerate the computation. In particular,

we address the computational e�ciency of hex-dominant meshes. The implementa-

tion of this thesis is extended from a simplified version of RiDG code [9], which is a

GPU-accelerated C++ code for DG-RTM.
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1.3 GPU programming

One of the research objectives is the ability to run large 3D simulations, which requires

large operational capability. To improve time to solutions, I employ parallel comput-

ing with multiple hardware accelerators that can be central processing units (CPUs),

graphics processing units (GPUs), or other hardware. Although my implementation

runs on both CPUs and GPUs, in this work I focus on the GPU programming and

describe the implementation details on GPUs. In the remaining of this thesis, I refer

hardware accelerators to GPUs when there is no danger of confusion.

A graphics processing unit (GPU) is a multi-thread architecture, which is initially

designed for graphical rendering but now also used in scientific computation. The

applications of GPU have been involved in various fields such as reservoir simulation

[75], geoscience [9, 76], computational fluid dynamics [77], machine learning [78], and

finance [79].

A GPU consists of a series of streaming multiprocessors (SMs), and each SM

contains registers, caches, warp schedulers and execution cores [80]. It is the SMs

that performs the actual computations, and they are mapped to virtual grids, blocks,

and threads at runtime. As illustrated in figure 1.1, the entire computational task is

built on the GPU grid. The grid is then divided into many blocks, and the blocks are

divided into many threads. When programming on GPUs, programmers write code

for the threads, and the instructions will be executed simultaneously on the threads.

Each thread is mapped to a GPU core. The GPU cores are physically grouped into

warps, and each block may correspond to one or several warps.

Threads can access di↵erent levels of memory based on their virtual positions. As

depicted in figure 1.2, each thread has its private memory which is also known as

registers. The threads in the same block can read and write the corresponding shared

memory. All threads can access the global memory while the global memory acts as
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a general bu↵er between the host (CPU) and the device (GPU).

Figure 1.1: GPU Grid and Block: 2D Example. Threads are grouped into blocks,
and blocks are arranged in a grid. Figures are regenerated from [81].

Figure 1.2: GPU Memories: 2D Example. A thread has its private memory, a block
has its shared memory and every thread can access the global memory. Figures are

regenerated from [81].

Several application programming interfaces (APIs), such as OpenCL and CUDA,

are available for programmers to write GPU codes. OpenCL can be implemented on a

variety of hardware provided by many vendors such as NVIDIA, AMD and Intel. The

performance of OpenCL codes depends on the vendor implementation of OpenCL.

Alternatively, CUDA may be e�cient in parallelization on NVIDIA GPUs.

To take advantage of di↵erent programming approaches, I use OCCA, a unified
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approach to multithreading languages, as the programming tool in the thesis study.

In brief, OCCA is a syntax unification, and it provides a class of unified APIs for dif-

ferent programming modes. The OCCA keywords can be translated into an OpenMP,

OpenCL or CUDA syntax at runtime (figure 1.3). Further details of OCCA language

are referred to [82].

Figure 1.3: OCCA wraps di↵erent APIs. OCCA code is translated into an
OpenMP, OpenCL or CUDA code at runtime.

With the rapid growth of the computational capacity of GPUs, researches of GPU-

DG has been carried out in recent years. The GPU-DG has a variety of applications

including electromagnetic fields [83], elastic waves [84], shallow water equations [46],

reverse time migration [9] and many others [85, 86, 87]. Besides these applications,

GPU-DG/FEM was also studied on di↵erent meshes: the DG method using tetrahe-

dral mesh on a single GPU was implemented in 2009 by Klöckner, Warburton, Bridge

and Hesthaven [49]. The spectral finite element method with hexahedral elements on

GPUs was exploited in 2015 by Remacle, Gandham and Warburton [58]. Recent

research on GPU-accelerated DG using hybrid meshes was also presented in 2015 by

Chan, Wang, et al. [88].

Although GPUs are powerful computational devices, a single GPU is still limited

in its computational capability. To this end, multiple GPUs can be connected to ful-
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fill large computational tasks. The connected GPUs may communicate via message

passing interface (MPI) which is a standard library specification for data movement

among parallel devices. In recent years, the programming model of MPI+X is pro-

posed for large-scale computations [89], where X stands for any parallelization on a

shared memory system. As MPI+X is already the current approach for large-scale

computations and considered to be a future trend for even larger computations, I use

MPI+OCCA to enable multi-GPU simulations. The wave propagation modeling on

GPU clusters has been studied by many researchers using various methods includ-

ing finite di↵erence methods [90], finite element methods [76, 91], and discontinuous

Galerkin methods [9].

1.4 Contributions

This thesis introduces the DG method for acoustic waves, the details of GPU imple-

mentation, and its applications in RTM and FWI. The novelty of this thesis lies in

the following aspects.

• A DG solver on hybrid meshes is developed. The solver is equipped with multi-

rate time stepping and multi-GPU acceleration (MPI+OCCA). The e�ciency

of di↵erent element types is studied which suggest that a hex-dominant mesh

is both e�cient and flexible for large-scale simulations.

• The DG based RTM and FWI are developed. RTM images and FWI velocity

models have been successfully produced by our software, which validates the

correctness of our implementation.

• A derivation of the discrete adjoint-state method for DG-FWI using single rate

Adams-Bashforth scheme is presented in chapter 4. The results of my derivation

agree with Wilcox et al. [38], but may be more easily generalized.
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• Sharp interfaces are demonstrated to be successfully inverted inside the DG-

FWI framework. The impact of a certain interface perturbation is evaluated

by integrating the imaging condition over element faces. Simple geometries

such as polyhedral inclusions are inverted under certain assumptions. In addi-

tion, meshes are regenerated at FWI iterations to be aligned with the media

interfaces.

1.5 Outline

The remaining chapters in this thesis are structured as follows.

• Chapter 2 is a detailed description of the discontinuous Galerkin methods for

the acoustic wave equations. A formal introduction and discussion regarding the

GPU implementation is presented. Numerical experiments with known analytic

solutions are presented to validate the implementation. Performance studies are

reported to analyze our implementation.

• Chapter 3 introduces the reverse time migration including the formulation and

the implementation details. Test cases are given to validate the implementation.

• Chapter 4 discusses the application of DG in full waveform inversion. The

adjoint-state method is firstly reviewed. Conventional FWI is then implemented

and validated with test cases. Last but not the least, media interfaces are

inverted by specifying a certain perturbation of the interfaces.

• Chapter 5 summarizes the thesis and proposes future works.



Chapter 2

Discontinuous Galerkin method on hybrid meshes

Discontinuous Galerkin (DG) methods were initially proposed for the neutron trans-

port equation [44], and have been applied to general hyperbolic equations [47]. The

studies of DG methods on wave problems, hybrid meshes and GPUs have been dis-

cussed in chapter 1, and a more general review of DG methods can be found in [48].

In DG methods, the computational domain is partitioned into many elements, and

the solution is typically represented as piecewise continuous polynomials. For linear

PDEs, a linear system is then built from DG discretization and solved to obtain a

numerical solution. This chapter introduces the formulation of the DG methods, the

properties of di↵erent element types, implementation details, parallelization strategy,

convergence study and performance study.

2.1 Notational conventions

As preliminaries, I discuss nomenclature:

• Scalars: regular letters are usually scalars in R except some capitalized letters

denote matrices. For instance, the wavefield pressure p, the time variable t and

the phase velocity c are all scalars.
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• Vectors: the vectors in Rn are denoted by the bold-faced symbols. For example,

x usually refers to a coordinate vector in R3, and the solution field vector of the

acoustic waves is denoted by u = (p, v1, v2, v3).

• L

2 inner product: round bracket denotes the L

2 inner product. It usually

comes with a subscript indicating the integral domain. With this definition, the

integral of u times v over the domain ⌦ is written as

(u, v)⌦ =

Z

⌦

uv dx.

• Vector inner product: the discrete inner product of two vectors are denoted by

dot product as

u · v =
X

i

u

i

v

i

.

• Plus and minus superscript: in DG methods, we use a plus and minus super-

script to denote the exterior and interior trace of a field. Since the DG solution

overlaps at element faces, we use u� to denote u inside the active element, and

u

+ to denote u from the neighboring element (figure 2.1). Mathematically, we

have

u

+ = lim
t!0+

u(x+ tn), u

� = lim
t!0�

u(x+ tn),

where x is on the element boundary, and n is the outward facing unit normal

to a face.

• Average and jump: double curly bracket and double square bracket are nota-

tions for average and jump respectively. The definition of average is consistent

in both scalars and vectors, and it is defined by

{{u}} =
u

� + u

+

2
.



Chapter 2. Discontinuous Galerkin method on hybrid meshes 19

Figure 2.1: 2D illustration of plus and minus superscript: u� denotes the traces on
the active element while u

+ is the trace on the neighboring element.

The definition of normal jump is di↵erent for scalars and vectors. The jump of a

scalar is a vector while the jump of a vector becomes a scalar. The mathematical

form is given by

JuK = u

�n� + u

+n+
, JuK = u� · n� + u+ · n+

,

where n� is the outward normal to an interior face, and n+ is the outward

normal to an exterior face.

2.2 General formulation

This section studies the DG formulation. Here, we only consider the acoustic wave

equation, but it may be extended to general hyperbolic equations. In the following,

we will discuss the weak form and strong form formulation and derive the upwind

fluxes for the acoustic wave equation.
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2.2.1 Weak form and strong form

The DG scheme is similar to finite element method in formulation. To illustrate it,

we apply the DG scheme to the 3D acoustic wave equation which is given by

@p(x, t)

@t

+ ⇢(x)c(x)2r · v(x, t) = 0, x 2 ⌦, (2.1a)

@v(x, t)

@t

+
1

⇢(x)
rp(x, t) = 0, x 2 ⌦, (2.1b)

p(x, 0) = p0, x 2 ⌦, (2.1c)

v(x, 0) = v0, x 2 ⌦, (2.1d)

where ⌦ ⇢ R3 is the domain of interest, x is the spacial coordinate, t is the time, p

and v = (v1, v2, v3) are the pressure and velocity of the wavefield respectively, ⇢ is the

media density and c is the phase velocity. When ⌦ is a bounded domain, equation

(2.1) must be equipped with a proper boundary condition. For instance, a Dirichlet

boundary condition may be given by

p(x, t) = 0, x 2 �, (2.2)

where � = @⌦ is the boundary of the domain.

In the DG formulation, the global solution is typically approximated by piecewise

polynomials. To begin with, the computational domain ⌦ is partitioned into many

elements as

⌦ = [K

k=1D
k

. (2.3)

On each element Dk, a local approximation is defined by

u

k

h

(x, t) =

NpX

n=1

û

k

n

(t)'k

n

(x), (2.4)
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where ûk

n

(t) are coe�cients depending on time and '

k

n

(x) are basis functions supported

on D

k. The global numerical solution is defined by the direct sum of all the local

approximations

u

h

= �K

k=1u
k

h

. (2.5)

The unknowns are the û

k

n

in equation (2.4) which determine the DG solution.

Replacing p and v with discrete approximation p

h

and v
h

= (v1,h, v2,h, v3,h) in

equation (2.1), multiplying the equation with test functions q and w, and integrating

over an element Dk, we obtain

Z

D

k

@p

h

@t

q +

Z

D

k

⇢c

2r · v
h

q = 0, (2.6a)
Z

D

k

⇢

@v

i,h

@t

w

i

+

Z

D

k

@p

h

@x

i

w

i

= 0, i = 1, 2, 3. (2.6b)

Spacial integration of equation (2.6) yields,

Z

D

k

@p

h

@t

q �
Z

D

k

⇢c

2v
h

·rq = �
Z

@D

k

⇢c

2v
h

· nq, (2.7a)
Z

D

k

⇢

@v

i,h

@t

w

i

�
Z

D

k

p

h

@w

i

@x

i

= �
Z

@D

k

p

h

w

i

n

i

, i = 1, 2, 3. (2.7b)

where n = (n1, n2, n3) is the outward normal of @Dk.

Since the definition of a DG solution in (2.4) and (2.5) are not uniquely defined

on the boundary of an element, the right-hand sides of equation (2.7) are not well

defined. Therefore, we replace p

h

and v
h

in the face integral in (2.7) with p

⇤
h

and v⇤
h

which are known as numerical fluxes [47]. The fluxes p⇤
h

and v⇤
h

depend on the traces

p

+
h

, p

�
h

,v+
h

and v�
h

. The derivation of the numerical fluxes is given in section 2.2.2.
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Assuming the numerical fluxes are already given, we have

Z

D

k

@p

h

@t

q �
Z

D

k

⇢c

2v
h

·rq = �
Z

@D

k

⇢c

2v⇤
h

· nq, (2.8a)
Z

D

k

⇢

@v

i,h

@t

w

i

�
Z

D

k

p

h

@w

i

@x

i

= �
Z

@D

k

p

⇤
h

w

i

n

i

, i = 1, 2, 3. (2.8b)

This formulation, obtained from integration by part once, is referred to as the weak

form formulation. Alternatively, a strong form formulation can be derived by inte-

grating by part again, which leads to

Z

D

k

@p

h

@t

q +

Z

D

k

⇢c

2r · v
h

q =

Z

@D

k

⇢c

2 (v
h

� v⇤
h

) · nq, (2.9a)
Z

D

k

⇢

@v

i,h

@t

w

i

+

Z

D

k

@p

h

@x

i

w

i

=

Z

@D

k

(p
h

� p

⇤
h

)w
i

n

i

, i = 1, 2, 3, (2.9b)

where v
h

and p

h

in the face integral on the right-hand side take values in the interior

of element Dk.

Both (2.8) and (2.9) are proper DG formulations, and they are mathematically

equivalent with the assumption that test functions are smooth. However, the weak

form formulation require di↵erentiability of the test functions (q,w) but not the nu-

merical solutions (p
h

,v
h

), while the strong form formulation does not require smooth-

ness of the test functions (q,w). A combination of strong form and weak form formula-

tions may be used for di↵erent purposes: Warburton [71] took half of each formulation

to guarantee stability for inexact quadrature. Wilcox et al. [38] applied strong and

weak formulations alternatively in the adjoint-state method to derive discretely exact

gradient. In this study, I use di↵erent formulations for di↵erent types of element. For

hexahedron and tetrahedron, I use the strong form formulation due to the ease of im-

plementation. For prism and pyramid, I apply a skew-symmetric formulation, which

is derived by taking half strong form (2.9b) and half weak form (2.8a), to guarantee
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stability [88]. Details of the skew-symmetric formulation are given in section 2.3.3.

2.2.2 Numerical flux

The formulation is complete once we properly define the numerical fluxes in equation

(2.8) and (2.9). To this end, we follow the procedure in section 2.4 of the nodal DG

book [47], and give a brief mathematical derivation of the numerical fluxes.

Denoting u = (p,v) = (p, v1, v2, v3), we first write the acoustic wave equation in

a standard form of hyperbolic equation

Q

@u

@t

+ A1
@u

@x1

+ A2
@u

@x2

+ A3
@u

@x3

= 0 (2.10)

with

Q =

0

BBBBBBB@

1
⇢c

2

⇢

⇢

⇢

1

CCCCCCCA

, A1 =

0

BBBBBBB@

0 1 0 0

1

0

0

1

CCCCCCCA

, A2 =

0

BBBBBBB@

0 0 1 0

0

1

0

1

CCCCCCCA

, A3 =

0

BBBBBBB@

0 0 0 1

0

0

1

1

CCCCCCCA

.

Define operator ⇧ = n1A1 + n2A2 + n3A3, where n = (n1, n2, n3) is the outward

normal vector. Following the formula in [47], we have

c

�
Q

�(u⇤ � u�) + (⇧u)⇤ � (⇧u)� = 0,

�c

+
Q

+(u⇤ � u+) + (⇧u)⇤ � (⇧u)+ = 0.
(2.11)

Manipulation yields

(c+Q+ + c

�
Q

�)(⇧u)⇤ = c

+
Q

+(⇧u)� + c

�
Q

�(⇧u)+ + c

�
c

+
Q

�
Q

+(u� � u+), (2.12)
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which is simplified as

v⇤ =
1

⇢

+
c

+ + ⇢

�
c

�

�
(⇢c)�v� + (⇢c)+v+ + (p� � p

+)n
�

=
2

⇢

+
c

+ + ⇢

�
c

�

✓
{{⇢cv}}+ 1

2
JpK
◆
,

p

⇤ =
1

c

+
⇢

+ + c

�
⇢

� (c
+
⇢

+
p

� + c

�
⇢

�
p

+ + c

+
c

�
⇢

+
⇢

�n · (v� � v+))

=
2c+c�⇢+⇢�

c

+
⇢

+ + c

�
⇢

�

✓
{{p/(c⇢)}}+ 1

2
JvK
◆
.

(2.13)

This result is also known as upwind fluxes [47].

2.3 Element types

Section 2.2 gives a general DG formulation, which applies to all types of elements.

However, the specific properties of di↵erent element types should be considered in

order to exploit their computational strengths. The hexahedral element is cheap in

computation due to its tensor product property [17]; the tetrahedral element can

easily approximate complicated geometries, benefiting from the mature tetrahedral

mesh generation techniques [92]; the prismatic and pyramidal elements have both

triangular and quadrangular faces, and hence act as transitional elements in the

computational domain [88]. For completeness, this section highlights the di↵erent

properties of each element type.

2.3.1 Hexahedron

The reference hexahedron is mathematically represented as

hex

ref

= {(r, s, t)|� 1  r, s, t  1}. (2.14)
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A reference hexahedron is mapped to a straight-side hexahedron with vertices v1 ⇠ v8

by

x =
(1� r)

2

(1� s)

2

(1� t)

2
v1 +

(1 + r)

2

(1� s)

2

(1� t)

2
v2

+
(1 + r)

2

(1 + s)

2

(1� t)

2
v3 +

(1� r)

2

(1 + s)

2

(1� t)

2
v4

+
(1� r)

2

(1� s)

2

(1 + t)

2
v5 +

(1 + r)

2

(1� s)

2

(1 + t)

2
v6

+
(1 + r)

2

(1 + s)

2

(1 + t)

2
v7 +

(1� r)

2

(1 + s)

2

(1 + t)

2
v8

.

(2.15)

Denoting a line segment in R as

line

ref

= {r|� 1  r  1}, (2.16)

we can write the hexahedron as a tensor product of three line segments

hex

ref

= line

ref

⌦ line

ref

⌦ line

ref

. (2.17)

Figure 2.2: The hexahedron reference element.

This geometric tensor product property characterized in (2.17) leads to an alge-
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braic tensor product property for basis functions on hexahedron, which can be utilized

for fast computation.

To take advantage of the tensor product property, the basis functions on the

hexahedral reference element are defined by a product of 1D basis functions,

'̂

ijk

(r, s, t) = l̂

i

(r)l̂
j

(s)l̂
k

(t), (2.18)

with l̂

n

(x) being the Lagrange polynomials given by

l̂

n

(x) =
Y

m 6=n

x� x

m

x

n

� x

m

, (2.19)

where x
i

can be either Gauss-Legendre (GL) nodes or Gauss-Legendre-Lobatto (GLL)

nodes. The basis functions constructed on the GL nodes are orthogonal on a�ne

mapped elements, which results in a diagonal mass matrix on a structured grid, but

we may lose this orthogonality on arbitrary elements. In contrast, the GLL nodes,

known as the basis for spectral element methods [93, 17], contains the endpoints �1

and 1, and the mass matrix generated by the GLL nodes is not strictly diagonal

on reference elements. More specifically, the quadrature rule based on GL nodes

is exactly accurate for polynomials up to order 2N + 1, while the GLL quadrature

is exact for polynomials up to order 2N � 1, where N is the DG order. To save

the computational cost, we may approximate the mass matrix as a diagonal matrix

through consistent mass lumping in a discrete formulation [17]. In the remaining of

this chapter, we refer to the basis constructed on the GLL nodes as SEM basis, and

the basis constructed on the GL nodes as GL basis.

To highlight the computational e�ciency of the tensor product property, we take

the procedure of computing (@'
ijk

/@x,'

lmn

)
D

k as an example. Consider the volume
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(a) SEM nodes (b) GL nodes

Figure 2.3: SEM and GL nodes: 2D example. (a) SEM (Gauss-Legendre-Lobatto)
nodes contain the boundary nodes and are exact for polynomial integration up to
order 2N � 1 (N is the DG order); (b) GL (Gauss-Legendre) nodes are exact for

polynomial integration up to order 2N + 1.

integral

✓
@'

ijk

@x

,'

lmn

◆

D

k

=

Z

D

k

@'

ijk

(x, y, z)

@x

'

lmn

(x, y, z) dx dy dz

=

Z

D̂

@'̂

ijk

(r, s, t)

@x

'̂

lmn

(r, s, t)J(r, s, t) dr ds dt

=

Z

D̂

✓
@'̂

ijk

@r
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@x

+
@'̂

ijk

@s

@s

@x

+
@'̂

ijk

@t

@t

@x

◆
'̂

lmn

J dr ds dt,

(2.20)

where D̂ is the reference element and J is the Jacobian of element D

k. We only

expand the first term on the right-hand side of equation (2.20), and the other two

terms can be derived analogously. Substituting '̂

ijk

and '̂

lmn

with definition (2.18),

we have

Z

D̂

@'̂

ijk

@r

@r

@x

'̂

lmn

J dr ds dt =

Z

D̂

@ l̂

i

(r)

@r

l̂

j

(s)l̂
k

(t)l̂
l

(r)l̂
m

(s)l̂
n

(t)r
x

J dr ds dt. (2.21)
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Applying quadrature rule to equation (2.21) yields

Z

D̂

@ l̂

i

(r)

@r

l̂

j

(s)l̂
k

(t)l̂
l

(r)l̂
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�
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l
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)
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�
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x
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l
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m
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w

l
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(2.22)

where N is the polynomial degree, (r
l

, s

m

, t

n

) is the SEM/GL node corresponding to

index (l,m, n), and w

l

, w

m

, w

n

are the quadrature weights.

With equation (2.22), the matrix-vector multiplication of the sti↵ness matrix be-

comes

X

i,j,k

✓
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ijk

@x

,'

lmn

◆

D

k

û

ijk

=
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@
NX
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+
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(2.23)

Operation (2.23), which corresponds to a single volume integral
R
D

k @xuh

'

lmn

, has a

computational cost of O(N) where N is the DG order. In contrast, such an operation

has an O(Nd) (d = 3) cost on elements of other shapes. The total volume operation

cost is O(Nd+1) with tensor product, compared with O(N2d) without tensor product.

We see that the hexahedral element is computationally cheap in terms of the volume

integral.
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2.3.2 Tetrahedron

The reference tetrahedron is mathematically represented as

tet

ref

= {(r, s, t)|� 1  r, s, t  1; r + s+ t  �1}. (2.24)

A reference tetrahedron is mapped to a straight-side tetrahedron with vertices v1 ⇠ v4

by

x = �(1 + r + s+ t)

2
v1 +

(1 + r)

2
v2 +

(1 + s)

2
v3 +

(1 + t)

2
v4

.

(2.25)

Figure 2.4: The tetrahedron reference element.

The determinant of the Jacobi matrix for an a�ne mapped (2.25) tetrahedron is

constant, which reduces the implementation complexity and improves the computa-

tional e�ciency.

Following the work in [47], we construct nodal basis functions each of which is

evaluated as 1 on a given node and 0 on other nodal points. Because only a subset

of the Lagrange basis functions is non-zero on the element faces, the nodal DG im-
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plementation reduces the cost of calculating numerical fluxes. In addition, a series of

nodal DG operators are given in [47], which is adopted in our implementation.

2.3.3 Prism

The reference prism is mathematically represented as

pri

ref

= {(r, s, t)|� 1  r, s, t  1; r + t  0}. (2.26)

A reference prism is mapped to a straight-side prism with vertices v1 ⇠ v6 by

x =� (r + t)

2

(1� s)

2
v1 +

(1� s)

2

(1 + t)

2
v2 +

(1 + r)

2

(1� s)

2
v3

� (r + t)

2

(1 + s)

2
v4 +

(1 + s)

2

(1 + t)

2
v5 +

(1 + r)

2

(1 + s)

2
v6

.

(2.27)

Figure 2.5: The prism reference element.

Due to the non-linearity of mapping (2.27), the mass matrix generated from a

prismatic mesh is typically block diagonal but not strictly diagonal. To save the

storage and avoid inverting the mass matrix in an explicit time-stepping scheme, the

low-storage curvilinear DG (LSC-DG) introduced by Warburton [70, 71] is applied to
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the prisms. The idea is dividing the original basis functions by the square root of the

Jacobian and using these rational functions as the bases. Mathematically, the new

basis functions are given by

'

k

n

=
'̃

k

np
J

k

, (2.28)

where '̃k

n

is the polynomial basis function, and J

k is the Jacobian of element Dk. The

inner product computed in the mass matrix is then

�
'

k

n

,'

k

m

�
D

k =

✓
'̃

k

np
J

k

,

'̃

k

mp
J

k

◆

D

k

=

✓
'̂

k

np
J

k

,

'̂

k

mp
J

k

J

k

◆

D̂

=
�
'̂

k

n

, '̂

k

m

�
D̂

,

(2.29)

where '̂

k

n

are basis functions on reference element D̂. If '̂

k

n

, the reference basis

functions, are orthonormal, the mass matrix becomes an identity which is convenient

in the computation.

However, this convenience comes with a cost. First, taking derivatives becomes

more complicated. For instance, calculating @

x

'

k

n

yields

@'

k

n

@x

=
1p
J

k

@'̃

k

n

@x

� '̃

k

n

2(Jk)3/2
@J

k

@x

. (2.30)

Second, achieving the optimal order of convergence requires mesh regularities. For

instance, one of the su�cient condition is given by

kJkk
L

1(Dk)

����
1

J

k

����
L

1(Dk)

 C, (2.31)

where C is a constant. Third, the integrals in the DG formulation cannot be evalu-

ated exactly due to the rational basis functions. Noticing that the stability analysis
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requests exact quadrature, we have to use a skew-symmetric formulation to guarantee

stability. We apply the weak form formulation (2.8a) to the pressure field and the

strong form formulation to the velocity field (2.9b), which yields

Z

D

k

1

⇢c

2

@p

h

@t

q �
Z

D

k

v
h

·rq = �
Z

@D

k

v⇤
h

· nq, (2.32a)
Z

D

k
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i

+

Z

D

k

@p

@x

i

w

i

=

Z

@D

k

(p
h

� p

⇤
h

)w
i

n

i

, i = 1, 2, 3. (2.32b)

Let q = p

h

and w = v
h

, add these equations together, and substitute v⇤
h

= {{v
h

}}+
Jp

h

K/(2⇢c) and p

⇤
h

= {{p
h

}} + ⇢cJv
h

K/2 into the equation. We then see the second

terms on the left-hand side cancel out

1

2
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Summing (2.33) over all elements, we obtain

d

dt

Z

⌦

✓
1

⇢c

2
p

2
h

+ ⇢kv
h

k22
◆

= �
X

k

Z

@D

k

�
(p�

h

� p

+
h

)2/(⇢c) + ⇢c(v�
h

· n� v+
h

· n)2� .
(2.34)

If we denote E =
R
⌦
(p2

h

/(⇢c2) + ⇢kv
h

k22) as the energy, it is then straight-forward

that dE /dt  0, and hence the energy does not grow with time.

2.3.4 Pyramid

The reference pyramid is mathematically represented as

pyr

ref

= {(r, s, t)|� 1  r, s, t  1; r + t  0; s+ t  0}. (2.35)
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A reference pyramid is mapped to a straight-side pyramid with vertices v1 ⇠ v5 by

x =
(r + t)

2

(s+ t)

2

2

(1� t)
v1 � (1 + r)

2

(s+ t)

2

2

(1� t)
v2

+
(1 + r)

2

(1 + s)

2

2

(1� t)
v3 � (r + t)

2

(1 + s)

2

2

(1� t)
v4 +

(1 + t)

2
v5

.

(2.36)

Figure 2.6: The pyramid reference element.

Bedrosian in his 1992 paper [66] observed that if polynomial interpolations are

used as the basis functions for pyramidal elements, the Jacobian generated from the

rational mapping (2.36) has a singularity, which leads to di�culties in the numerical

quadrature. Instead of using many quadrature points, Bedrosian proposed a set of

low order rational basis functions which resolved the issue [66]. After that, many

researchers, including Bergot, Cohen, Durufle [67, 68], Chan and Warburton [69],

extended Bedrosian’s work to high order basis functions for pyramids. In this thesis,

I adopt Chan and Warburton’s work [69] which proposed a set of orthogonal bases

for vertex-mapped pyramids. The mathematical formulas of the basis functions are
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given by

'

i,j,k

(a, b, c) = l

k

i

(a)lk
j

(b)

✓
1� c

2

◆
k

P

2k+3,0
N�k

(c), 0  k  N, 0  i, j  k, (2.37)

where a, b, c are mapped by

a =
2(1 + r)

1� t

� 1, b =
2(1 + r)

1� t

� 1, c = t, (2.38)

N is the DG order, lk
i

is the Lagrange polynomial interpolating Gauss-Legendre nodes,

and P

2k+3,0
N�k

is the Jacobi polynomial.

The orthogonality of these bases results in a diagonal mass matrix, which can be

easily inverted and save the computational storage.

2.4 Kernels and algorithms

Building on the numerical properties, I now address the implementation strategies

for di↵erent element types.

In GPU programming, the procedures/functions running on a computational de-

vice are expressed as compute kernels. The DG solver is decomposed into several

kernels, each of which is optimized for a specific task. For each element type, we

construct the following three kernels

• Volume kernel: computes the contribution of the volume integrals (the terms

integrated over the interior of Dk in the formulation).

• Surface kernel: computes the contribution of the surface integrals (the terms

integrated over the element face @D

k in the formulation).

• Update kernel: performs a temporal update scheme of one time step to the
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solution (third order Adams-Bashforth in our case), and interpolates the surface

cubature points for next time step when necessary.

As the kernel performance determines the overall performance of the implementa-

tion, it is crucial to optimize the kernel code. The following techniques are employed

for kernel tuning, which results in significant performance improvement.

• Memory coalescing: GPU threads access a chunk of memory through a mem-

ory bus, which indicates that multiple memory accesses are combined into a

single transaction. To utilize the memory bus, the data layout is well-designed

to guarantee coalesced memory access (i.e. continuous threads read/write con-

tiguous memory locations).

• Array padding: In order to improve the performance, the solution array of

each solution field is padded on each element to ensure that the array accesses

are page aligned.

• Kernel splitting: Due to the limit of GPU shared memory on each core, the

prism volume kernel is split into two parts. Although extra data loading is

required when launching a new kernel, the overall performance is still improved

by utilizing the shared memory [88].

• Variable collection: Some variables are collected together to reduce mem-

ory loading. For instance, quadrature weights can sometimes be embedded in

geometric factors or Vandermonde matrices.

• Element grouping: The computational threads on a GPU are grouped into

many blocks (see section 1.3). It is intuitive to let one block correspond to one

element. However, grouping several elements into one block may utilize the

execution cores and hence improve performance [49].
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In the following sections, I will describe the kernel algorithms for each element

type. Some kernels, which function similarly, have similar implementations, and hence

may not be repeatedly listed.

2.4.1 Hexahedron

Exploiting the tensor product structure of hexahedral elements expresses the volume

operations as 1D operators. The details are presented in algorithm 1.

Algorithm 1: Hexahedron volume kernel

Input: nodal value of solution u = (p,v), volume geometric factors
@(rst)/@(xyz), 1D derivative operator D

ij

= @ l̂

j

/@x

i

, model
parameters ⇢, c

Output: volume contributions stored in array r
1 for each element e do
2 for each volume node x

ijk

do
3 Compute derivatives with respect to r, s, t

@u

@r

=
N+1X

m=1

D

im

u
mjk

@u

@s

=
N+1X

m=1

D

jm

u
imk

@u

@s

=
N+1X

m=1

D

km

u
ijm

4 Apply chain rule to compute @u/@x, @u/@y, @u/@z

@u

@x

=
@u

@r

@r

@x

+
@u

@s

@s

@x

+
@u

@t

@t

@x

5 Calculate volume contributions

r
p

= �⇢c

2r · v rv = �1

⇢

rp

The hexahedron surface kernels are di↵erent between SEM and GL implementa-

tions. Revisiting figure 2.3, we notice that the SEM nodes already contain the surface

cubature points while the GL nodes do not. Therefore, the SEM implementation can

utilize the nodal values to compute the numerical flux, while the GL implementation

requires additional interpolations. Fortunately, these interpolations are 1D operations
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and hence avoid significant computational costs. In algorithm 2, we present the pro-

cedure of the hexahedron surface kernel. In both implementations, the solution values

on the surface cubature points are pre-computed and stored in array fQ. The lines

and variables marked with GL/SEM are the processes only needed by the GL/SEM

implementation respectively.

Algorithm 2: Hexahedron surface kernel
Input: surface cubature values stored in fQ, surface outward normal n, lifting

operator L (SEM), surface Vandermonde matrix V

1D
f

(GL), inverse of
mass matrix M

�1 (GL), model parameters ⇢, c
Output: surface contributions added to array r

1 for each element e do
2 for each face f do
3 for each surface node x

ij

do
4 Load u+ and u� from fQ, and compute numerical fluxes

pFlux = �1

2
⇢c

2

✓
JvK + 1

{{⇢c}}JpK · n
◆

vFlux = � 1

2⇢c

✓
JpK + n

{{⇢c}}JvK
◆

5 (SEM) Apply L to the fluxes to obtain surface contributions

r
p

+ = L

fij

· pFLux rv+ = L

fij

· vFLux

6 for each volume node x

ijk

do
7 (GL) Apply lifting procedure with V

1D
f

and M

�1

r
p

+ = M

�1
ijk,ijk

�
V

1D
f

· pFLux� rv+ = M

�1
ijk,ijk

�
V

1D
f

· vFLux�

In the hexahedron update kernels, we need to pre-compute the surface information

in array fQ which will be used in the next time step. This makes the update kernels

slightly di↵erent between the SEM and the GL implementations. Similar to the

surface kernels, the GL implementation needs an extra interpolation while the SEM

implementation does not. The pseudo code of hexahedron update kernel is listed in
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algorithm 3.

Algorithm 3: Hexahedron update kernel
Input: right-hand side array r, Adam-Bashforth coe�cient c

i

, surface
Vandermonde matrix V

1D
f

(GL)
Output: nodal value of solution u, surface information fQ

1 for each element e do
2 for each volume node x

n

do
3 Update solution values using 3rd order Adam-Bashforth

u(t
s

) =
sX

i=s�2

c

i

· r(t
i

)

4 for each surface node x

n

do
5 (SEM) Store surface nodal value in fQ

fQ = u|
@D

e

6 (GL) Apply interpolation with V

1D
f

, and fill fQ

fQ = V

1D
f

u

2.4.2 Tetrahedron

The tetrahedron implementation benefits from the constant Jacobian which reduces

the cost of loading geometric factors compared to other three element types [88].

In algorithm 4, I describe the tetrahedron volume kernel procedure, where some

intermediate variables are introduced to accelerate the computation. In addition,

the derivative operators, which are in fact the sti↵ness matrix left-multiplied by the

inverse mass matrix, are given in [47].

The tetrahedron surface kernel is similar to the SEM hexahedron surface kernel.

The only di↵erence is in the lifting procedure. In SEM hexahedron, the lifting pro-

cedure is a point-wise operation, while in tetrahedron the lifting is an element-wise
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Algorithm 4: Tetrahedron volume kernel

Input: nodal value of solution u = (p,v), volume geometric factors
@(rst)/@(xyz), derivative operator D

r

, D

s

, D

t

, model parameters ⇢, c
Output: volume contributions stored in array r

1 for each element k do
2 for each volume node x

n

do
3 Compute intermediate variables

VdotGr = v·(r
x

, r

y

, r

z

) VdotGs = v·(s
x

, s

y

, s

z

) VdotGt = v·(t
x

, t

y

, t

z

)

4 Compute r · v and p

r

, p

s

, p

t

r · v = D

r

· VdotGr+D

s

· VdotGs+D

t

· VdotGt
@p

@r

= D

r

· p @p

@s

= D

s

· p @p

@t

= D

t

· p
5 Apply chain rule to compute @p/@x, @p/@y, @p/@z

@p

@x
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@p

@r

@r

@x

+
@p

@s

@s

@x

+
@p

@t
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@x

6 Calculate volume contributions

r
p

= �⇢c

2r · v rv = �1

⇢

rp

operation, leading to an extra loop to process the tetrahedron lifting operation as

listed in algorithm 5.

The tetrahedron update kernel is the same as the GL hexahedron update kernel

except that the surface Vandermonde matrix is a 3D operator instead of a 1D matrix

in GL hexahedron. Details are given in algorithm 6.

2.4.3 Prism

Due to the limited size of shared memory on a GPU, the prism volume kernel is

split into two parts. Part 1 (algorithm 7) evaluates the solution values on quadra-

ture points. Part 2 (algorithm 8) computes the inner product by multiplying the



Chapter 2. Discontinuous Galerkin method on hybrid meshes 40

Algorithm 5: Tetrahedron surface kernel
Input: surface cubature values stored in fQ, surface outward normal n, lifting

matrix L, model parameters ⇢, c
Output: surface contributions added to array r

1 for each element k do
2 for each face f do
3 for each surface node x

m

do
4 Load u+ and u� from fQ, and compute numerical fluxes

pFlux = �1

2
⇢c

2

✓
JvK + 1

{{⇢c}}JpK · n
◆

vFlux = � 1

2⇢c

✓
JpK + n

{{⇢c}}JvK
◆

5 for each volume node x

n

do
6 Apply L to the fluxes to obtain surface contributions

r
p

+ = L · pFLux rv+ = L · vFLux

Vandermonde matrices.

The prism surface kernel di↵ers from the tetrahedron surface kernel by the nu-

merical flux formula and the lifting procedure. Algorithm 9 is the pseudo code of the

prism surface kernel. Here � denotes the entry-wise multiplication.

The prism update kernel procedure, which is not listed here, is similar to the

tetrahedron update kernel. Due to the LSC-DG algorithm, the basis functions for

prisms are rationals, and one should be careful with the division of the square root

of element Jacobian when evaluating solution values.

2.4.4 Pyramid

The pyramid volume kernel benefits from the constructions of the basis functions,

which enables us to employ a series of semi-nodal operators to e�ciently evaluate

inner products in sti↵ness matrices. Further mathematical details are referred to
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Algorithm 6: Tetrahedron update kernel
Input: right-hand side array r, Adam-Bashforth coe�cient c

i

, surface
Vandermonde matrix V

f

)
Output: nodal value of solution u, surface information fQ

1 for each element k do
2 for each volume node x

n

do
3 Update solution values using 3rd order Adam-Bashforth

u(t
s

) =
sX

i=s�2

c

i

· r(t
i

)

4 for each surface node x

m

do
5 Apply interpolation with V

f

, and fill fQ

fQ = V

f

u

Algorithm 7: Prism volume kernel part 1

Input: solution coe�cients u = (p,v), volume geometric factors @(rst)/@(xyz)
and rJ , (derivative) Vandermonde matrices V, V

r

, V

s

, V

t

Output: intermediate output stored in Qtemp

1 for each element k do
2 for each cubature node x

n

do
3 Evaluate weighted rp and v at cubature points

Qtemp

p

= w

n

rp(x
n

) Qtempv = w

n

v(x
n

)

[88]. The pseudo code is listed in algorithm 10.

The pyramid surface kernel is similar to the prism surface kernel, but the inverse

of the mass matrix must be multiplied at the end of the surface kernel. The pyramid

update kernel is the same as the tetrahedron update kernel.
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Algorithm 8: Prism volume kernel part 2

Input: intermediate output stored in Qtemp, transpose of (derivative)
Vandermonde matrices V T

, V

T

r

, V

T

s

, V

T

t

, model parameters ⇢, c
Output: volume contribution stored in array r

1 for each element k do
2 for each solution value u

n

do
3 Compute inner product in sti↵ness matrices

✓
v,

@'

n

@x

◆

D

k

= V

T

x

v

✓
@p

@x

,'

◆

D

k

= V

T

@p

@x

4 Store volume contributions

r
p

= ⇢c

2 (v,r'

n

) rv = �1

⇢

(rp,'

n

)

2.5 Multi-rate time stepping

The kernels listed in section 2.4 correspond to the computation of one time step on

one or a local group of elements, which is known as a local time step. Globally,

however, di↵erent elements may be processed at di↵erent rates on the timeline. To

address this issue, we introduce the multi-rate Adam-Bashforth method.

Early work of multi-rate time stepping for ordinary di↵erential equations were

discussed by Gear and Wells [72, 94, 95]. A detailed review of the multi-rate Adam-

Bashforth method can be found in Stock’s thesis [96], where 14 di↵erent strategies

for the multi-rate method are introduced. The multi-rate scheme has been studied on

electromagnetic fields [83, 97, 74], and it has been extended from Adam-Bashforth to

Taylor expansion scheme [97] and Runge-Kutta scheme [74]. This section discusses

the multi-rate third order Adam-Bashforth method on DG discretization.

Explicit time stepping is conditionally stable. To achieve stability, the Courant-

Friedrichs-Lewy (CFL) condition must be satisfied. The CFL condition varies from

element type to element type [88, 98], and the restriction of time step length is
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Algorithm 9: Prism surface kernel
Input: surface cubature values stored in fQ, surface outward normal n, surface

Vandermonde matrix V

T

f

, surface quadrature weights w, model
parameters ⇢, c

Output: surface contributions added to array r
1 for each element k do
2 for each surface cubature node x

m

do
3 Load u+ and u� from fQ, and compute numerical fluxes

pFlux = �1

2
⇢c

2

✓
2{{v}}+ 1

{{⇢c}}JpK · n
◆

vFlux = � 1

2⇢c

✓
JpK + n

{{⇢c}}JvK
◆

4 for each volume node x

n

do
5 Apply V

T

f

to the fluxes

r
p

+ = V

T

f

· (w � pFLux) rv+ = V

T

f

· (w � vFLux)

proportional to the element size

�t

k / h

k

, (2.39)

where h

k is the characteristic length of element D

k. In a single-rate time stepping,

we would have

�tmin = min
k

�t

k

, (2.40)

which is a relatively small and ine�cient time step length.

To relax restriction (2.40), we apply the multi-rate third order Adam-Bashforth

method. In the multi-rate time stepping, elements are first grouped into levels ac-

cording to their time step size �t

k. Given Nlevels groups, element Dk is grouped into
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Algorithm 10: Pyramid volume kernel

Input: solution coe�cients u = (p,v), volume geometric factors
@(rst)/@(xyz), derivative operators and their transposes
D

r

, D

s

, D

t

, D

T

r

, D

T

s

, D

T

t

, model parameters ⇢, c
Output: volume contributions stored in array r

1 for each element k do
2 for each solution value u

n

do
3 Compute intermediate variables

VdotGr = v·(r
x

, r

y

, r

z

) VdotGs = v·(s
x

, s

y

, s

z

) VdotGt = v·(t
x

, t

y

, t

z

)

4 Compute inner products

(v,r'

n

) = D

T

r

· VdotGr+D

T

s

· VdotGs+D

T

t

· VdotGt
✓
@p

@r

,'

n

◆
= D

r

· p
✓
@p

@s

,'

n

◆
= D

s

· p
✓
@p

@t

,'

n

◆
= D

t

· p

5 Apply chain rule to compute (rp,'

n

)

✓
@p

@x

,'

n

◆
=

✓
@p

@r

,'

n

◆
@r

@x

+

✓
@p

@s

,'

n

◆
@s

@x

+

✓
@p

@t

,'

n

◆
@t

@x

6 Store volume contributions

r
p

= ⇢c

2 (v,r'

n

) rv = �1

⇢

(rp,'

n

)

level l if its time step �t

k satisfies

2Nlevels�l�tmin  �t

k

< 2Nlevels�l+1�tmin, l = 2, 3, . . . , Nlevels

2Nlevels�l�tmin  �t

k

, l = 1.
(2.41)

In addition, we choose to guarantee that neighboring elements may have at most one

level di↵erence. We then allow each group to have its own time step length, and

hence group of level l is integrated with a time step length of �t

l

= 2l�1�tmin on the

timeline. The largest time step length, which is a global time step length, is defined

by �t = �t1 = 2Nlevels�1. An illustration of this grouping strategy is given in figure
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2.7 and 2.8. Figure 2.7 groups the elements into three levels according to the element

sizes. Figure 2.8 illustrates how elements are processed on timeline: level 1 elements

are updated every �t; level 2 elements are updated every �t/2; level 3 elements are

updated every �t/4.

However, di↵erent levels of elements are not totally independent of the others, and

hence a communication strategy is needed. Due to the higher updating frequency on

fine elements (high level), the information needed from their neighboring elements

may not be available in the regular updating procedure. More specifically, when we

update the fine elements (high level) on a fine time grid, we need the numerical fluxes

from the coarse elements (low level) on a coarse time grid. For example, when we

update level 2 elements at time �t/2, information from level 1 elements at that time

point is required. In order to provide that information from coarse elements to fine

elements, the coarse-fine interfaces need to be updated on the fine time grid.

Taking level 1 and 2 elements for example again, we initially have the solution

on both coarse and fine elements at time 0 (figure 2.9 (a)). We then update the fine

elements, and the solution on fine grid is obtained at time �t/2 (figure 2.9 (b)). At

the same time, the coarse elements which have fine element neighbors need to update

the solution on the coarse-fine interfaces at time �t/2, which provides the numerical

flux for updating the fine elements at next half time step (figure 2.9 (c)). Finally,

we update fine elements from �t/2 to �t, and coarse elements from 0 to �t, which

completes a cycle of the global time step (figure 2.9 (d)).

Applying the third order Adam-Bashforth scheme, we obtain the update formula

for lth level elements

un+ k
2l�1 = un+ k�1

2l�1 +�t

l

3X

s=1

a

i

rn+
k�s
2l�1

, (2.42)

where r is the numerical contributions from the DG spatial discretization, n and k
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Figure 2.7: Illustration of multi-rate time stepping: elements are grouped into three
levels.

are the global and local time-stepping indices respectively, and a

s

are the Adam-

Bashforth coe�cients. To derive coe�cients a
s

, we first write down the semi-discrete

form
du

dt

= r(t). (2.43)

Without loss of generality, we take time step �t = 1 and consider the solution value

at t = 1. Integrating (2.43) from t = 0 to t = 1, we have

u(1)� u(0) =

Z 1

0

r(t)dt. (2.44)

To discretize the right-hand side of (2.44), we take l1, l2, l3 as Lagrange polynomials

interpolating 0,�1,�2, and interpolate r at these three points, which yields

l1 =
1

2
(t+1)(t+2), l2 = �t(t+2), l3 =

1

2
t(t+1), r = l1r

0+l2r
�1+l2r

�2
. (2.45)



Chapter 2. Discontinuous Galerkin method on hybrid meshes 47

Figure 2.8: Illustration of multi-rate time stepping: level 1 elements are updated
every �t; level 2 elements are updated every �t/2; level 3 elements are updated

every �t/4.

Substitute (2.45) into (2.44)

u(1) = u(0) +
3X

s=1

Z 1

0

l

s

(t)dt r1�s = u(0) +
3X

s=1

a

s

r1�s

, (2.46)

which results in

a1 =
23

12
, a2 = �16

12
, a3 =

5

12
. (2.47)

Noticing that the numerical fluxes are required among di↵erent levels of elements,

we need to compute the flux information from lower-level elements (coarser) passing

to higher-level elements (finer) when the lower-level elements do not participate the

local time stepping. To this end, the solution values on the coarse side of the coarse-

fine interfaces are evaluated according to the following formula

un+
k�1/2

2l�1 = un+ k�1
2l�1 +�t

l

3X

s=1

b

s

rn+
k�s
2l�1

, (2.48)

with b

s

corresponding to the half time step Adams-Bashforth coe�cients. The deriva-

tion of b
s

is similar to that of a
s

. Instead of integrating from t = 0 to t = 1, we study
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(a) initial solution at t = 0 (b) update fine elements at �t/2

(c) update coarse-fine interfaces at �t/2 (d) update all elements at �t

Figure 2.9: Illustration of multi-rate time stepping: fine and coarse elements are
updated on fine and coarse time grids respectively. The white shaded areas are the

updated places.

a half time step on [0, 1/2]. This gives us b
s

=
R 1/2

0
l

s

(t)dt, and hence

b1 =
17

24
, b2 = � 7

24
, b3 =

2

24
. (2.49)

The multi-rate time stepping relaxes the global time step length restriction to

several local restrictions. Elements of the di↵erent levels are updated at di↵erent

rates, which reduces redundant computation and accelerates the implementation.

When the multi-rate time stepping is introduced, di↵erent elements have di↵erent

workloads. Typically, the workload of an element at level l is proportional to 2l,

and is also related to the element type. This fact is an important issue needs to be

addressed in parallelization. In addition, the communication among di↵erent levels of
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elements must be addressed. The workload balancing along with other parallelization

issues will be discussed in the next section.

2.6 Working on clusters

In section 2.4, we have discussed the kernels for a single GPU implementation, which

is a common shared-memory system. In a shared-memory system, all computational

threads can access the same memory. Therefore, threads can communicate by just

reading and writing memories. For example, a GPU and a many-core CPU are

common shared-memory systems. Although convenient in programming, the shared-

memory system is usually limited by its computational capability for large-scale com-

putations. In contrast, a distributed system has relatively independent computational

nodes, and these nodes can communicate through message sending and receiving. To

enable large-scale computation, a distributed-memory system, typically a cluster,

should be used for running the DG solver.

In our implementation, we keep using OCCA [82] to work on shared-memory

systems, but at the same time, we also apply Message Passing Interface (MPI) to let

the shared-memory systems communicate with each other.

Similar to Gödel et al. [99], there are three levels of parallelism in our implemen-

tation (figure 2.10). First, we convert the topology of the computational mesh into a

graph and send it to the graph partitioning software — METIS [100]. METIS then

partitions the graph by taking the workload balancing and message passing e�ciency

into consideration. Using the output from METIS, we can partition the elements into

multiple subdomains. Each subdomain is assigned to one MPI process corresponding

to one shared-memory system (typically a GPU). Next, as each subdomain consists of

many elements, one or several elements are assigned to a block on GPU. Finally, since

one element has many degrees of freedom, each thread takes care of the computation
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of one degree of freedom.

Figure 2.10: Illustration of 3-level parallelism: subdomains, elements, degrees of
freedom are mapped to GPU grids, GPU blocks and threads respectively. Picture is

reproduced from [99].

To assist the data movement, each partition of the domain is constructed with a

layer of halo elements (figure 2.11). The halo elements only participate in the message

passing process, but not the volume and surface computations. In the time stepping

stage, the halo information is exchanged among the MPI processes at every time step.

For each partition, the solution values on the partition interfaces, known as traces,

are sent to the neighboring subdomains, and the trace information from neighboring

subdomains is received and stored in the halo elements.

To hide the latency of the data transfer, we also divide one subdomain into inner

elements and outer elements. The inner elements, as illustrated in figure 2.11, are the

interior of the subdomain, and hence they do not require information from other MPI

processes. The outer elements are the elements on the boundary of the subdomain,

and they need to receive outside information to complete next updating cycle. In a
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local time step, the inner elements process through volume, surface and update kernels

without any barriers. In contrast, the outer elements cannot start the surface kernel

until the MPI data transfer is finished in the current updating cycle. A workflow of

this strategy is given in algorithm 11.

Figure 2.11: 2D illustration of MPI partition. The dark blue elements are inner
elements; the light blue elements are outer elements; the gray elements are halo

elements; the white elements are elements from other sub-domains.

Algorithm 11: Workflow of DG local time stepping

1 Start non-blocking MPI communication
2 Call volume kernel for all elements
3 Call surface kernel for inner elements
4 Wait until MPI data transfer is finished
5 Call surface kernel for outer elements
6 Call update kernel for all elements

As the multi-rate time stepping has been introduced, the MPI communication

becomes asymmetric among di↵erent levels of elements. The MPI data is transferred

only when there is a need for the elements to update the right-hand side r in equation

(2.43). Therefore, sometimes the lower level elements send messages to higher level

neighbors, but not the other way around. Taking the case where there are three
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levels of elements as an example, we illustrate this technique in figure 2.12, where

the elements in two di↵erent MPI processes are communicating, and the elements

at the same heights are connected. At time 0, all elements compute the right-hand

side, and hence everyone sends and receives messages; at time �t/4 and 3�t/4, only

level 3 elements compute the right-hand side, and hence the corresponding level 2

elements send messages; at time �t/2, level 2 and 3 elements receive messages from

the corresponding neighbors.

(a) all elements transfer data at t = 0 (b) level 3 elements receive data �t/4

(c) level 2 and 3 elements receive data �t/2 (d) level 3 elements receive data 3�t/4

Figure 2.12: Asymmetric MPI communication. Elements are distributed in two MPI
processes, and the elements at the same heights are neighbors. At time

�t/4,�t/2, 3�t/4, lower level elements send messages to higher level elements, but
not the other way around.

Due to the multi-rate time stepping, we notice that: (1) locally, the workload for

di↵erent levels of elements become di↵erent; (2) globally, the communication frequen-
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cies are di↵erent among di↵erent levels. To balance the workload, we pre-process the

elements before partitioning the domain in METIS. In particular, we take two strate-

gies suggested by Gödel et al. [83]: First, recalling that the elements are mapped to

the graph nodes in METIS, we assign di↵erent nodes di↵erent weights in the graph

partitioning. Given the element level l, the weight is proportional to 2l; Second, to

reduce the MPI communication among fine elements, we lump the fine elements in

order to remove the edges with heavy communication workload in the graph (i.e.

multiple elements may be mapped to one node in the METIS graph).

2.7 Brief on data structure

Many of the operators and data structures of our codes are adopted from the nodal DG

implementation [47]. However, to handle hybrid meshes, we present some additional

data structures in this section.

2.7.1 Recognition of element types

Since di↵erent element types have di↵erent numbers of vertices, the element type

information is stored in the element-to-vertex mapping array EToV. Array EToV is an

array of size K ⇥ 8, where K is the number of elements in a hybrid mesh and 8 is the

maximum number of vertices of one element. Row k of EToV stores the vertex num-

bering of element k. For instance, a hexahedron has eight vertices, so a row in EToV

containing eight non-zeros integers corresponds to a hexahedral element. Similarly,

since a tetrahedron/pyramid/prism has four/five/six vertices, the corresponding rows

have first four/five/six entries to be non-zero integers and zeros afterward.
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An example of array EToV is given as follows,

EToV =

2

66666664

1 2 3 4 5 6 7 8

5 6 9 8 7 10 0 0

1 2 3 4 11 0 0 0

3 4 11 12 0 0 0 0

3

77777775

.

where the corresponding mesh consists of four elements. The first row indicates a

hexahedral element with vertices 1 ⇠ 8, and the second/third/fourth row corresponds

to a prism/pyramid/tetrahedron.

To recognize the type of an element, one can simply check the number of non-zero

entries in a corresponding row in array EToV. Listing 2.1 is a C++ sample code of

recognizing element types.

1 elementType getElementType ( int k ) {

i f (EToV(k , 5 ) == 0) return TET;

3 i f (EToV(k , 6 ) == 0) return PYR;

i f (EToV(k , 7 ) == 0) return PRI ;

5 return HEX;

}

Listing 2.1: sample code of getting element types

2.7.2 Connectivity

The connectivity information is stored in two arrays EToE and EToF. Both arrays have

sizes of K ⇥ 6, where K is the number of elements in a hybrid mesh and 6 is the

maximum number of faces of one element. Entry EToE(k, f) indicates that face f

of element k is connected to element EToE(k, f), and EToF(k, f) is the corresponding

face number of element EToE(k, f).
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For example, the mesh connectivity in figure 2.13 can be represented as

EToE =

0

B@
0 0 2 0 0 0

0 0 0 0 1 0

1

CA , EToF =

0

B@
0 0 5 0 0 0

0 0 0 0 3 0

1

CA . (2.50)

Therefore, we know face 3 of element 1 and face 5 of element 2 are connected.

Figure 2.13: Illustration for data structure of mesh connectivity. A hexahedron and
a pyramid are connected. The connectivity information is stored in EToE and EToF

as given in (2.50).

2.7.3 Solution values

The solution values are stored in four separate arrays corresponding to four di↵erent

element types. Similarly, the geometric factors, which include Jacobians, global coor-

dinates, face normals and quadrature weights, are also split into four groups. When

a computational kernel is executed, only the information needed for a given element

type is loaded, which enables us to call specific kernels for di↵erent element types.

2.7.4 Traces of face values

To evaluate numerical fluxes in surface kernels, one needs the solution values on

element faces which are also known as traces. At each time step, the trace information

is pre-computed in the previous time step and stored in array fQ. Array fQ has the

size of K ⇥ 6 ⇥ (N + 1)2 ⇥ Ntrace, where K is the number of elements in a hybrid
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mesh, 6 is the maximum number of faces of one element, (N + 1)2 is the maximum

degrees of freedom of one face, and Ntrace is the number of fields needs to be stored.

Although di↵erent elements have di↵erent numbers of faces and a triangular face has

fewer degrees of freedom than a quadrangular face, we pad the trace storage for each

element face into the same size in order to simplify the index searching procedure.

Since the communication among elements is conducted through traces, a unified data

container of trace information is e�cient in computation.

To assist the index searching in computing numerical fluxes, an array mapP of size

K⇥6⇥(N+1)2, which stores the node indices on adjacent faces, is pre-computed. In

the surface kernel, each surface cubature point looks up the index of the overlapped

point on its neighboring face in mapP, reads the corresponding values from fQ, and

then computes the numerical fluxes.

2.8 Numerical convergence

In this section, we study the numerical convergence of the DG solver. As analyzed

in [47], the guaranteed L

2 convergence rate of the DG method is O(hN+1/2) on gen-

eral meshes, while the optimal convergence rate can be O(hN+1), where h is the

characteristic size of the mesh elements and N is the polynomial degree in the DG

approximation.

In the numerical experiments, I set the computational domain ⌦ = [�1, 1]3, set
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the model parameters to constants by letting c = ⇢ = 1, and use exact solution of

p(x, y, z, t) = cos(
⇡x

2
) cos(

⇡y

2
) cos(

⇡z

2
) cos(

p
3⇡t

2
)

v1(x, y, z, t) =

p
3

3
sin(

⇡x

2
) cos(

⇡y

2
) cos(

⇡z

2
) sin(

p
3⇡t

2
)

v2(x, y, z, t) =

p
3

3
cos(

⇡x

2
) sin(

⇡y

2
) cos(

⇡z

2
) sin(

p
3⇡t

2
)

v3(x, y, z, t) =

p
3

3
cos(

⇡x

2
) cos(

⇡y

2
) sin(

⇡z

2
) sin(

p
3⇡t

2
)

with Dirichlet boundary condition p|
@⌦ = 0 and v|

@⌦ = 0 in time domain t 2 [0, 1].

The numerical solution is initialized by L

2 projection. The time step length is set to

be small enough so that the numerical error is dominated by the spacial discretization.

The numerical experiments are run in double precision to guarantee enough accurate

digits. Finally, the numerical error of pressure p is measured at t = 1 in L

2 norm

using quadrature points that are sampled finer than the volume quadrature points

employed in the DG volume integrations.

2.8.1 Verification on individual element types

The convergence study of each individual element type is conducted on a sequence

of meshes. The mesh sequence is refined by repeating the patterns in figure 2.14,

where each pattern is a cube containing one or several individual element types. The

computational domain is made up of these cubic patterns in a uniform distribution.

To make the test cases more general, we slightly perturb the inner vertices so that

the meshes are no longer structured or a�ne. The perturbation is within 2% ⇠ 5%

of the size of a cubic pattern. After the perturbation, the quadrangular faces may

not be planar.

Table 2.1 ⇠ 2.4 list the L2 errors and convergence rates of the DG solver on meshes

of individual element types. As mentioned in section 2.3.1, we let the nodal points in
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(a) hexahedron (b) prism (c) pyramid (d) tetrahedron

Figure 2.14: Patterns of mesh sequences. Each pattern is a cube consists of (a) 1
hexahedron/ (b) 2 prisms/ (c) 6 pyramids/ (d) 6 tetrahedra. Convergence of DG
methods is tested on a sequence of meshes, which is refined by repeating the

patterns.

hexahedral elements be either GLL points or GL points, which correspond to SEM

and GL implementations respectively. In the tables, the numbers outside the round

brackets are data from the SEM implementation while the numbers inside the round

brackets are generated by the GL implementation.

In hexahedron, the di↵erence between SEM and GL implementations a↵ects both

volume and surface cubatures; in prism and pyramid, the di↵erence between these

two implementations is the surface cubature on quadrangular faces; in tetrahedron,

there is no di↵erence between these two approaches.

order N N = 1 N = 2 N = 3

h L

2 error rate L

2 error rate L

2 error rate

0.5 6.1e-1 (1.5e-1) - 3.8e-2 (2.1e-2) - 2.5e-3 (2.0e-3) -

0.25 2.4e-1 (4.0e-2) 1.35 (1.91) 4.6e-3 (2.6e-3) 3.05 (3.05) 2.0e-4 (1.3e-4) 3.64 (3.94)

0.125 6.9e-2 (9.8e-3) 1.80 (2.03) 6.8e-4 (3.2e-4) 2.76 (3.02) 1.5e-5 (8.1e-6) 3.74 (4.00)

0.0625 1.8e-2 (2.4e-3) 1.94 (2.03) 9.3e-5 (4.0e-5) 2.87 (3.00) 1.0e-6 (5.0e-7) 3.90 (4.02)

Table 2.1: Convergence study of hexahedral elements. Numbers outside the brackets
correspond to the SEM approach, while the numbers inside the brackets are

generated from the GL implementation.
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order N N = 1 N = 2 N = 3

h L

2 error rate L

2 error rate L

2 error rate

0.5 3.2e-1 (2.0e-1) - 4.0e-2 (3.5e-2) - 6.4e-3 (6.1e-3) -

0.25 9.3e-2 (4.9e-2) 1.78 (2.03) 5.2e-3 (4.4e-3) 2.94 (2.99) 3.9e-4 (3.7e-4) 4.03 (4.04)

0.125 2.6e-2 (1.2e-2) 1.84 (2.03) 7.1e-4 (5.6e-4) 2.87 (2.97) 2.7e-5 (2.3e-5) 3.85 (4.01)

0.0625 8.1e-3 (2.9e-3) 1.68 (2.05) 1.2e-4 (7.4e-5) 2.56 (2.92) 2.2e-6 (1.5e-6) 3.61 (3.94)

Table 2.2: Convergence study of prismatic elements. Numbers outside the brackets
correspond to the SEM approach, while the numbers inside the brackets are

generated from the GL implementation.

order N N = 1 N = 2 N = 3

h L

2 error rate L

2 error rate L

2 error rate

0.5 1.6e-1 (1.1e-1) - 1.8e-2 (1.5e-2) - 2.0e-3 (1.8e-3) -

0.25 5.0e-2 (2.8e-2) 1.68 (1.97) 2.3e-3 (1.8e-3) 2.97 (3.06) 1.5e-4 (1.2e-4) 3.73 (3.91)

0.125 1.6e-2 (6.7e-3) 1.64 (2.06) 3.6e-4 (2.4e-4) 2.68 (2.91) 1.0e-5 (7.0e-6) 3.91 (4.01)

0.0625 5.0e-3 (1.6e-3) 1.68 (2.06) 5.5e-5 (3.0e-5) 2.71 (3.00) 8.2e-8 (4.3e-7) 3.61 (4.02)

Table 2.3: Convergence study of pyramidal elements. Numbers outside the brackets
correspond to the SEM approach, while the numbers inside the brackets are

generated from the GL implementation.

order N N = 1 N = 2 N = 3

h L

2 error rate L

2 error rate L

2 error rate

0.5 2.2e-1 - 5.1e-2 - 1.3e-2 -

0.25 5.6e-2 2.06 8.2e-3 3.27 6.8e-4 4.02

0.125 1.3e-2 2.08 7.7e-4 3.03 4.3e-5 3.98

0.0625 2.9e-3 2.16 9.6e-5 3.00 2.7e-6 3.99

Table 2.4: Convergence study of tetrahedral elements.

In almost all test cases, we observe the optimal convergence rates of O(hN+1)

except some are polluted by the inexact SEM quadrature. Notice that the conver-

gence rates can be harmed by the perturbation of the vertices, especially in LSC-DG
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(a) hexahedron (b) prism

(c) pyramid (d) tetrahedron

Figure 2.15: Convergence plots of individual element types. This figure reports the
L

2 error versus the uniform mesh size h using a pure (a) hexahedron, (b) prism, (c)
pyramid, and (d) tetrahedron element discretization of order N = 1, 2, 3. For the
hexahedron, prism, and pyramid both SEM and GL performances are reported.

Optimal convergence rates are observed in this figure. The GL implementation has
smaller error than SEM implementation due to the accuracy of the quadrature.

for prisms (since LSC-DG require certain mesh regularities as discussed in section

2.3.3). However, in the above tests, the perturbation is small enough which makes

no significant influence on the convergence. In addition, the GL approach has lower

numerical errors and higher convergence rates than the SEM approach due to its

relatively accurate quadrature rules.
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2.8.2 Verification on hybrid meshes

After convergence tests on individual element types, we now study the convergence

on hybrid meshes which is a combination of all element types. Figure 2.16 (a) gives a

sample of hybrid mesh used for tests, which is the coarsest mesh in the mesh sequence.

The mesh sequence is generated by using Gmsh’s [101] “refine by splitting” function.

As a result, each refinement approximately halved the mesh size. Statistics of the

mesh sequence are reported in table 2.5, which lists the number of elements in each

mesh.

Figure 2.16 (b) and table 2.6 report the numerical errors and convergence rates on

hybrid meshes. The result of the convergence tests on hybrid meshes is similar to the

study on meshes of individual element types: optimal convergence rates of O(hN+1)

(N is the DG order) are observed in the experiments, and the GL implementation is

slightly more accurate than the SEM implementation.

(a) hybrid mesh (b) convergence plot

Figure 2.16: Hybrid mesh and convergence: (a) a sample of hybrid mesh with
purple hexahedra, yellow prisms, orange pyramids and green tetrahedra; (b)

convergence plot of a sequence of hybrid meshes. Both SEM and GL performances
are reported for DG order N = 1, 2, 3.
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In the above convergence studies, the numerical errors converge to zero when the

mesh size decreases or the polynomial degree increases. The observed convergence

rates are O(hN+1) as expected. The accuracy of the DG methods guarantees the

reliability of the wave simulation in our applications. Following the convergence

study, research on performance, which is crucial in DG applications, is carried out in

the next section.

mesh hexahedra prisms pyramids tetrahedra total elements

1 84 10 24 83 201

2 672 80 96 856 1704

3 5376 640 384 7616 14016

4 43008 5120 1536 64000 113664

Table 2.5: Configuration of hybrid meshes: number of elements in the mesh
sequence for convergence study. Each refinement has approximately 8 times the
number of elements in the previous mesh, and the mesh size is about halved.

order N N = 1 N = 2 N = 3

mesh L

2 error rate L

2 error rate L

2 error rate

1 2.0e-1 (4.1e-2) - 3.8e-3 (2.1e-3) - 2.5e-4 (1.9e-4) -

2 5.6e-2 (1.0e-2) 1.83 (2.04) 5.6e-4 (2.7e-4) 2.76 (2.96) 1.8e-5 (1.2e-5) 3.80 (3.98)

3 1.4e-2 (2.7e-3) 2.00 (1.89) 7.7e-5 (3.5e-5) 2.86 (2.95) 1.3e-6 (8.6e-7) 3.79 (3.80)

4 3.1e-3 (6.9e-4) 2.17 (1.97) 1.0e-5 (4.3e-6) 2.95 (3.02) 9.3e-8 (6.3e-8) 3.81 (3.77)

Table 2.6: Convergence study of hybrid meshes. Numbers outside the brackets
correspond to the SEM approach, while the numbers inside the brackets are

generated from the GL implementation.

2.9 Performance study

In this section, we study the performance of our code on a single GPU by listing the

estimated GFLOPS and bandwidth of the computational kernels and comparing the
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time cost among them. The scalability of the code on multi-GPUs will be discussed in

the future work. All the computation are run in CUDA mode on an Nvidia GTX 980

GPU using single precision. The specification of Nvidia GTX 980 is listed in table

2.7. In addition, since the performance is better for su�ciently large-size problems,

the meshes for the performance tests are constructed with K ⇡ 100, 000 elements.

Number of Cores 2,048
Core Clock 1,126 MHz
Boost Clock 1,216 MHz

Memory Clock 7.0 Gbps
Global Memory Size 4 GB
Shared Memory Size 48 KB
Peak Bandwidth 224 GB/s

Peak GFLOPS (Single Precision) 4,612

Table 2.7: Nvidia GTX 980 specification.

2.9.1 GFLOPS and Bandwidth of the kernels

GFLOPS, standing for giga floating-point operations per second, is a measure of

computational performance. It quantifies the arithmetical e�ciency (e.g. the rate

of performing addition, subtraction, multiplication and division) of a computational

implementation on a given hardware. Memory bandwidth, at the same time, measures

the rate of data movement on the computational device. Specifically on a GPU,

bandwidth measures how fast the computational kernels read and write the global

memory, which is usually the main performance bottleneck.

Table 2.8 lists the GFLOPS and bandwidth of the volume, surface and update

kernels. In hexahedron volume kernel, the GFLOPS is relatively low compared to vol-

ume kernels of other element types. However, the high bandwidth of the hexahedron

volume kernels implies that the performance is bounded by IO (input/output). As

discussed in [58], this limitation can be further improved by computing the geometric

factors on the fly. GL-HEX surface and update kernels have higher GFLOPS than
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SEM-HEX kernels, which is contributed by the additional linear interpolation in the

GL-HHEX kernels. The prism kernels achieve relatively high performance in terms

of GFLOPS due to the heavy use of float4 variables. The arithmetic operations for

float4 variables are faster on certain GPUs [88]. The surface kernels of all element

types have relatively low performance in terms of both GFLOPS and bandwidth,

which is caused by the conditional statements and the non-coalesced access of trace

data from neighboring elements.

order N 1 2 3 4 5
Hexahedron (SEM)

Volume 201 268 343 397 468
Surface 50 48 66 60 54
Update 28 35 39 40 41

Hexahedron (GL)
Surface 66 99 141 135 111
Update 84 104 116 121 124
Prism
Volume 318 578 1200 1543 2004
Surface 119 249 534 381 719
Update 143 372 595 778 802
Pyramid
Volume 137 268 349 374 416
Surface 106 238 681 477 841
Update 130 303 709 780 613

Tetrahedron
Volume 237 424 474 672 740
Surface 105 175 389 530 749
Update 123 211 501 683 737

1 2 3 4 5

166 167 175 171 175
86 86 122 116 109
151 163 169 166 167

80 105 133 117 90
153 163 169 167 166

158 118 107 77 59
74 76 84 35 41
112 134 114 95 65

99 92 62 38 26
71 87 138 59 66
103 119 148 111 57

122 99 58 49 34
86 83 109 95 88
116 100 126 119 82

(a) GFLOPS (b) bandwidth (GB/s)

Table 2.8: (a) GFLOPS and (b) bandwidth of the kernels. Each row corresponds to
a kernel, and each column corresponds to a DG order. The numbers in the table are
estimated by counting the floating-point operations/data movements on a single

thread and then upscale to all threads.

2.9.2 Time cost comparison among di↵erent element types

We now compare the computational time cost among di↵erent element types. The

computational time can be a↵ected by many factors including mesh, polynomial de-

gree and time step size. To be fair, we compare the time cost per degree of freedom
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(DOF) in this study.

The experiments were conducted for each individual element type on meshes of

K ⇡ 10, 000 elements. The computational time was recorded for each kernel and then

divided by the number of time steps and the number of degrees of freedom. Table 2.9

reports the time cost of di↵erent element types, where the reported time are scaled by

the time cost of tetrahedron (i.e. the numbers in table 2.9 are the relative time cost

to tetrahedron). Figure 2.17 is a histogram of total time cost for di↵erent element

types, where the plotted values are also scaled by the time cost of tetrahedron.

order N 1 2 3 4 5
Hexahedron (SEM)

Volume 1.1500 1.1007 0.6659 0.5864 0.4073
Surface 0.9851 0.8250 0.5982 0.5755 0.5048
Update 0.8668 0.6719 0.7552 0.7571 0.5141
Total 0.9688 0.8076 0.6623 0.6338 0.4790

Hexahedron (GL)
Volume 1.1493 1.1010 0.6718 0.5910 0.4137
Surface 1.0900 0.7027 0.5784 0.5999 0.6570
Update 0.8628 0.6722 0.7613 0.7572 0.5159
Total 1.0288 0.7426 0.6564 0.6455 0.5359
Prism
Volume 4.2523 3.6110 3.0179 3.1976 3.0633
Surface 1.1403 0.9972 0.9918 2.1673 1.5766
Update 1.2819 0.9022 1.2444 1.4472 1.4359
Total 1.5421 1.2950 1.5297 2.2222 1.9705

Pyramid
Volume 2.0303 2.0848 1.9309 2.7446 2.8354
Surface 0.8043 0.9600 0.7290 1.4945 1.1896
Update 1.3149 0.9637 0.9481 1.2141 1.6319
Total 1.0987 1.1034 1.0696 1.7421 1.8321

Table 2.9: Time cost per degree of freedom (relative to tetrahedron) of hexahedron,
prism and pyramid kernels. Each row corresponds to a kernel, and each column

corresponds to a DG order.

From the results, we observe that the order of the time cost is hexahedron <

tetrahedron < pyramid < prism. While the SEM-HEX implementation yields bet-

ter performance than GL-HEX in high order cases, they have a similar time cost in
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Figure 2.17: Total time cost per degree of freedom (relative to tetrahedron) for
di↵erent element types. The time cost of tetrahedron is indicated by the red dash

line of value 1. The relative time cost for hexahedron (both SEM and GL
implementations), prism and pyramid are reported. The hexahedral elements are

the most e�cient elements especially at high orders.

general. E�ciency comparison between SEM-HEX and GL-HEX on CPUs was also

reported by Kopriva and Gassner [102] with a similar conclusion. Both hexahedron

implementations (SEM and GL) become more e�cient than tetrahedron as the DG

order increases. On the contrary, prism and pyramid are slower than tetrahedron,

especially in high order cases. This slowness is caused by expensive derivative opera-

tions, loading of geometric node-wise factors, interpolation on surface points, kernel

splitting and so on.

Although the comparison between a hybrid mesh and a pure tetrahedron mesh

has not been studied, the result in this section suggested that a hex-dominant mesh

has a high chance to beat a pure tetrahedron mesh in terms of performance.
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2.10 Summary

This chapter introduces the formulation and implementation of the discontinuous

Galerkin methods. The DG solver is built on hybrid meshes containing hexahedron,

tetrahedron, prisms and pyramids. The properties of di↵erent element types are

discussed in this chapter: for hexahedron, we take advantages of the tensor product

property to highlight its computational e�ciency [88]; for tetrahedron, we adopt the

nodal DG implementation [47]; for prism, a low-storage curvilinear DG (LSC-DG)

scheme is used to save memory storage [71]; for pyramid, orthogonal rational bases

are employed to resolve the singularity issue on vertex-mapped pyramids [69].

The techniques to improve the performance of the DG solver are studied. We

first exploit the implementation details of DG methods on a single GPU. Element-

specific kernels are optimized to achieve the desired e�ciency. Next, multi-rate time

stepping is introduced to further accelerate the implementation. The multi-rate time

stepping relaxes the global CFL condition into multiple local CFL constraints, which

allows us to take large time step sizes for coarse zones in the mesh. Finally, the DG

solver is parallelized on multiple GPUs to enable large-scale simulations. Workload

assignment, asymmetric message passing, and latency hiding are discussed in this

chapter.

Convergence and performance study of the DG implementation are presented

at the end of this chapter. The convergence and the performance results meet our

expectations. In general, we observe an L

2 error ofO(hN+1) on di↵erent meshes where

N is the DG order. Due to the 1D volume operations, hexahedral elements have the

best performance in terms of time cost per degree of freedom, which encourages us

to use hex-dominant meshes for large simulations.
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Reverse time migration

Reverse time migration (RTM), early introduced in the 1980s [4, 8], is an imaging

algorithm that requires solving two classes of wave equations. The first class, known

as the forward problem, simulates the wave propagation with source signals. The

second class solves the wave equation backward in time by injecting seismic data

as external forces. RTM then takes the multiplication of these two wavefields and

integrates it over time to evaluate an imaging condition. This process results in an

image that pictures the subsurface structures.

RTM is attractive because it produces high-resolution images of subsurface lay-

ers, faults and salt bodies, but RTM is also challenging because imaging quality and

computational e�ciency must be addressed to obtain accurate images with a↵ordable

computational costs [103]. First, due to the classical RTM formulation, artifacts can

be observed in the resulting images [103], and hence alternative imaging conditions

have been proposed to improve the image quality. Yoon et al. [104] took advantages

of Poynting vectors and designed a filter based on the directions of energy transport

to suppress imaging artifacts. Liu et al. [105] decomposed the wavefield into down-

going and upgoing components and removed noise from the image by taking only the

primary components. Modave et al. [9] proposed using characteristic fields instead of
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pressure fields in the imaging condition and observed improved images. Zhang and

Sun [106] suppressed RTM artifacts by proposing a modified version of forward equa-

tions. Second, RTM is a memory consuming algorithm, and many strategies were

developed to save the memory cost. Symes [107] proposed the optimal checkpointing

scheme to save the forward wavefields on a portion of the time grid, and re-initialize

the forward solver in the backward stage using these stored wavefields. Clapp [108]

suggested saving the boundary values of the forward wavefields and reproducing the

forward wavefields at backward runs. Clapp [109] also proposed solving RTM with

random boundaries to reduce memory requirement. Third, RTM is a computationally

intensive algorithm, which leads to various high performance computing implementa-

tions. Di↵erent hardware accelerators may require di↵erent RTM implementations.

In the last decade, the RTM algorithm has been studied on central processing units

(CPUs) [110], graphics processing units (GPUs) [90, 111], and field programmable

gate arrays (FPGAs) [112]. Each implementation claims superiority over others, but

selecting the right hardware for RTM remains a topic of debate [113].

RTM is built on the numerical solutions to wave equations, and hence many

numerical wave solvers have been studied on RTM. As we have already discussed in

chapter 1, finite di↵erence methods are one of the most popular schemes for RTM

[16, 111], while pseudo-spectral methods [19] and finite element methods [60] have

also been studied in the context of seismic imaging [114]. In recent years, the study

of discontinuous Galerkin methods on RTM has been carried out by Modave el al.

[9], which highlighted the strengths of DG-RTM with multi-GPU accelerations. Our

DG-RTM code also adopts many implementation details from [9].

This chapter introduces reverse time migration and discusses the application of

DG methods for RTM. In particular, I focus on the implementation of DG-RTM on

many-core processors (i.e. GPUs).
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3.1 Preliminaries

In order to accurately simulate wave propagation in the context of seismic exploration,

the DG solver must be extended to meet two requirements: (1) the waves in real world

typically propagate in long distance, and the domain of interest must be truncated;

(2) the explosives in a seismic survey are modeled as point sources, and we must inject

point sources into the numerical wave system. To this end, we combine the DG solver

with perfectly matched layers (PML) and source injection with scattered-total field

formulation. In this section, we discuss these techniques before working on RTM.

3.1.1 Perfectly matched layers

In practice, the domain of wave propagation is typically large. To save the com-

putational cost, we truncate the physical domain to a region of interest with open

boundaries. The wave energy must be absorbed near the computational domain

boundary with the assumption that far-away wave interactions and reflections do not

have influence on the region of interest. This energy absorption can be achieved by

applying either absorbing boundary conditions or layer techniques. As a result, the

simulation looks like a wave propagation in an unbounded domain. In this thesis, we

adopt the perfectly matched layers (PML), which is one of the most widely used layer

techniques.

The layer techniques extend the truncated domain with an artificial layer so that

the wave energy is damped inside the layer. Perfectly matched layers, early introduced

in 1994 by Berenger [115], are one class of the layer techniques and have drawn

much attention of various researchers due to its dissipative and perfectly matched

properties [116]. In other words, waves can transmit from non-PML region to PML

region without reflection at the interface, and the PML layer absorbs waves without

reflecting them back to the domain of interest. PML was first proposed for 2D
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electromagnetic problems [115], and was quickly extended to three-dimensional and

other wave-like problems [117, 118]. In this section, we focus on the PML formulation

for 3D acoustic wave equations [116].

To apply PML, one needs to first pad the computational domain with an additional

layer. As illustrated in figure 3.1, the center part is the regular computational domain

while the perfectly matched layers are implemented near the boundary. We then solve

the acoustic wave equation given by
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where �
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(x) are the absorption coe�cients that are zero in the non-PML region but

a positive value inside the PML layer. Mathematically, �
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where ⌦ = ⌦regular [ ⌦pml. In the region where �

i

(x) = 0 (i.e. non-PML region),

equation (3.1) is simplified to a formulation without PML, and is equivalent to wave

equation (2.1) as we haven seen in chapter 2. The outer boundary of the PML layer

is usually equiped with the first order absobing boundary condition [116], which is

given by

p� ⇢cn · v = 0, (3.3)

where n is a unit vector pointing at outward normal of the boundary.
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Figure 3.1: 2D illustration of PML. Computational domain is padded with
additional layers. Waves are absorbed in the PML layers.

Due to linearity, we have p =
P3

i=1 pi. The pressure field p is decomposed into

three components, each of which corresponds to one Cartesian direction. Therefore,

formulation (3.1) is also known as the split perfectly matched layers (SPML) [115].

The terms on the right-hand side of equation (3.1) are absorption terms which lead

to an exponential decay of the system energy in time.

Numerical results in Modave et al. [119] suggest that the shifted hyperbolic func-

tion has a decent absorbing capability and is free of parameter tuning. The formula

of the shifted hyperbolic function is given by

�(x) = ↵

x

� � x

, (3.4)

where ↵ is a positive parameter, � is the thickness of the PML layer, and x is the

distance from a point inside PML layer to the interface between non-PML domain and

PML layer. This choice of absorption coe�cient is adopted in our implementation.
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3.1.2 Source term

In seismic imaging, the source signals generated by explosives or airguns are typically

modeled as point sources. a point source is typically added as an external force. An

intuitive way to add this term to the DG formulation is using L

2 projection. For

instance, the source term is a Dirac delta function �(x � x0), and is approximated

by �(x � x0) ⇡ P
n

w

n

'

k

n

(x), where '

k

n

(x) are basis functions on element k and

coe�cients w
n

are obtained by solving,
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The Dirac delta function introduces singularity, thus destroying the high order ac-

curacy in DG scheme. To resolve this issue, we introduce a scattered-total field

formulation for source injection, which avoids dealing directly with the singularity in

source injection [120].

3.1.2.1 Green’s function

We begin the introduction to the scattered-total field formulation by first discussing

Green’s function. The Green’s function in the second-order wave equation is the

solution to
@

2
G(x, t)

@t

2
� c

2�G(x, t) = �(t� s)�(x� y), (3.6)

where t, s 2 R+, x,y 2 R3, � is the Dirac delta function, and c is the constant wave

speed. The solution to this equation is

G(x, t;y, s) =
1

4⇡c2r
�(t� s� r

s

/c) (3.7)

with r

s

=k x� y k2 [121].
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In order to solve the second-order wave equation

@
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@t

2
� c

2�p(x, t) = f(t)�(x� x0), (3.8)

one can simply calculates the convolution of the Green’s function and the source term,

which yields

p(x, t) =

Z

R+

Z

R3

f(s)�(y � x0)G(x, t;y, s) dy ds

=
1

4⇡c2r
f(t� r/c)

(3.9)

with r =k x� x0 k2 [121].

Back to the first-order wave equation, the Green’s function for the first-order wave

system satisfies

@p

@t

+ ⇢c

2rv = F (t)�(x� x0), (3.10a)

@v

@t

+
1

⇢

rp = 0, (3.10b)

where F (t) =
R

t

�1 f(⌧) d⌧ is the integrated source, and c and ⇢ are constant. The

pressure solution (3.9) still holds for the first-order system (3.10). In addition, comb-

ing (3.9) and (3.10b) yields the velocity solution

v(x, t) =
x

4⇡⇢c2r2

✓
1

r

F (t� r/c) +
1

c

f(t� r/c)

◆
. (3.11)

Therefore, expressions (3.9) and (3.11) analytically give the solution to the acoustic

wave equation in a free space with c and ⇢ being constant.
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3.1.2.2 Scattered-total field formulation

To apply the scattered-total field formulation, we separate the wavefield into two

fields: the incident field is the wavefield generated by the source; the scattered field

is the wavefield without the contribution of the source injection. Since the wave

equation is linear, the total wavefield is simply the summation of the incident and

the scattered fields [120].

When the medium has constant velocity and density, the incident field is given

by the analytic solution. Assuming that the media is homogeneous (i.e. constant

velocity and density) near the source points, we partition the computational domain

into two parts: the first part is a patch of elements containing the point source; the

second part is the rest of the domain. The source is then injected through numerical

fluxes.

Inside the patch (part 1), only the scattered field is computed. The exterior nu-

merical flux (u+) passed into the patch contains only the information of the scattered

field, which is obtained by subtracting the incident field (analytic solution) from the

total field (numerical solution in part 2). Outside the patch (part 2), the total field

is simulated. Therefore, the exterior numerical flux at the interface is a summation

of the scattered field (numerical solution in part 1) and the incident field (analytic

solution).

Denoting the domain of the total field as ⌦tot, the domain of the scattered field

as ⌦scatt, and the interface of the total and the scattered fields as �int = ⌦tot \⌦scatt,
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we can write the mathematical formulas for the total and scattered fields as

@ptot(x, t)

@t

+ ⇢c

2r · vtot(x, t) = 0, x 2 ⌦tot, (3.12a)

@vtot(x, t)

@t

+
1

⇢

rptot(x, t) = 0, x 2 ⌦tot, (3.12b)

ptot(x, 0) = 0, x 2 ⌦tot, (3.12c)

vtot(x, 0) = 0, x 2 ⌦tot, (3.12d)

ptot(x, t) = pscatt(x, t) + pinc(x, t), x 2 �int,

(OR) vtot(x, t) · n = vscatt(x, t) · n+ vinc(x, t) · n, x 2 �int, (3.12e)

@pscatt(x, t)

@t

+ ⇢c

2r · vscatt(x, t) = 0, x 2 ⌦scatt, (3.13a)

@vscatt(x, t)

@t

+
1

⇢

rpscatt(x, t) = 0, x 2 ⌦scatt, (3.13b)

pscatt(x, 0) = 0, x 2 ⌦scatt, (3.13c)

vscatt(x, 0) = 0, x 2 ⌦scatt, (3.13d)

pscatt(x, t) = ptot(x, t)� pinc(x, t), x 2 �int,

(OR) vscatt(x, t) · n = vtot(x, t) · n� vinc(x, t) · n, x 2 �int, (3.13e)

where ptot and vtot are the total wavefields, pscatt and vscatt are the scattered wavefields,

pinc and vinc in (3.12e) and (3.13e) are the point source contribution given by (3.9)

and (3.11).

The entire source injection procedure can be concluded as follows,

• Identify a patch of elements that contains the point source.

• Label elements in this patch as scattered field.
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Figure 3.2: 2D illustration of source injection. The point source is injected through
numerical fluxes. The blue element contains only the scattered field, while the white

element has the total field simulation. The numerical flux is a function of the
numerical solution u

h

and the analytic solution uinc.

• Provide exterior information in scattered field by u+
scatt = u+ � uinc.

• Provide exterior information in the halo of scattered field by u+
tot = u++uinc.

Figure 3.2 is also a 2D illustration for the partition of scattered-total field formu-

lation, where the blue element belongs to the scattered field while the white element

is inside the total field. In the simulation, source energy will be emitted from the

blue-white interface to the total field.

3.2 Imaging condition

In reverse time migration, we solve the two types of acoustic wave equations to obtain

two wavefields—the source wavefield p

S

and the receiver wavefield p

R

.

The source wavefield p

S

, as indicated by its name, is generated by injecting a

source into the domain. The source wavefield p

S

is equipped with an zero initial
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condition and an appropriate boundary condition (absorbing boundary condition in

our case). More precisely, p
S

satisfies,

@p

S

(x, t)

@t

+ ⇢c

2r · v
S

(x, t) = f(t)�(x� x
S

), x 2 ⌦, (3.14a)

@v
S

(x, t)

@t

+
1

⇢

rp

S

(x, t) = 0, x 2 ⌦, (3.14b)

p

S

(x, 0) = 0, x 2 ⌦, (3.14c)

v
S

(x, 0) = 0, x 2 ⌦, (3.14d)

where ⇢ and c are the density and phase velocity of the media respectively, f is a

signal depending on time t, � is the Dirac delta function, x
S

is the location of the

source. In our implementation, the boundary condition is an absorbing boundary

given by the PML formulation discussed in section 3.1.1.

For the receiver wavefield p

R

, instead of providing an intial condition, we give it

a terminal condition at the end time of the wave propagation. Taking the terminal

condition into consideration, we usually solve receiver wavefield p

R

backward in time.

Denoting ⌧ = T � t, with T indicating the end time of the propagation, we write the

following formulation for p
R

.

�@p

R

@⌧

+r · (1
⇢

v
R

) =
NrX

i=1

d(⌧)�(x� x
Ri), x 2 ⌦, (3.15a)

�@v
R

@⌧

+r(⇢c2p
R

) = 0, x 2 ⌦, (3.15b)

p

R

(x, ⌧ = 0) = 0, x 2 ⌦, (3.15c)

v
R

(x, ⌧ = 0) = 0, x 2 ⌦, (3.15d)

where N

r

is the number of receivers, x
Ri is the location of the i’th receiver, and

d(⌧) is the seismic data recorded at time ⌧ = T � t. The boundary condition in the

implementation is the absorbing boundary which is same as the source wavefield.
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Equation (3.14) and (3.15) can be solved by the DG scheme. With wavefields p
S

and p

R

, the classical imaging condition of RTM is given by

I(x) =
NsX

s=1

Z
T

0

p

S

(x, t; s)p
R

(x, t; s)dt, (3.16)

where I is the imaging condition at location x, s indicates shot s, and N

s

is total

number of shots. This imaging condition I provides an image of the subsurface

structures and is the final output of RTM. As suggested in [9], the imaging condition

can be improved by using

I(x) =
NsX

s=1

Z
T

0

q

�
S

(x, t; s)q+
R

(x, t; s)dt, (3.17)

where q±(x, t; s) = p(x, t; s)±c⇢e
z

·v(x, t; s) are the characteristic fields, and e
z

is the

unit vector pointing upwards. Since we are solving the first order wave equations, it is

easy to extend (3.16) to (3.17) in terms of implementation. The comparison between

the classical imaging condition and the imaging condition using characteristic fields

was reported in [9]. In the following context, we will still use the notation in (3.16) if

not otherwise specified.

An intuitive interpretation of imaging condition (3.16) is given in figure 3.3. For

simplicity, we only consider the primary reflected wave here (the reflection caused

by the first encountered reflector). The source wavefield (black solid) and receiver

wavefield (blue dash) are depicted in the same computational domain. The two

wavefields are non-zero near the reflector location at the same time. This gives a

non-zero value of I(x) at the reflector. In other locations, either source wavefield or

receiver wavefield is zero at a given time, and hence I(x) vanishes there.



Chapter 3. Reverse time migration 80

Figure 3.3: Interpretation of RTM. Only the wave front of the primary reflected
wave is depicted. The black solid wavefield is the source wavefield, and the blue

dash wavefield is the receiver wavefield. They have overlap at the reflector at time
t

s

, but not other places. As a result, expression (3.16) is non-zero at the reflector,
but vanishes elsewhere.

3.3 Backward phase of the source wavefield

To compute the time integral (3.16), one has to have the knowledge of p
S

and p

R

at the same physical time. However, p
S

is computed forward in time, while p

S

is

computed backward in time. This process prevents us from obtaining two wavefields

at the same physical time. An intuitive way to deal with this issue is to compute the

forward propagation first and save the wavefield p

S

at all time points. At the backward

propagation stage, the wavefield p

R

is computed, and p

S

is read from memory to

evaluate the imaging condition.

This approach requires an excessive amount of storage and data movement, es-

pecially in three dimensions. Since our implementation runs on GPUs which have

limited memory size, we want to avoid such data movement. Taking the high capa-

bility of floating point operations on GPUs into consideration, we could reduce the

memory costs by increasing the number of floating point operations. This idea leads

to two approaches: (1) The first one is the optimal checkpointing scheme proposed
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by Symes [107], which saves the source wavefield p

S

at a set of time checkpoints and

uses the stored wavefield to initialize the forward wave propagation at the backward

stage. This approach reduces memory cost by a factor logarithmic in the total num-

ber of steps but increases the computational complexity also by a factor logarithmic

in the total number of steps; (2) As suggested in Clapp [108] and Modave [9], we can

save the boundary values of the source wavefield p

S

, and recover p
S

backward in time

at the backward stage. By computing the forward propagation twice, this approach

requires storage only for boundary values but increases the computational complexity

by a factor of 1.5. In this thesis, we adopt the second approach and present its details

in the remaining of this section.

Similar to the implementation of traditional RTM, the entire computation is di-

vided into two stages: the forward phase stage and the backward phase stage. In the

forward phase stage, p
S

and v
S

are numerically computed by solving equation (3.14).

The boundary values of the pressure field at each time step and the terminal wavefiled

at t = T are saved in this stage. Boundary values can also refer to values which lie on

the interface between the perfectly matched layers (PML) and the non-PML region.

In the backward phase stage, we solve both the receiver wavefield given by (3.15),

and the backward phase of the source wavefield given by

�@p

S

@⌧

+ ⇢c

2r · v
S

= f(⌧)�(x� x
S

), x 2 ⌦, (3.18a)

�⇢

@v
S

@⌧

+rp

S

= 0, x 2 ⌦, (3.18b)

p

S

(x, ⌧ = 0) = p̃

S

(x, t = T ), x 2 ⌦, (3.18c)

v
S

(x, ⌧ = 0) = ṽ
S

(x, t = T ), x 2 ⌦, (3.18d)

p

S

(x, ⌧) = p̃

S

(x, ⌧), x 2 �, (3.18e)

where ⌧ = T � t is the reversed time variable, and p̃

S

and ṽ
S

are data saved in the
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forward phase.

It is trivial to show that the solutions of equation (3.14) and (3.18) are identical at

the continuous level. Numerically, however, they are not the same unless an implicit

time stepping scheme is used in the backward stage. Consider a simple evolution of

forward Euler method,

un+1 = (I +�tA)un

. (3.19)

We must use the backward Euler method

un = (I +�tA)�1un+1 (3.20)

to obtain a discretely exact solution backward in time. More specifically in our case

where the 3rd order Adam-Bashforth scheme is employed, the forward and backward

schemes should be

un+1 = un +�t

2X

i=0

↵

i

Aun�i

, (3.21)

un�2 =
1

↵2

"
�

1X

i=0

↵

i

un�i + A

�1u
n+1 � un

�t

#
, (3.22)

respectively, where ↵
i

are AB3 coe�cients. However, for the concern of computational

e�ciency, we still use an explicit time stepping at the backward stage. Due to this

issue, additional numerical errors are introduced in the backward phase for the source

wavefield. This error also brings di�culties when we want to further apply the imaging

condition to full waveform inversion as we will discuss in chapter 4.

In brief, we recover the source wavefield at the backward phase stage without

storing the entire source wavefield at a cost of increased computational time and

additional numerical error.
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3.4 Evaluation of the imaging condition

In order to obtain the imaging condition, we need to evaluate the time integral (3.16)

numerically. In this section, we omit the dependence of the integrand on shot s in

(3.16) for notational clarity. Thus, we want to numerically integrate

I(x) =

Z
T

0

p

S

(x, t)p
R

(x, t)dt. (3.23)

A common approach is to apply the trapezoidal rule. Equally dividing the interval

[0, T ] into N

t

sub-intervals with 0 = t0 < t1 < · · · < t

Nt�1 < t

Nt = T , one arrives at

the trapezoidal rule,

I(x) ⇡ T

2N
t

(p
S

(x, t0)pR(x, t0) + 2p
S

(x, t1)pR(x, t1) + . . .

+2p
S

(x, t
Nt�1)pR(x, tNt�1) + p

S

(x, t
Nt)pR(x, tNt)) .

(3.24)

This approach gives an O(�t

2) numerical error [122]. In our implementation, we

adopt the quadrature scheme proposed by Modave et al. [9] to improve the accuracy

of the time integration. The details of this quadrature scheme is given in the following

of this section.

Assuming a 3rd order Adam-Bashforth scheme is used in time, we can represent

the DG solution as

p(x, t) = p(x, t
n�1) +�t

3X

s=1

 Z
t

⇤(t)

0

l

s

(t0)dt0
!
r(x, t

n�s

), (3.25)

where t 2 [t
n�1, tn], t⇤(t) = (t � t

n�1)/�t, l
s

(t) are Lagrange polynomials with in-

terpolation nodes at 0,�1 and �2, and r(x, t) are the right-hand side vectors of

the pressure field containing contributions from both volume and surface kernels as

introduced in chapter 2.
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Splitting the integral (3.23) as follows,

I(x) =
NtX

n=1

Z
tn

tn�1

p

S

(x, t)p
R

(x, t)dt, (3.26)

we now need to evaluate the integral on each sub-interval. Substituting (3.25) into

(3.26), we obtain

Z
tn

tn�1

p

S

(x, t)p
R

(x, t)dt =�tp

S

(x, t
n�1)pR(x, tn�1)

+�t

2

3X

s=1

a

s

p

S

(x, t
n�1)rR(x, tn�s

)

+�t

2

3X

s=1

a

s

p

R

(x, t
n�1)rS(x, tn�s

)

+�t

3

3X

s1=1

3X

s2=1

C

s1s2rS(x, tn�s1)rR(x, tn�s2).

(3.27)

where a

s

=
R 1

0

R
t

0
l

s

(t0)dt0dt, and C

s1s2 =
R 1

0

⇣R
t

0
l

s1(t
0)dt0

⌘⇣R
t

0
l

s2(t
0)dt0

⌘
dt. These

coe�cients are given by

a =

✓
19/24 �5/12 1/8

◆0

, (3.28a)

C =

0

BBBB@

4703/5040 �457/840 52/315

�457/840 103/315 �251/2520

52/315 �251/2520 17/560

1

CCCCA
. (3.28b)

Scheme (3.27) has a numerical error of O(�t

4) [9]. The additional data needed

to evaluate this quadrature (i.e. r

S

and r

R

) is available in the DG update process

and hence can be reused. The improvement of accuracy does not require a significant

increase in cost compared with the trapezoidal rule.



Chapter 3. Reverse time migration 85

3.5 Numerical results of synthetic surveys

We are now able to conduct synthetic surveys, in which the sources and receivers

are artificially located in the computational domain, and the signals recorded by

the receivers are generated by numerical simulations. Compared to realistic surveys

where the signals are recorded with data acquisitions, synthetic surveys have better

coherence between the velocity model and the recorded data, and hence produce

better numerical results.

In this section, we will apply the RTM algorithm to three di↵erent models: (1) a

single layer model, where there is only one reflector; (2) a multi-layer model, where

there are multiple reflectors; (3) the Marmousi model, which is a widely used bench-

mark for many seismic applications [123].

3.5.1 Basic configurations

Before diving into the tests, we set some configurations that are applied to all the

experiments in this section.

Throughout this section, we use the Ricker pulse as the source term. The Ricker

pulse is given by

A(t) = (1� 2⇡2
f

2(t� t0)
2)e�⇡

2
f

2(t�t0)2
, (3.29)

where f is the peak frequency and and t0 is the time shift. An example of Ricker

wavelet with f = 5 Hz and t0 = 0.2 s is plotted in figure 3.4.

When we run the forward simulation, the receivers will record data. However, the

direct wave, which is the wave transmits directly from the sources to the receivers, is

recorded in the data. Since the direct wave does not contain any information from

the subsurface, the data is muted in order to remove the direct wave. Figure 3.5

is an illustration of this muting procedure, where the data is taken from a one-shot
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Figure 3.4: Example of Ricker wavelet, where the frequency f = 5 Hz and time shift
t0 = 0.2 s.

simulation on the single layer model. Figure 3.5 (a) shows a 2D slice of recorded data

while figure 3.5 (b) shows an example of muted data. The data is muted by estimating

the traveltime from source to receiver and cutting the data before the estimated time

point. As we can see, the direct wave in figure 3.5 (a) (data on the top) is removed

in figure 3.5 (b).

(a) original data (b) muted data

Figure 3.5: Data muting in RTM configuration: (a) 2D slice of the original recorded
data; (b) 2D sliced of muted data, where direct waves are removed.

Finally, absorbing boundaries (i.e. PML) are applied to all the boundaries in the
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following experiments.

3.5.2 Single layer model

We start with the simplest model, where there is only a single layer in the model.

The solution should ideally give us the information about the layer interface in the

RTM image.

The configuration is: the computational domain is a cube of size [0 km, 2 km]3; a

velocity interface is located at z = 1.0 km; the top part of the model has a velocity

of 1 km/s, and the bottom part has a velocity of 2 km/s (figure 3.6); 100 Ricker

sources of 6 Hz peak frequency are distributed evenly on plane z = 0.21 km, and 729

receivers are evenly distributed on plane z = 0.3 km (figure 3.7); recording end time

is T = 3.0 s; the simulation is executed on a pure hexahedral mesh using GL-HEX

algorithms as discussed in the previous chapter.

Figure 3.6: Single layer velocity model, where the top has 1 km/s velocity and the
bottom has 2 km/s velocity.
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(a) 3D view of the source and receiver locations (b) 2D slice of the configuration

Figure 3.7: Single layer example: sources and receivers, which are located at the top
of the domain.

The results of this experiment are reported in figure 3.8. In the image, we observe

a line segment at the reflector location, which suggests that the layer interface is

successfully identified by the RTM procedure.

The image quality is a↵ected by the frequency of the signal. Because the frequency

is inversely proportional to the wavelength, higher frequency would lead to smaller

wavelength, and smaller wavelength may reveal higher resolution of the subsurface

structure. For instance, the line segment in figure 3.8 is wide in z-direction, and

increasing wave frequency may reduce the width of this line segment which makes

the image sharper. However, simulating high frequency waves requires finer meshes or

higher order polynomials in DG to guarantee the fidelity of the wave simulation. The

computational cost increases as we must have enough degrees of freedom allocated

within one wavelength.

3.5.3 Multi-layer model

To further validate the algorithm and our implementation, we test a more complicated

model where there are several reflectors. To simplify the computation and reduce the
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(a) 3D view of the image (b) 2D slice of the image

Figure 3.8: Single layer example: results of the RTM algorithm. The layer is
revealed in the RTM image.

computational cost, we set this test case to be a 2.5D model, where the dimension

along y-axis is short in distance and a constant in velocity model.

The configuration is: the computational domain is a cube of size [0 km, 2 km] ⇥
[0 km, 0.6 km] ⇥ [0 km, 2 km]; multiple layers are located in the model, and their

velocities are (from top to bottom) 1 km/s, 2 km/s, 4 km/s and 1.5 km/s respectively

(figure 3.9); 9 Ricker sources of 6 Hz peak frequency are distributed evenly on the

line y = 0.2 km, z = 0.3 km, and 25 receivers are evenly distributed on the line

y = 0.2 km, z = 0.4 km (figure 3.10); recording end time is T = 3.0 s; the simulation

is carried out on a pure tetrahedral mesh.

The results of the RTM algorithm are reported in figure 3.11. As the wave trans-

mits deep into the domain, the wave energy is damped. The data signal which conveys

the information of the lower reflectors is weak in terms of magnitude. As a result,

the lower reflectors are less significant in the RTM image than the upper structures.

To resolve this issue, some filtering techniques are proposed to improve the quality

of the image. For instance, Laplacian filtering applies Laplacian operator to images

in order to highlight regions of rapid intensity change [124], and Q-filtering technique

compensates the amplitude attenuation of waves to enhance the resolution of images

[125]. For simplicity, we just plot the image in di↵erent color scales to observe the
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(a) 3D view of the velocity model (b) 2D view of the velocity model

Figure 3.9: Multi-layer velocity model. Velocities are (from top to bottom) 1 km/s,
2 km/s, 4 km/s and 1.5 km/s respectively.

Figure 3.10: Multi-layer example: sources and receivers, where sources and receivers
are located on the top of the domain.

bottom structures. Figure 3.11 (a) is a plot of the image using linear color scale, where

top reflector can be easily observed; figure 3.11 (b) uses log color scale to reveal the

bottom reflectors.
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Figure 3.11: Results of the multi-layer RTM example: (a) plot of the image using a
linear color scale; (b) plot of the image using a log color scale.

3.5.4 Marmousi model

The last test case in this chapter is the Marmousi model. Since the Marmousi model

is a 2D model but our solver is implemented for 3D problems, we extend it to a 2.5D

model. Here, we extrude the model along y-axis and let the model be constant along

y-dimension.

The model is sampled to a 36 m ⇥ 36 m ⇥ 36 m hexahedral grid. The grid size

is 256⇥ 9⇥ 81, which sets the model size to 9216 m ⇥ 324 m ⇥ 2916 m. The model

above z = 252 m (first 7 cells in z-direction) is a water layer with a constant velocity

of 1500 m/s. The velocity range in the model is [1500 m/s, 5500 m/s]. Figure 3.12

and 3.13 plots the Marmousi model in both 2D and 3D views.

The sources, which are the Ricker pulse of 15 Hz peak frequency, are placed along

the line z = 150 m. 50 shots are deployed evenly starting from x = 100 m to x = 9000

m. There are 249 receivers equally spaced every 36 m from x = 126 m to x = 9054

m and z = 200 m. The configuration of the sources and receivers is illustrated in
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figure 3.14. The total time of the wave simulation is T = 5.0 s. The domain is built

on a structured hexahedral mesh, and the wave equations are solved by GL-HEX

algorithm.

Figure 3.15 and 3.16 report the resulting RTM image plotted in linear and log color

scales respectively. Subsurface structures such as layers and faults can be observed

in the RTM image.

2500

3500

4500

1.500e+03

5.500e+03
velocity(m/s)

Figure 3.12: Marmousi velocity model (viewed in 3D). Velocities are in the range of
1500 m/s to 5500 m/s.
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1.500e+03
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Figure 3.13: Marmousi velocity model (viewed in 2D). Velocities are in the range of
1500 m/s to 5500 m/s.

Figure 3.14: Marmousi example: sources and receivers are placed at z = 150 m and
z = 200 m respectively.
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Figure 3.15: Marmousi example: RTM image of Marmousi (plotted in a linear color
scale).
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Figure 3.16: Marmousi example: RTM image of Marmousi (plotted in a log color
scale).
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3.6 Summary

This chapter studies the application of DG methods in reverse time migration (RTM).

RTM utilizes two-way wavefields to evaluate an imaging condition through cross-

correlation, and the output image reveals the subsurface structures.

To study the wave simulation in the context of seismic imaging, this chapter first

introduces preliminaries of perfectly matched layers (PML) and point source injection.

PML absorbs wave energy near the boundary of the domain, and allows us to truncate

a domain into a region of interest. We can thereby study wave problems posed

on unbounded domains, which is typically the case in seismic imaging. In seismic

surveys, the source signal generated by airguns and explosives may be modeled as

point sources. To inject such sources into the wave system, we implement the source

injection using a scattered-total field formulation to avoid the singularities introduced

by the point source.

RTM evaluates the cross-correlation of source and receiver wavefields at the same

physical time. This process consumes a large amount of memory in most classical

RTM implementations. To avoid such data movement, we adopt the approach in [9]:

we save the boundary values of the forward wavefield at each time step in memory,

and provide these values as boundary conditions to recover the forward wavefield at

the backward stage. With an additional cost of floating point operations, the memory

cost is significantly reduced.

To improve the imaging condition, we replace the pressure fields in the imaging

condition with the characteristic fields. The improvement of image quality by using

characteristic fields is reported in [9]. We also employ high-order quadrature rules to

achieve high-order accuracy in the time integration of the imaging condition. This

technique is based on the polynomial representation of Adam-Bashforth evolution.

At the end of this chapter, we validate the DG-RTM implementation with three
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test cases—a single layer model, a multi-layer model and the Marmousi model. In

the RTM images generated by our implementation, we observe expected subsurface

structures such as layers and faults.

In the next chapter, we will further extend DG-RTM to DG-FWI which is a more

sophisticated seismic algorithm.



Chapter 4

Full waveform inversion

Building from DG-RTM, I extend the work to full waveform inversion (FWI) in this

chapter. Di↵erent from RTM which recovers subsurface structures without realizing

their physical properties, FWI solves an inverse problem and recovers subsurface

physical parameters.

FWI was first pioneered in the 1980s [32, 33] and its study of 2D synthetic sur-

veys on acoustic waves was soon carried out [126]. As the development of computer

technology, nowadays FWI can solve 3D elastic problems [127] and has been applied

to real data [128].

Formulated as a PDE-constraint optimization problem, FWI seeks the minimum

mismatch between synthetic and recorded data in terms of both traveltime and wave-

form. However, this problem is ill-posed, and the solution is not guaranteed to be

unique. The optimization path can be trapped in local minima, which is known as

the cycle-skipping issue [6]. The importance of low-frequency data is realized to de-

sign well-posed FWI [129], but the acquisition of low-frequency data is challenging.

Alternatives to design better-posed FWI are: adding regularization terms to guide

the optimization paths [34, 39], using di↵erent objective functions [40], and applying

frequency continuation technique [41]. Additionally, to avoid the cycle-skipping issue,
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FWI must start with good initial guesses, which can be provided by other seismic

algorithms such as traveltime tomography [3].

FWI is computationally intensive, especially for 3D cases. To address large-

scale problems, FWI is typically implemented in parallel. Intuitive parallelization

approaches are distributing each shot to a processor and solving wave equations se-

quentially on each processor [130]. More sophisticated ways to implement FWI is

to introduce domain decomposition and assign each subdomain to a processor [131],

which is also adopted in our work. Most of these parallel implementations are realized

on CPUs, while the study of GPU-accelerated FWI has been carried out in recent

years [132]. Supplementary to parallel computing, many other techniques such as pre-

conditioners [133] and source encoding [134] are developed to save the computational

expenses.

Similar to RTM, FWI requires solving wave equations multiple times. To solve

these wave equations, FWI has been studied on various numerical solvers [6, 10],

most of which are finite di↵erence methods [13, 14, 15, 16]. As to my knowledge, only

a few papers have been published for complete DG-FWI procedures. Wilcox et al.

[38] discussed how to derive discretely exact derivatives in the context of DG-based

PDE-constraint optimization. Ober et al. [28] reported their results of DG-FWI for

visco-TTI elastic problems. However, DG-FWI with multi-rate time stepping and

multi-GPU acceleration has rarely been discussed in the literature.

In this chapter, I first study the adjoint-state method to obtain the gradient of

the objective function in FWI. Afterward, I employ the steepest descent method to

solve the optimization problem and validate the conventional FWI algorithm with test

cases. To highlight the advantage of DG methods, I focus on inverting sharp interfaces

at the end of this chapter, where we specify certain perturbations at media interfaces.

The impact of the interface perturbation is given by integrating the RTM image over
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element surfaces. In addition, meshes are regenerated in the FWI iterations to align

with the media interfaces.

4.1 Formulation

Recall that the first order acoustic wave equation is given by

@p(x, t)

@t

+ ⇢c

2r · v(x, t) = f(x, t), x 2 ⌦, (4.1a)

@v(x, t)

@t

+
1

⇢

rp(x, t) = 0, x 2 ⌦, (4.1b)

p(x, 0) = 0, x 2 ⌦, (4.1c)

v(x, 0) = 0, x 2 ⌦, (4.1d)

where f is the source signal, c is the velocity of the media and ⇢ is the density of

the media, and a proper boundary condition (such as absorbing boundary) is posed

at the boundary of the domain.

As stated in chapter 1, the velocity c and density ⇢ are in the model space, and

can be denoted by m(c, ⇢). The wave equation is an operator acting on the model

parameter to obtain the solution u(x, t) = (p(x, t),v(x, t)), which is denoted by

F [m] = u. We can use a numerical solver (e.g. our DG solver) to solve the wave

equation with a given model, but it is challenging and interesting to inversely solve

the model parameters m. To this end, we formulate the inversion as an optimization

problem, and begin the introduction by discussing more seismic parameters.

In a seismic survey, we use many receivers to record the wave signals as seismic

data. Denote the data recorded at receivers as d
r,s

(t) = u
s

(x
r

, t) where s and r are

the indexes of the shots and receivers respectively, and d(t) as a collection of d
r,s

(t).
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Define operator S that maps the wavefield to the traces at receiver locations as

Su(x, t) = u(x
r

, t), (4.2)

where x
r

is the location of the receiver. We then have

J [m] =
1

2
hSF [m]� d, SF [m]� di

=
1

2
kSF [m]� dk22,

(4.3)

where kdk22 =
P

s

R
T

0

R
⌦

P
r

(�(x
r

)d
r,s

)2 dx dt =
P

r,s

R
T

0
(d

r,s

)2dt. The model param-

eter m is then solved by

m = argminJ [m]. (4.4)

In other words, we need to solve the optimization problem

min
m

J [m]. (4.5)

FWI is challenging because the problem is ill-posed and there is no guarantee of

finding the global minimum [6]. Typically, FWI requires a close enough initial guess

for the optimization to attain the global minimum [6].

To apply a gradient-based optimization scheme to problem (4.5), one needs to

compute the derivatives of J with respect to m. The intuitive approach, in which

one approximates the derivative by its definition in a finite di↵erence manner, is

una↵ordable for modern computers. Therefore, we introduce the adjoint-state method

to compute the derivatives in the following two sections.
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4.2 Continuous adjoint-state method for FWI

In this section and next section, we discuss the adjoint-state method to obtain the

gradient of the misfit function J . The two sections have di↵erent highlights: this sec-

tion focuses on the derivation at continuous level; the next section studies the discrete

adjoint-state method and is based on the discretization of the DG formulation.

A variety of derivations is available for the continuous adjoint-state method (e.g.

Gauthier et al. [126]). In this section, we mostly follow Laurent Demanet’s notes on

Waves and Imaging [135] to introduce the adjoint-state method. For convenience, we

use the second order wave equation

1

c

2

@

2
u(x, t)

@t

2
��u(x, t) = f(x, t), x 2 ⌦ (4.6)

where c is the same velocity as in (4.1), u is the wave solution and f is the source

pulse. The derivation of the adjoint-state method for first-order wave equation (4.1)

can be obtained analogously as it is convertible between the first order wave equation

and the second order wave equation.

4.2.1 Born approximation

We first study the impact of the perturbation in the velocity model. A small pertur-

bation in velocity leads to a perturbation in the wavefield. The linearization of the

wavefield perturbation is known as the Born approximation, which is analogous to

the first order term in Taylor expansion of a general function [136].

For simplicity, denote the model parameter m = 1/c2, and equation (4.6) becomes

m

@

2
u

@t

2
��u = f, (4.7)

where m is now linearly acting on the wave equation.
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To study the impact of the variation of m on the wave system, we let m be

interpreted as an combination of an initial model m0 and a small perturbation �m,

m = m0 + �m. (4.8)

As a result, the wave-field u is also split as

u = u0 + �u, (4.9)

where u0 is called the incident field, �u is known as the scattered field, and u and u0

solve the wave equation with model parameters m and m0 respectively

m

@

2
u

@t

2
��u = f, (4.10)

and

m0
@

2
u0

@t

2
��u = f. (4.11)

Subtracting (4.11) from (4.10) and utilizing the linearity of the wave equation, we

arrive at,

m0
@

2
�u

@t

2
+ �m

@

2
u0

@t

2
+ �m

@

2
�u

@t

2
���u = 0 (4.12)

Dropping the second order small term in the above equation , we obtain

m0
@

2
�u

@t

2
���u ⇡ ��m

@

2
u0

@t

2
. (4.13)
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Therefore, the solution �u to the equation

✓
m0

@

2

@t

2
��

◆
�u = ��m

@

2
u0

@t

2
, (4.14a)

✓
m0

@

2

@t

2
��

◆
u0 = f, (4.14b)

is known as the perturbation fields, and we denote F [m0]�m = �u.

Using notation F and its linearization F , we have F [m+�m] = F [m]+F [m]�m+

O(k�mk2), which is known as the Born expansion [135, 136]. Substituting the forward

operator in the misfit expression (4.3) yields

J [m+ �m] =
1

2
hSF [m+ �m]� d, SF [m+ �m]� di

=
1

2
hSF [m]� d, SF [m]� di+ hSF [m]�m,SF [m]� di+O(k�mk2)

= J [m] + hSF [m]�m,SF [m]� di+O(k�mk2),

= J [m] + h�m,F

⇤
S

⇤(SF [m]� d)i+O(k�mk2),
(4.15)

where F

⇤ is the adjoint of F and S

⇤ is the adjoint of S. This gives the Fréchet

derivative of J as

DJ [m] = F

⇤
S

⇤(SF [m]� d). (4.16)

With expression (4.16), the computation of the Fréchet derivative of J becomes

a problem of obtaining the adjoint operator F ⇤
S

⇤, which will be discussed next.

4.2.2 Imaging condition

In equation (4.15) and (4.16), we have introduced the adjoint operator F

⇤ and S

⇤

without clearly defining it. This section discusses the derivation of F ⇤
S

⇤ and gives

its explicit representation which is also known as the imaging condition [135].
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The adjoint operator S⇤ is defined by

hd
r

, Sui = hS⇤
d

r

, ui, (4.17)

where u is the solution defined on domain ⌦ and d

r

is the traces defined on receiver

locations. S maps wavefield to given receiver locations (defined in (4.2)). We then

have Z
T

0

(Su)(t)d
r

(t) dt =

Z
T

0

Z

⌦

d

r

(t)u(x, t)�(x� x
r

) dx dt. (4.18)

Therefore, the adjoint operator S⇤ is defined by S

⇤
d

r

= d

r

(t)�(x� x
r

).

To get an explicit definition of F ⇤, we look at the definition of the adjoint operator

F

⇤ given by

hd, Fmi = hF ⇤
d,mi, (4.19)

where d(x, t) =
P

r

d

r

(t)�(x � x
r

) is the data collected at the receivers and m is a

model perturbation. In fact, in the following derivation, d and m do not necessarily

need a physical interpretation and can be arbitrary functions of (x, t).

Since the left-hand side of (4.19) is well defined, we have

hd, Fmi =
Z

T

0

Z

⌦

d(x, t)u(x, t) dxdt, (4.20)

where u = F [m0]m, as defined in (4.14), is the first order perturbation of the incident

field, and is given by

✓
m0

@

2

@t

2
��

◆
u = �m

@

2
u0

@t

2
, (4.21a)

✓
m0

@

2

@t

2
��

◆
u0 = f. (4.21b)

In order to take the definition of u into inner product (4.20), we consider the
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following wave equation with d(x, t) as a right-hand side,

✓
m0

@

2

@t

2
��

◆
�(x, t) = d(x, t). (4.22)

Substituting (4.22) into (4.20), and integrating by parts in both time and space, we

have

hd, Fmi =
Z

T

0

Z

⌦

�(x, t)

✓
m0

@

2

@t

2
��

◆
u(x, t) dx dt

+

Z

⌦

m0
@�

@t

u|T0 dx�
Z

⌦

m0�
@u

@t

|T0 dx

+

Z
T

0

Z

@⌦

@�

@n

udx dt�
Z

T

0

Z

@⌦

�

@u

@n

dx dt,

(4.23)

where ⌦ is the domain of our interest. Assuming we have boundary condition

u|
@⌦ = 0, (4.24a)

�|
@⌦ = 0, (4.24b)

the last two terms vanish in (4.23). The other boundary terms vanish when the

following conditions are satisfied,

u|
t=0 =

@u

@t

|
t=0 = 0, (4.25a)

�|
t=T

=
@�

@t

|
t=T

= 0, (4.25b)

Condition (4.25a) is the initial conditions for u. In contrast, condition (4.25b) im-

poses terminal conditions instead of initial conditions on q, which requires us to solve

the field q backwardly. Assuming conditions (4.25) are satisfied, we then return to
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(4.23) and simplify it to have

hd, Fmi =
Z

T

0

Z

R3

�(x, t)

✓
m0

@

2

@t

2
��

◆
u(x, t) dx dt

= �
Z

R3

✓Z
T

0

�(x, t)
@

2
u0

@t

2
dt

◆
m(x)dx.

(4.26)

According to the definition of F ⇤, we should have

hF ⇤
d,mi = �

Z

R3

✓Z
T

0

�(x, t)
@

2
u0

@t

2
dt

◆
m(x)dx, (4.27)

which forces

F

⇤
d = �

Z
T

0

�(x, t)
@

2
u0

@t

2
dt. (4.28)

This equation is called the imaging condition, and it is analogous to the imaging

condition (3.16) in the reverse time migration discussed in chapter 3.

When dealing with multi-sources, we can extend equation (4.28) to

F

⇤
d = �

X

s

Z
T

0

�

s

(x, t)
@

2
u

s,0

@t

2
dt. (4.29)

where s is the index of the source.

Now, we are able to obtain the first order derivative of the objective function J
using equation (4.16). One can easily get the Fréchet derivative of J with respect to

velocity c using chain rule, and obtain

@J
@c

=
@J
@m

@m

@c

=
�2

c

3

@J
@m

(4.30)

Equation (4.22) is called the adjoint equation. Analogously, we can write the the
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adjoint equation for the first order wave system (4.1) as

@p

@t

+r · (1
⇢

v) = d, (4.31a)

@v

@t

+r(⇢c2p) = 0, (4.31b)

and it is derived using integration by part as we did in (4.23).

The final result we have from this derivation is a Fréchet derivative, and is defined

continuously everywhere in the domain ⌦. This Fréchet derivative is not the gradient

in common sense. In particular, it is an linear operator which maps the perturbation

of the model parameter to the perturbation of the misfit function. As stated in

equation (4.15)

DJ [m][�m] = J [m+ �m]� J [m]

= hF ⇤
S

⇤(SF [m]� d), �mi

=

Z

⌦

(F ⇤
S

⇤(SF [m]� d)) �mdx.

(4.32)

However, in the DG method, the model parameters are represented as piece-wise

constants over elements, and hence we need to know the “real” gradient of the misfit

function with respect to the discrete model parameters. An intuitive approach is

taking an average of the imaging condition over each element. This approach, known

as optimize-then-discretize, su↵ers from numerical errors from the discretizations. In

contrast, the discrete adjoint-state method takes the PDE discretization into consid-

eration and the corresponding gradient is free of numerical errors. In the next section,

we will discuss the discrete adjoint-state method in the context of the DG methods.
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4.3 Discrete adjoint-state method for DG-FWI

When we apply the adjoint-state method to a certain numerical scheme, there are two

approaches. The first one, known as optimize-then-discretize, derives the gradient at

the continuous level and then discretizes the continuous gradient regardless of the dis-

cretization of the PDEs. This approach is highly a↵ected by the numerical error of the

PDE solver. As the numerical error of the PDE solver increases, the approximation of

the gradient deteriorates. The second approach, known as discretize-then-optimize,

applies the adjoint-state method to the discretized PDE system, and the gradient is

also given in a discrete form which already takes the PDE discretization into consid-

eration. This approach may lead to “discretely exact derivative” which is exact up

to machine precision [38].

In 2015, Wilcox et al. [38] gave the formulation of the gradient for a variety

of PDE-constrained optimization problems in the context of discontinuous Galerkin

discretization. As the result of the paper, from forward discretization to adjoint

discretization, the weak(strong) form formulation becomes strong(weak) form for-

mulation, and the upwind numerical flux becomes downwind numerical flux. In this

section, we follow the standard framework of discrete adjoint-state method [137], gen-

eralize the result of Wilcox’s paper, and present a detailed derivation based on the

acoustic wave equations.

4.3.1 The derivation

The DG semi-discrete formulation of the forward problem (4.1) is given by,

M u̇+ Au = f ,

u(0) = 0,
(4.33)
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where M is the mass matrix, A is the right-hand side contribution depending on

model m(c, ⇢), and u = (p,v) is the numerical solution to the problem.

The fully discrete form with 3-step Adams-Bashforth scheme is

M

un+1 � un

�t

+
2X

i=0

↵

i

Aun�i = fn, (4.34)

with initial condition

u0 = u�1 = u�2 = 0, (4.35)

and AB3 coe�cients

↵0 =
23

12
, ↵1 = �16

12
, ↵2 =

5

12
. (4.36)

Let N
q

denote the total degrees of freedom in the DG discretization, then M and

A are of size N
q

⇥N

q

; un and fn are of size N
q

⇥1. Let N
r

be the number of receivers.

d
Nr⇥1 is the data at the receiver locations and V

Nr⇥Nq is a Vandermonde matrix that

restrict the DG solution at the receiver locations,

V =

2

66664

'1(x1) '2(x1) . . . '

Nq/4(x1) 0 . . . 0

...
...

...
...

...

'1(xNr) '2(xNr) . . . '

Nq/4(xNr) 0 . . . 0

3

77775
, (4.37)

where '

i

are the basis functions, and '1, · · · ,'Nq/4 are the basis functions corre-

sponding to the pressure field (1/4 of the total degrees of freedom in our formula-

tion). Because we only record the data in the pressure field, the right part of the

Vandermonde matrix V are all zeros.

Using the above notation, the misfit function can be written in a semi-discrete
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form as

J =
1

2

Z
T

0

(V u� d)T (V u� d)dt, (4.38)

and its fully discrete form is

J =
�t

2

NX

n=0

(V un � dn)T (V un � dn). (4.39)

Define

hn := M

un+1 � un

�t

+
2X

i=0

↵

i

Aun�i � fn, (4.40)

j

n :=
1

2
(V un � dn)T (V un � dn). (4.41)

The discrete optimization problem is stated as

min
c,⇢

J := �t

NX

n=0

j

n

,

subject to hn = 0 and u0 = u�1 = u�2 = 0, 8n.
(4.42)

We now introduce Langrange multiplier and use it for the following derivation.

Denote vectors �n

Nq⇥1, µ
�2
Nq⇥1, µ

�1
Nq⇥1, and µ�0

Nq⇥1 as the Lagrange multiplier. We have

the Lagrangian

L := �t

NX

n=0

�
j

n + (�n)Thn

�
+

0X

i=�2

(µi)Tui

, (4.43)

Since hn ⌘ 0 and ui ⌘ 0, we are free to choose �n and µi.

We take derivative of L with respect to each entry of m(c, ⇢), and obtain

dL
dm

= �t

NX

n=0

"✓
@j

n

@un

◆
T

dun

dm
+ (�n)T

 
dhn

dm
+

1X

i=�2

@hn

@un+i

dun+i

dm

!#
(4.44)
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Consider the last term in summation (4.44)

�t

NX

n=0

"
(�n)T

1X

i=�2

@hn

@un+i

dun+i

dm

#

=�t

NX

n=0

"
(�n)T

 
M

�t

d(un+1 � un)

dm
+

2X

i=0

↵

i

A

dun�i

dm

!# (4.45)

Assume terminal condition on � as

�N = �N+1 = �N+2 = 0 (4.46)

By changing the order of summation, equation (4.45) can be simplified into

�t

NX

n=0

"✓
dun

dm

◆
T

 
M

�n�1 � �n

�t

+
2X

i=0

↵

i

A

T�n+i

!#
. (4.47)

Substitude (4.47) back into (4.44), we have,

dL
dm

= �t

NX

n=0

"✓
dun

dm

◆
T

 
M

�n�1 � �n

�t

+
2X

i=0

↵

i

A

T�n+i + V

T (V un � dn)

!
+ (�n)T

dhn

dm

#
.

(4.48)

We want to avoid the evaluation of dun

/dm, so we let

M

�n�1 � �n

�t

+
2X

i=0

↵

i

A

T�n+i + V

T (V un � dn) = 0, (4.49)

which is know as the adjoint equation.

Since hn ⌘ 0 and u0 = u�1 = u�2 ⌘ 0, considering the relation dJ /dm = dL/dm,
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we have the gradient of the misfit function.

dJ
dm

=
dL
dm

= �t

NX

n=0

(�n)T
dhn

dm
,

(4.50)

where �n are given by the adjoint equation (4.49) and hn are defined in (4.40).

In the following subsections, we will discuss how to obtain �n and dhn

/dm in

detail.

4.3.2 The adjoint equation

Equation (4.49) is the adjoint equation, which has zero terminal condition and should

be solved backward in time. Compared to the forward problem (4.34), this equation

transforms the forward Adams-Bashforth to the backward Adams-Bashforth, and

matrix A to A

T . To better understand A

T , we decompose A as

A = C1D + C2S, (4.51)

where

C1 =

2

666666666666664

⇢1c
2
1

. . .

⇢

K

c

2
K

⇢

�1
1

. . .

⇢

�1
K

3

777777777777775

(4.52)
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and

C2 =

2

666666666666664

c1

. . .

c

K

c1

. . .

c

K

3

777777777777775

(4.53)

are coe�cient matrices, and c

k

, ⇢

k

are the constant velocity and density in element k.

Matrix D is the combination of di↵erentiation operator and central numerical

fluxes, which contains the following terms,

• Strong form

(r · v,')
D

k +

✓
1

2
n · JvK,'

◆

@D

k

, (4.54a)

✓
@p

@x1

,'

◆

D

k

+

✓
1

2
n1JpK,'

◆

@D

k

, (4.54b)

✓
@p

@x2

,'

◆

D

k

+

✓
1

2
n2JpK,'

◆

@D

k

, (4.54c)

✓
@p

@x3

,'

◆

D

k

+

✓
1

2
n3JpK,'

◆

@D

k

. (4.54d)

• Weak form

� (v,r')
D

k +

✓
1

2
n · {{v}},'

◆

@D

k

, (4.55a)

�
✓
p,

@'

@x1

◆

D

k

+

✓
1

2
n1{{p}},'

◆

@D

k

, (4.55b)

�
✓
p,

@'

@x2

◆

D

k

+
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1

2
n2{{p}},'

◆

@D

k

, (4.55c)

�
✓
p,

@'

@x3

◆

D

k

+

✓
1

2
n3{{p}},'

◆

@D

k

. (4.55d)
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Here the test function ' is selected over the test space, and D

k is the kth element.

For the boundary condition, we assume either Dirichlet boundary condition (p+ =

�p

�
,v+ = v�) or first order absorbing boundary condition (p+ = 0,v+ = 0). In

addition, we also assume exact volume and surface integration/quadrature. With

these assumptions, matrix D has the skew-symmetric property,

D = �D

T

. (4.56)

If we assume an upwind flux is used in the DG formulation, matrix S represents

the penalty term that stabilizes the jumps in pressure p and the jumps in the normal

direction of velocity v, and it is contributed by the following terms

� (JpK,')
@D

k , (4.57a)

� (n1JvK,')
@D

k , (4.57b)

� (n2JvK,')
@D

k , (4.57c)

� (n3JvK,')
@D

k , (4.57d)

where ' are the basis functions. Again, with the assumption of exact quadrature, S

is a symmetric matrix,

S = S

T

. (4.58)

With the property (4.56) and (4.58), we can easily obtain

A

T = �DC1 + SC2. (4.59)

Noticing that the above result requires exact quadrature. In the case where the

exact quadrature is not available, the results in Wilcox’s paper [38] can be applied,

where the strong and weak form formulations are swapped, and the upwind flux is
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replaced by the downwind flux in the adjoint equation.

In the decomposition of A (4.51), the coe�cient matrices C1 and C2 are left-

multiplied, but in the decomposition of AT (4.59), C1 and C2 are right-multiplied.

The di↵erence is: left-multiplying a diagonal matrix scales the rows of the operated

matrix, while the right-multiplication scales the columns of the operated matrix.

We first evaluate the multiplication of coe�cient matrices on the volume terms.

From forward discretization to the adjoint discretization, the volume coe�cients of

the pressure and velocity fields are swapped. Taking strong form formulation for

example, we have ⇢

k

c

2
k

(r · v,')
D

k and ⇢

�1
k

⇣
@p

@xi
,'

⌘

D

k
in the forward problem, but

use ⇢

�1
k

(r · v,')
D

k and ⇢

k

c

2
k

⇣
@p

@xi
,'

⌘

D

k
in the adjoint problem.

The impact of multiplying coe�cient matrices on the surface terms is more com-

plicated. First, like the volume terms, the coe�cients ⇢c2 and ⇢

�1 are swapped in the

central flux, but remain the same in the penalty term. Second, the model parameters

may also be taken as numerical fluxes in the surface contribution, and the adjoint of

them must take the di↵erence between left-multiplying a matrix and right-multiplying

a matrix into consideration. Taking a model parameter m and a solution field u as

an example, we may have di↵erent m⇤JuK or m⇤{{u}} in the forward problem, such

as

m

�JuK, m

�{{u}}, (4.60a)

m

� +m

+

2
JuK, m

� +m

+

2
{{u}}, (4.60b)

2m�
m

+

m

� +m

+
JuK, 2m�

m

+

m

� +m

+
{{u}}. (4.60c)
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In the adjoint equation, they become

m

+
u

+ �m

�
u

�
,

m

+
u

+ +m

�
u

�

2
, (4.61a)

m

� +m

+

2
JuK, m

� +m

+

2
{{u}}, (4.61b)

2m�
m

+

m

� +m

+
JuK, 2m�

m

+

m

� +m

+
{{u}}, (4.61c)

respectively.

The di↵erence between the forward and adjoint formulations also explains why we

are solving a di↵erent PDE (4.31) in the adjoint simulation at the continuous level.

Recall that we now have the fully-discrete formulation for both forward problem

(4.34) and adjoint problem (4.49). If we define operator

L[un] = M

un+1 � un

�t

+
2X

i=0

↵

i

Aun�i

, (4.62a)

L

⇤[�n] = M

�n�1 � �n

�t

+
2X

i=0

↵

i

A

T�n+i

. (4.62b)

The following relation must hold,

NX

n=0

hL[un],�ni =
NX

n=0

hL⇤[�n],uni, (4.63)

where the bracket represents vector-vector inner product, un are any class of vectors

that satisfy u�2 = u�1 = u0 = 0, and �n are any class of vectors with terminal

condition �N = �N+1 = �N+2 = 0.

An adjoint test can be conducted to verify the adjoint solver. In the adjoint

test, we generate a set of random vectors of un and �n with the initial and terminal

constraints on un and �n. We then evaluate the relative di↵erence between the inner
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products by using the following expression,

�����

P
N

n=0hL[un],�ni �PN

n=0hL⇤[�n],uni
P

N

n=0hL[un],�ni

����� . (4.64)

If our derivation and implementation are correct, this value should be around machine

precision.

Figure 4.1: The distribution of the relative di↵erence in adjoint test. The x-axis is
the relative di↵erence in log scale and the y-axis is the number of occurrence in the

experiment.

In our experiment, we conducted an adjoint test on GL-HEX elements. In the

formulation, we take c

⇤ = c

� for model parameters in the forward run, and use first

order absorbing boundary condition. We set the total number of time steps N = 100,

the total number of elements K = 64, un and �n are randomly generated vectors, and

the velocity model is also randomly generated. The experiment was repeated 2,000

times using single precision, and the relative di↵erences (4.64) were recorded. Figure

4.1 shows the distribution of the relative di↵erence, where the x-axis indicates the

relative error in log scale, and y-axis is the number of occurrence in the experiment. As
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we can see in the histogram, we obtain 5 to 6 digits of accuracy most of the time. The

reason we do not always get exact machine precision is due to the condition numbers

of the forward and adjoint operators which harm the accuracy of the evaluation.

4.3.3 The gradient

According to our derivation, the actual gradient of the misfit function is given in

(4.50) as

dJ
dm

= �t

NX

n=0

(�n)T
dhn

dm
, (4.65)

where �n is the solution to the adjoint equation, and hn is the forward problem

defined in (4.40). As we have already discussed the adjoint equation in the previous

subsection, the only thing left to write down the explicit form of dhn

/dm.

Recall that hn is defined by

hn := M

un+1 � un

�t

+
2X

i=0

↵

i

Aun�i � fn, (4.66)

and the model parameters only exist in matrix A. Therefore,

dhn

dm
=

2X

i=0

↵

i

d(Aun�i)

dm
. (4.67)

Using the same decomposition of A as we did before, we have A = C1D + C2S,

where C1 and C2 are coe�cient matrix containing model parameters as defined in

(4.52) and (4.53).

For simplicity, we take the flux on the coe�cient as c

⇤ = c

� and ⇢

⇤ = ⇢

�. The
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explicit form of d(Au)/dm can be easily write down as

@(Au)

@c

=
@C1

@c

Du+
@C2

@c

Su, (4.68)

@(Au)

@⇢

=
@C1

@⇢

Du+
@C2

@⇢

Su, (4.69)

where @C

i

/@c and @C

i

/@⇢ are entry-wise partial derivative and are given by

@C1

@c

=

2

666666666666664

2c1
. . .

2c
K

0

. . .

0

3

777777777777775

, (4.70)

@C2

@c

=I, (4.71)

@C1

@⇢

=

2

666666666666664

c

2
1

. . .

c

2
K

�⇢

�2
1

. . .

�⇢

�2
K

3

777777777777775

, (4.72)

@C2

@⇢

=0. (4.73)

With the above formulas, we have derived the explicit formula for the gradient of

the misfit function using discrete adjoint-state method.

Here we assume c

⇤ = c

� and ⇢

⇤ = ⇢

� in the forward problem. If one takes more

complicated fluxes for the model parameters in the forward problem, the explicit
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formula for the gradient can be more complicated.

Equation (4.65) gives the formula to obtain the FWI gradient using DG dis-

cretization. Theoretically, this approach can result in a discretely exact gradient up

to machine precision. However, in our implementation, we do not follow this the-

oretical derivation, and our gradient contains numerical errors. The di�culties for

computing discretely exact gradient in our implementation are:

• Regenerating forward wavefield in backward stage introduces errors. As dis-

cussed in section 3.3, we do not save the forward wavefield in memory at forward

phase stage. Instead, we save only the boundary values of the forward wavefield,

and provide it as the boundary condition to regenerate the forward wavefield in

the backward run. Although the two wavefields are mathematically identical,

they are not numerically the same. Extra numerical errors are introduced in

the regenerated forward wavefield, and hence in equation (4.65), we do not have

exact dhn

/dm.

• Seismic data is interpolated to fit the time grid. The adjoint equation (4.49) sug-

gests that the data residue should be injected through L

2 projection. However,

in our DG solver, we use a scattered-total field formulation for source injection

(see section 3.1.2). Although the scattered-total field formulation avoids the nu-

merical error introduced by the L

2 projection, it requires our knowledge of the

source signal at any time points. However, this is not available in the discretely

recorded data. In the implementation, we use a polynomial interpolation to

obtain the continuous data in the timeline, and this introduces an interpolation

error.

Although our gradient is not exact up to machine precision, it is still a good

approximation to the “true” gradient. As long as it is a descent direction, the ap-
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proximated gradient can be used in the steepest descent method to obtain convergence

[138].

4.4 Numerical results of conventional FWI

In this section, we provide the numerical results of the FWI scheme, and recover the

true velocity model with a decent initial guess. We test our FWI scheme on three

di↵erent models: (1) a Gaussian inclusion model; (2) a cubic inclusion model; (3) a

layer model.

4.4.1 Gaussian inclusion model

We test the FWI implementation on a model where a Gaussian inclusion is centered

in the domain. Due to the smoothness of the model, a large portion of the energy is

conveyed by the transmitted waves, so we first place the receivers at the bottom of

the domain.

The configuration is: the computational domain is a cube of size [0km, 2km]3; in

the true model, a Gaussian inclusion is centered in the domain with a velocity ranging

from 1.0 km/s to 1.1 km/s (figure 4.2); the initial model is a constant velocity model

with a background velocity of 1.0 km/s (figure 4.3); 5 source signals are injected on

plane z = 0.15 km, which are Ricker pulses of 3 Hz peak frequency; 729 receivers are

evenly distributed on plane z = 1.75 km (figure 4.4); terminating time is T = 3.0 s;

the mesh used for the test is a hexahedral mesh with a grid size of 20⇥ 20⇥ 20.
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(a) 3D velocity model (b) 2D slice of the model

Figure 4.2: Gaussian inclusion example: true velocity model.
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(a) 3D velocity model (b) 2D slice of the model

Figure 4.3: Gaussian inclusion example: initial velocity model.

Figure 4.4: Gaussian inclusion example: sources and receivers, where receivers are
buried in the bottom of the domain.
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The results of this experiment are plotted in figure 4.5 and figure 4.6. Figure 4.5

reports the resulted model from the FWI iterations in the same color scale with the

true model. The solution is getting close to the true model from the initial model.

Figure 4.6 is the history of the misfit values. The maximum number of iterations is

set to 50, and the final misfit ends up to be 0.04% of the original misfit.
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(a) 3D velocity model (b) 2D slice of the model

Figure 4.5: Gaussian inclusion example: FWI results with receivers buried in the
bottom of the domain.

Figure 4.6: Gaussian inclusion example: history of misfit values with receivers
buried in the bottom of the domain. The misfit value drops to 0.04% after 50

iterations.

Due to ill-posedness of FWI and insu�cient data coverage, the FWI solution still

has some artifacts (figure 4.5). One way to improve this is to add more receivers at
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di↵erent locations to collect more information of the velocity model. As illustrated

in figure 4.7, 4374 receivers are located near all boundary faces in the domain. The

final misfit after 50 iterations is 0.02%. The result generated from this configuration

is plotted in figure 4.8 and figure 4.9. The resulted velocity model is closer to the

true velocity model than the previous one.

The additional receivers improve the data coverage. As a result, the model is

better inverted. In real applications, some additional data or information may be

obtained from sonic logs or exploration well. For example, Asnaashari et al. [139]

used sonic logs as a prior model for FWI to improve the results.

(a) source and receiver locations (b) 2D slice of the configuration

Figure 4.7: Gaussian inclusion example: sources and receivers, where receivers are
located near all boundary faces.

Figure 4.9: Gaussian inclusion example: history of misfit values with receivers
located near all boundary faces. The misfit value drops to 0.02% after 50 iterations.
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Figure 4.8: Gaussian inclusion example: FWI results with receivers located near all
boundary faces.

4.4.2 Cubic inclusion model

We test a model with a centered cubic inclusion. Due to the sharp velocity interface,

reflected waves can be observed in the simulation. At the same time, a significant

portion of energy resides in the transmitted waves. Therefore, we put receivers on

both top and bottom of the domain to collect enough data.

The velocity inside the inclusion is a constant. The configuration is: the compu-

tational domain is a cube of size [0km, 2km] ⇥ [0km, 2km] ⇥ [0km, 2km]; in the true

model, a cubic inclusion, which has side length of 0.8 km and velocity of 1.2 km/s, is

centered in the domain; the velocity outside the inclusion is 1.0 km/s (figure 4.10);

the initial model is a constant velocity model with a background velocity of 1.0 km/s

(figure 4.11); 5 source signals are injected on plane z = 0.15 km, which are Ricker

pulses of 3 Hz peak frequency; 729 receivers are evenly distributed on plane z = 0.25

km, and another 729 receivers are buried at z = 1.75 km (figure 4.12); terminating

time is T = 3.0 s; the mesh used for the test is a hexahedral mesh with a grid size of

20⇥ 20⇥ 20.
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Figure 4.10: Cubic inclusion example: true velocity model.
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Figure 4.11: Cubic inclusion example: initial velocity model.

Figure 4.12: Cubic inclusion example: sources and receivers, where receivers are
placed near top and bottom boundary faces.
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Figure 4.13 and figure 4.14 are the FWI results under this configuration. In figure

4.13, the velocity model is mostly recovered with some artifacts at the bottom of the

velocity interfaces. Figure 4.14 is the history of the misfit values throughout the FWI

iterations, the misfit decreases to 0.09% after 100 iterations.
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(a) 3D velocity model (b) 2D slice of the model

Figure 4.13: Cubic inclusion example: FWI results.

Figure 4.14: Cubic inclusion example: history of misfit values. The misfit value
drops to 0.09% after 100 iterations.

4.4.3 Layer model

In this subsection, we test a layer model. A sharp interface and large velocity contrast

lead to significant reflected waves, and we use the receivers on the top of the domain

to collect the data.
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The configuration is: the computational domain is a cube of size [0km, 2km] ⇥
[0km, 2km]⇥ [0km, 2km]; in the true model, the velocity in bottom part of the model

({1km < z  2km}) is 1 km/s, and the velocity in top part of the model ({0km 
z  1km}) is 2 km/s (figure 4.15); the initial model is a smooth version of the true

model (figure 4.16); 9 source signals are injected on plane z = 0.15 km, which are

Ricker pulses of 2 Hz peak frequency; 729 receivers are evenly distributed on plane z

= 0.25 km (figure 4.17); terminating time is T = 3.0 s; the mesh used for the test is

a hexahedral mesh with a grid size of 20⇥ 20⇥ 40.

To better invert the model, some techniques are applied to the inversion. First,

we set a water layer above z = 3.0 km (first 6 cells of the grid in z-direction), and

the velocity in the water layer is invariant. Second, we set a box constraint on the

velocity model, which is 1km/s  c  2km/s, and use projected gradient method to

project the velocity model back to the desired range.

The box constraint does not only restrict the feasible region, but also guarantee

that the CFL condition will not be violated. Otherwise, the numerical solution to the

wave equations may blow up after a certain number of FWI iterations.
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Figure 4.15: Layer model example: true velocity model.
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Figure 4.16: Layer model example: initial velocity model.

Figure 4.17: Layer model example: sources and receivers, where receivers are placed
near the top to receive reflected waves.

Figure 4.18 and figure 4.19 are the FWI results of the layer model. Due to the

di�culty of the inverse problem, the model is not fully recovered. In figure 4.18, the

velocity model near the interface becomes sharper, but we can not tell where the

media interface exactly is. Figure 4.19 is the history of the misfit values throughout

the FWI iterations. Di↵erent from the previous test cases where the misfit values

drop down quickly, the misfit value in this experiment only decreases to 2.28% after

150 iterations.
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Figure 4.18: Layer model example: FWI results.

Figure 4.19: Layer model example: history of misfit values. The misfit value drops
to 2.28% after 150 iterations.

4.5 Inverting sharp interfaces

Compared to finite di↵erence method, DG has a higher order interface error [26].

Therefore, recovering the location of media interfaces is crucial for DG-FWI.

Conventional FWI is capable of inverting smooth velocity models, but not good

at inverting sharp interfaces. In recent researches, additional features were added to

conventional FWI to invert sharp models.

One approach is adding a penalty term to the conventional FWI formulation.
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Typically, an L

1 like penalty of the model gradient (sometimes known as total varia-

tion penalty) can create sparsity of the model gradient and hence introduce sharpness

in the result [140]. An example of this approach can also be found in Esser et al.

[141]. Although sharpness can be introduced to the FWI results, this approach does

not explicitly tell the location of media interfaces. One might still have to manually

pick the interfaces, which damages the accuracy of the solution.

Another approach, known as the level set method, can be used for solving inverse

problems involving obstacles [142], and is recently applied to invert salt bodies in FWI

[143, 144, 145]. The level set method evolves a level set function, which can nicely

capture the evolution of the media interfaces including the topology changes. The

level set function is solved by a Hamilton-Jacobi equation. However, the Hamilton-

Jacobi equation is challenging to solve, which makes the level set method complicated.

The level set method is typically implemented with specifically designed numerical

schemes, re-initialization strategy, and penalization terms [144].

In this thesis, we propose a new approach to recovering the media interfaces.

Our method is inspired by the level set method, but much simpler than the level set

method. It explicitly gives the location of the interfaces, and hence we are able to

generate aligned meshes. Our approach resembles the shape optimization proposed by

Schmidt et al. [146], but we use a di↵erent formulation and have specific deformations

of the shape.

4.5.1 Perturb surfaces along the normal directions

Assume we have an initial guess of inclusion (or interfaces) of the velocity model, and

we want to perturb the geometry of this inclusion towards the true velocity model.

Recall that in the derivation of the continuous adjoint state method, we have the
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impact of model perturbation (4.15) represented as

J [m+ �m]� J [m] = h�m,F

⇤
S

⇤(SF [m]� d)i+O(k�mk2), (4.74)

where F is the forward operator, S is the point-wise restriction operator, d is the

data residue, F ⇤ is the adjoint of the Born operator F , and S

⇤ is the adjoint of S.

Denoting image I as

I(x) = F

⇤
S

⇤(SF [m]� d), (4.75)

equation (4.74) can be simplified to

J [m+ �m]� J [m] =

Z

⌦

�m(x)I(x) dx+O(k�mk2). (4.76)

Now, we perturb the surface of the inclusion boundary along the normal directions,

and each point x on the inclusion boundary � is moved for a distance h. Figure 4.20

illustrates this idea: the velocity model is m1 inside the inclusion and m2 outside the

inclusion; the blue line � is the original boundary of the inclusion; the green line T (�)

is the perturbed boundary of the inclusion; velocity change is 0 inside � and outside

T (�) and m1 �m2 between � and T (�). Assuming the perturbation is small, we can

rewrite (4.76) as

J [m+ �m]� J [m] ⇡ (m1 �m2)

Z

�

hI(x) d⌧. (4.77)

To obtain a derivative, we let h take the limit to zero, and hence we have

@J
@r

= (m1 �m2)

Z

�

I(x) d⌧, (4.78)

where r is the position coordinate of a surface along its normal direction. Expression



Chapter 4. Full waveform inversion 133

(a) perturbation of a circle (b) perturbation of a polygon

Figure 4.20: Perturbation of the inclusion boundary along the normal directions.
The impact of this perturbation is represented by the area between � and T (�).

(4.78) is the derivative of the misfit function with respect to the perturbation of a

surface along its normal direction. Since conventional FWI already computes the

imaging condition I(x), the workflow of this derivative computation in DG can be

summarized in algorithm 12.

Algorithm 12: Compute derivative w.r.t. cube inclusion radius
Input: a velocity model m and an inclusion boundary �

Output: derivative of misfit function w.r.t. cube inclusion radius @J /@r

1 Apply the adjoint-state method (i.e. RTM) to get the image I(x) of the

current model m.

2 Identify the set of element surfaces which are also the boundary surfaces of the

cube inclusion.

3 Set @J /@r = 0.

4 for each face @D

k ⇢ � do

5 Add the contribution of the surface integration to @J /@h by

@J
@r

+ = (m1 �m2)

Z

@D

k

I

+(x) + I

�(x)

2
d⌧.

6 Return @J /@r.
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4.5.1.1 Cubic inclusion example

We study an experiment with a cubic inclusion in the center of the domain. The

radius of the cubic inclusion (i.e. half side length) is to be solved. We can perturb

the radius of the cube to invert the velocity model.

The configuration is: the computational domain is a cube of size [0 km, 2 km]3; a

cubic inclusion is centered at (1 km, 1 km, 1.25 km); in the true velocity model, the

velocity is 1.2 km/s inside the inclusion and 1.0 km/s outside the inclusion; the true

radius of the inclusion is r = 0.3 km; one shot is injected at (1 km, 1 km, 0.35 km)

as source, which is a Ricker pulse of 3 Hz peak frequency; 729 receivers are evenly

distributed on plane z = 0.5 km; recording end time is T = 2.4 s. Figure 4.21

illustrates the configuration of this experiment.

1.05

1.1

1.15

1.000e+00

1.200e+00

velocity(km/s)

(a) true velocity model (b) source and receiver locations

Figure 4.21: Configuration for cubic inclusion example: (a) true velocity model,
where a cubic inclusion is located near the center of the domain; (b) the locations of
sources and receivers: the blue triangle is the location of the source and the red dots

are the location of the receivers.

First, to start with a simple case, we fix the the velocity inside and outside the in-

clusion to be same as the true values, but the radius of the inclusion can be perturbed.

Therefore, the inversion degenerates to a 1D problem, and only the inclusion radius
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needs to be inverted. We let the the radius inclusion vary among a series of values

near its true value, and plot the misfit function and its corresponding derivatives in

figure 4.22. Figure 4.22 (a) is the misfit value with the variation of the inclusion

radius. Figure 4.22 (b) compares the derivatives computed by the surface integration

of the imaging condition and the finite di↵erence approach. As a result, the derivative

computed by surface integration matches the reference derivative (computed by finite

di↵erence), and hence it validates the correctness of our algorithm.

(a) misfit function (b) plots of derivatives

Figure 4.22: Misfit function and its derivative w.r.t to inclusion radius r: (a) value
of misfit function; (b) derivative of misfit function w.r.t. inclusion radius r, where
the blue line is the derivative computed using surface integration in algorithm 12

and the green line is computed by finite di↵erence.

When the media interfaces move (i.e. the inclusion radius changes), we need to

regenerate mesh to make sure that the mesh is aligned with the interfaces. To this end,

we use a Gmsh script to regenerate mesh whenever the interfaces are perturbed. Figure

4.23 is a mesh example used in our experiments, which contains only hexahedral

elements.
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Figure 4.23: Mesh example for cubic inclusion, where the mesh is aligned with the
inclusion boundary.

Next, we study an inversion of two unknown parameters on this model. Here,

the inclusion radius and the velocity inside the inclusion are the parameters to be

inverted. Recall that the true values are: radius rtrue = 0.3 km, and inclusion velocity

ctrue = 1.2 km/s. We set the initial guess to: radius rinit = 0.25 km, and inclusion

velocity cinit = 1.1 km/s.

When we update the inclusion radius, a new mesh need to be regenerated. When

we update the velocity inside the inclusion, there is no need to regenerate mesh.

Taking this into consideration, we apply an alternative updating scheme: updating

the radius and velocity alternatively in the FWI iterations.

Figure 4.24 presents the results of the inversion. Figure 4.24 (a) plots the value

of the misfit function with di↵erent inclusion radius and velocity. Figure 4.24 (b)

(c) and (d) show the history of the misfit function, inclusion radius and inclusion

velocity respectively, where the red markers correspond to the radius update and the

blue markers correspond to the velocity update. The dash line in figure 4.24 (c) and

(d) are the true values of the model.
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(a) misfit function (b) misfit history

(c) history of inclusion radius (d) history of inclusion velocity

Figure 4.24: Experiment of alternating update: (a) value of misfit function; (b)
history of misfit function, where the red and blue markers correspond to update of
radius and velocity respectively; (c) history of inclusion radius r, where rtrue = 0.3

km; (d) history of inclusion velocity c, where ctrue = 1.2 km/s.

In the result, our model converges to the true model and the misfit function con-

verges to zero. This indicates our algorithm does work for the simple cubic inclusion

example.

4.5.1.2 Multi-surface example

In the previous example, there is only one parameter (the inclusion radius) to be

inverted using the surface integration. To better verify our algorithm, we design a

multi-suface example, where several media interfaces are mis-located. The gradient
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used for surface perturbation is then obtained by computing the surface integration

on individual surfaces.

To simplify the computation, we now use a 2.5D model, where the model in y-axis

is short and set to a constant. Therefore, we are only interested in the projection of

the model on x-z plane.

The configuration is: the computational domain is a cube of size [0 km, 2 km] ⇥
[0 km, 0.3 km] ⇥ [0 km, 2 km]; in the true velocity model, the velocity is 5.0 km/s

inside the bottom inclusion and 1.0 km/s outside the inclusion; three source signals

are injected on plane z = 0.2 km, which are Ricker pulses of 3 Hz peak frequency; 27

receivers are evenly distributed on plane z = 0.35 km; recording end time is T = 3.0

s. Figure 4.25 also presents the configuration of this experiment.

In the FWI iterations, we keep regenerating meshes to align the mesh with the

media interfaces. An example of the mesh is shown in figure 4.26.

2

3

4

1.000e+00

5.000e+00

velocity(km/s)

(a)true velocity model (b) source and receiver locations

Figure 4.25: Configuration for multi-surface example: (a) true velocity model, where
a ployhedron is located at the bottom of the domain with its top surfaces to be

inverted; (b) the locations of sources and receivers: the blue triangle is the location
of the source and the red dots are the location of the receivers.
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Figure 4.26: Mesh for multi-surface example, where the mesh is aligned with the
media interfaces.

We then solve the inverse problem using the surface integration technique. Figure

4.27 plots the initial and true models of the inclusion, where the top surfaces are

mislocated. In the experiment, there are three degrees of freedom in the model space:

each top surface can be perturbed along its normal direction. Figure 4.28 shows the

result of our FWI experiment. In figure 4.28 (a) we can see that the solution overlaps

with the true model. In addition in the misfit history plotted in figure 4.28 (b), the

misfit value converges to zero.

Figure 4.27: True and initial models of the multi-surface example.
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(a) solution (b) misfit history

Figure 4.28: Solution of the multi-surface example: (a) geometry of the solution; (b)
misfit history of the FWI iterations. The misfit value drops below 1‰after 12

iterations.

This multi-surface example shows that we are able to perturb many surfaces simul-

taneously along their normal directions. However, this type of perturbation requires

our knowledge of the normal directions of the media interfaces. The update of the

velocity model does not change the normal directions of the interfaces. This restric-

tion can be relaxed by introducing more types of perturbations as we will discuss in

the next subsection.

4.5.2 Perturb vertices along a given direction

Assume the inclusions/layers in our velocity model are made up of planar surfaces.

Using the same idea as that in the previous subsection, we can perturb the vertices

in the FWI update. Recall that the impact of the model perturbation is given by

equation (4.76). We rewrite it here as

J [m+ �m]� J [m] =

Z

⌦

�m(x)I(x) dx+O(k�mk2). (4.79)
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Figure 4.29: Illustration of perturbing vertex: perturbation of vertex along z-axis.

Now, we perturb a vertex along z-axis. For simplicity, we keep our analysis in 2D

and our experiments in 2.5D. Figure 4.29 is an illustration for this vertex perturbation.

In the figure, we perturb vertex (x0, z0) along z-axis to (x0, z0 + h). The adjacent

vertices of the perturbed vertex are (x1, z1) and (x2, z2). Denote the surface connecting

(x1, y1) and (x0, y0) as �1, and the surface connecting (x2, y2) and (x0, y0) as �2. For

a given point (x, z) on the moving surface, it moves for distance v, where v is given

by

v(x) =

8
><

>:

x�x1
x0�x1

h x 2 �1

x2�x

x2�x0
h x 2 �2

(4.80)

Following equation (4.79) and parameterizing the boundary curve as (x, z(x)), we
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can derive the impact of this vertex perturbation as

J [m+ �m]� J [m] ⇡
Z

⌦

�m(x)I(x)dx

=(m1 �m2)

Z
x2

x1

Z
z(x)+v(x)

z(x)

I(x) dz dx

=(m1 �m2)

Z
x2

x1

v(x)I(x, ⇠) dx, where ⇠ 2 (z(x), z(x) + v(x))

=(m1 �m2)

Z
x0

x1

v(x)I(x, ⇠)dx+

Z
x2

x0

v(x)I(x, ⇠)dx

�

=(m1 �m2)

Z

�1

v(x)I(x, ⇠) cos ✓1d⌧ +

Z

�2

v(x)I(x, ⇠) cos ✓2d⌧

�

=(m1 �m2)

Z

�1

x� x1

x0 � x1

hI(x, ⇠) cos ✓1 d⌧

+ (m1 �m2)

Z

�2

x2 � x

x2 � x0

hI(x, ⇠) cos ✓2 d⌧,

(4.81)

where ✓1 and ✓2 are the angles between surface �1,�2 and the x-axis respectively, and

they are given by

cos ✓1 =
x0 � x1p

(x0 � x1)2 + (y0 � y1)2

cos ✓2 =
x2 � x0p

(x2 � x0)2 + (y2 � y0)2

(4.82)

Again, letting h ! 0 (⇠ ! z(x)) leads to

@J
@z0

= (m1 �m2) cos ✓1

Z

�1

x� x1

x0 � x1

I(x)d⌧ + (m1 �m2) cos ✓2

Z

�2

x2 � x

x2 � x0

I(x)d⌧.

(4.83)

The computational procedure of obtaining this derivative is summarized in algo-



Chapter 4. Full waveform inversion 143

rithm 13.
Algorithm 13: Compute derivative w.r.t. vertex perturbation

Input: a velocity model m, vertex (x0, z0) to be perturbed, and surfaces �1,�2

connected to this vertex

Output: derivative of misfit function w.r.t. vertex perturbation @J /@z0

1 Apply the adjoint-state method (i.e. RTM) to get the image I(x) of the

current model m.

2 Identify the set of element surfaces which are subsets of �1 and �2.

3 Set @J /@z0 = 0.

4 for each face @D

k ⇢ �1 [ �2 do

5 Add the contribution of the surface integration to @J /@z0 by

@J
@z0

+ = (m1 �m2)

Z

@D

k

v(x)
I

+(x) + I

�(x)

2
d⌧.

6 Return @J /@z0.

4.5.2.1 Multi-vertex example

We now solve an inverse problem where multiple vertices need to be inverted. The

gradient is computed by the surface integration approach (algorithm 13). In this

experiment, a polyhedral inclusion is located in the bottom of the domain, and the

top four vertices of the inclusion are inverted.

The configuration is: the computational domain is a cube of size [0 km, 2 km] ⇥
[0 km, 0.3 km] ⇥ [0 km, 2 km]; the velocity is 1.3 km/s inside the inclusion and 1.0

km/s outside the inclusion; three source signals are injected on plane z = 0.2 km,

which are Ricker pulses of 1.5 Hz peak frequency; 27 receivers are evenly distributed

on plane z = 0.35 km; recording end time is T = 4.0 s. Figure 4.30 also presents

the configuration of this experiment. Figure 4.31 is the tetrahedral mesh for the true



Chapter 4. Full waveform inversion 144

velocity model.
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(a)true velocity model (b) source and receiver locations

Figure 4.30: Configuration for multi-vertex example: (a) true velocity model, where
a ployhedral inclusion is located at the bottom of the domain; (b) the locations of
sources and receivers: the blue triangle is the location of the source and the red dots

are the location of the receivers.

Figure 4.31: Mesh for multi-vertex example.

In figure 4.32, we can see the velocity model has 4 degrees of freedom, where

the top 4 vertices are mismatched between the true and initial models. The inverse

problem is solved using the surface integration algorithm 13. Figure 4.33 is the result

of the FWI experiment, where the solution converges to the true model and the misfit

value converges to zero.
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Figure 4.32: True and initial models of the multi-vertex example.

(a) solution (b) misfit history

Figure 4.33: Solution of the multi-vertex example: (a) geometry of the solution; (b)
misfit history of the FWI iterations. The misfit value drops below 1‰after 6

iterations.

This multi-vertex example provides the evidence that we can invert many vertices

simultaneously. The restriction is: we need to know the direction in advance to

perturb any vertices.

4.5.3 Remarks on inverting sharp interfaces

In this section, we have introduced two operations to invert the media interfaces.

Assuming the media interfaces are made up of planar surfaces, we can perturb the
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planar surfaces along their normal directions and perturb the vertices along a given

direction. However, as we do not necessarily know the true normals of the surfaces

and the correct directions to move the vertices, we su↵er from a strong restriction to

apply these operations.

In order to improve this method, more operations must be designed to make it

more flexible. For example, we can set criteria to determine when to split a surface

and we can introduce operations to rotate a surface. We can use alternative up-

dating to combine many operators together and update surfaces, edges and vertices

alternatively in the FWI iterations.

4.6 Summary

In this chapter, we extend the DG-RTM to DG-FWI which is formulated as a PDE-

constraint optimization problem. In the DG-FWI implementation, the DG methods

solve multiple wave equations, while the RTM subroutine generates the gradient for

the optimization problem.

We start the discussion with the derivation of the adjoint-state method. In this

chapter, we study the adjoint-state method at both continuous and discrete levels.

The adjoint-state method at continuous level leads to an optimize-then-discretize

approach, where we first obtain a Fréchet derivative and discretize it without con-

sidering the DG discretization. In contrast, the adjoint-state method at the discrete

level, known as the discretize-then-optimize approach, takes the DG discretization

into consideration in the derivation. As a result, the discrete adjoint-state method

can provide a discretely exact gradient while the derivative obtained from continuous

adjoint-state method su↵ers from numerical errors [31]. Unfortunately, we do not

exactly follow the discrete adjoint-state method in our implementation due to some

computational issues. This prevents us from further studying some gradient-sensitive
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methods such as L-BFGS. However, we can still employ steepest descent method and

provide the approximated gradient as a descent direction.

We study the conventional FWI with three test cases — a Gaussian inclusion test,

a cubic inclusion test and a single layer test. The updated velocity models at each

FWI iteration are getting closer to the corresponding true models. However, due

to di↵erent data coverage and di↵erent configurations, the quality of the resulting

models varies from case to case.

To highlight the strengths of DGTD, which has smaller interface errors than

FDTD, we invert the sharp media interfaces at the end of this chapter. Assum-

ing the interface is made up of planar surfaces, we specify certain perturbations of

the interfaces such as moving a surface along its normal direction or moving a ver-

tex along a given direction. In addition, meshes are regenerated to align with the

media interfaces at each FWI iteration. With the restriction of the perturbation

type, we successfully invert sharp interfaces on simple geometries such as polyhedral

inclusions.
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Summary and future work

Seismic imaging is a subject of exploration geophysics, and it investigates the sub-

surface structures. In seismic imaging, algorithms such as reverse time migration

(RTM) and full waveform inversion (FWI) require e�cient numerical solvers for wave

equations. Various numerical methods, such as finite di↵erence methods [111], fi-

nite element methods [60], pseudo-spectral methods [19] and discontinuous Galerkin

methods [26], have been studied for wave problems. In this dissertation, I exploit the

discontinuous Galerkin methods on hybrid meshes for the acoustic wave equation. In

particular, my work contributes the following: (1) a discontinuous Galerkin solver on

hybrid meshes containing hexahedra, tetrahedra, prisms, and pyramids are developed

and accelerated with multi-GPU implementations; (2) the DG solver is applied to two

seismic imaging problems — reverse time migration and full waveform inversion. The

goal of this work is to exam the availability of DG methods in seismic imaging and

highlight the strengths of DG methods in terms of e�ciency and accuracy.

As a mesh-based method, DG can easily handle elements of di↵erent shapes, which

encourages us to use hybrid meshes to improve the computational e�ciency. In this

work, we have studied four types of elements:

• Hexahedral elements have tensor product properties which accelerate the com-



Chapter 5. Summary and future work 149

putation. The total volume operation in hexahedra has a computational cost

of O(Nd+1) compared to O(N2d) for other three element types, where d is the

dimension (d = 3 in this work), and N is the polynomial degree in the DG

method. Numerical experiments suggest that hexahedral elements have the

best e�ciency in terms of time cost per degree of freedom.

• Tetrahedral elements have geometric flexibility and are mature for most mesh

generation algorithms. The a�ne mapping of the tetrahedral elements results

in constant geometric factors and hence reduces computational cost.

• Prismatic elements take advantage of the low-storage curvilinear DG (LSC-DG)

algorithm [71] which saves memory storage by spending additional floating point

operations.

• Pyramidal elements have singular points in the vertex mapping, which leads

to di�culties in quadrature rules. To resolve this issue, we employ orthogonal

rational basis [69] in our DG implementation.

Taking the properties of these element types into consideration, we propose to use

hex-dominant meshes for wave simulations. The computational e�ciency is achieved

through filling most of the domain with hexahedral elements while using tetrahedra,

prisms, and pyramids to approximate complicated geometries.

To further improve the computational speed, we employ multi-rate time stepping

technique and multi-hardware accelerators. The multi-rate time stepping relaxes the

global CFL constraint into multiple local constraints, which allows di↵erent elements

to take di↵erent time step sizes. This technique reduces the total number of time step-

ping iterations and saves computational time. For multi-hardware acceleration, we use

MPI+OCCA to parallelize our implementation into three levels: the entire domain

is divided into multiple subdomains; the subdomains consist of many elements; each
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element has many degrees of freedom. Subdomains, elements and degrees of freedom

correspond to MPI processes, GPU blocks and threads respectively. In this thesis, we

also present the implementation details of kernel classification, kernel optimization,

data structure, message passing strategy, workload assignment and latency-hiding

technique. The acceleration of the DG code enables us to run large-scale simulations

on multiple hardware accelerators especially GPUs.

To study DG methods in the context of seismic applications, we first extend the

DG solver to the reverse time migration. To begin with, we equip the DG solver

with absorbing boundaries to truncate the domain of interest and, and we implement

source injections to model signals generated by explosives or airguns. More precisely,

perfectly matched layers [115] and point source injection using the scattered-total

field formulation [120] are employed in this thesis. Due to the memory limitation on

GPUs, we adopt the saving-boundary strategy and reproduce the forward wavefield

in the backward phase stage [108]. This saving-boundary technique helps us to trade

in computational time cost for memory savings. By using an imaging condition

of characteristic fields and high order time quadrature scheme [9], we utilize the

intermediate variables in DG methods to improve the imaging quality and successfully

recover the subsurface structures in the RTM image.

Finally, the full waveform inversion, which is a PDE-constraint optimization prob-

lem, is implemented using the DG solver. As suggested in [31], a discretize-then-

optimize approach can provide discretely exact derivatives for the PDE constraint

optimization. Therefore, we derive the discrete adjoint-state method depending on

our specific DG discretization in this thesis. Unfortunately, our implementation does

not exactly follow our theoretical derivation, but we are still able to solve the con-

ventional FWI with the steepest descent method. After validating the DG-FWI

implementation on several test cases, we continue investigating DG-FWI to invert
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sharp interfaces. In this thesis, we specify the perturbation of a media interface and

invert it with mesh regeneration in the FWI iterations. Experiments show that sim-

ple geometries such as polyhedral inclusion can be inverted using this technique. As

DG methods have smaller interface errors than FDTD [26], inverting sharp interfaces

would highlight the strengths of DG methods.

In brief, we have studied the DG methods on hybrid meshes with a numerous

consideration of performance and explored the DG solver in the seismic imaging

context. The advantage of DG methods over other numerical methods is appealing,

but our current implementation still has some weakness that can be improved. The

future work may include but not limited to the following:

• Non-conforming meshes: although we build our DG solver on hybrid meshes,

the elements we want are tetrahedra and hexahedra. Prisms and pyramids are

transitional elements, and they consume significant computational cost. Since

DG is good at dealing with non-conforming meshes, we can use non-conforming

meshes so that triangular and quadrangular faces can be connected. Removal of

prisms and pyramids does not only improve the performance of the DG methods

but also simplifies mesh generations.

• Adaptivity: one of the many advantages of DG methods is the adaptivity prop-

erty. We can perform h or p adaptivity in a relatively simple manner on DG

methods. The adaptivity leads to the improved local accuracy in the areas of

interest.

• Smooth model coe�cients: our current implementation uses piece-wise constant

representations of velocity and density models, i.e. on each element, the model

parameters are constants. This piece-wise constant model enables represen-

tation of sharp interfaces. However, the drawback is smooth models can not
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be adequately represented. Fortunately, media heterogeneity in a sub-element

scale has already been studied in DG methods. For instance, weight-adjusted

DG methods (WADG) [57] uses a weight-adjusted inner product to reduce the

storage cost. Techniques like WADG should be adopted to resolve smooth model

coe�cients.

• More operations for the sharp interface perturbations: as discussed in chapter

4, we have specified certain perturbations of the media interfaces. However,

this approach su↵ers from restrictions on the perturbation types. To improve

it, we may introduce more types of perturbations on the media interfaces and

combine many of these operations together to invert more complicated models.

As more research of the DG methods are conducted and more DG applications in

seismic imaging are studied, the strength of DG methods will eventually be realized,

and DG will act as a more important role in seismic imaging.
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[29] M. Dumbser and M. Käser, “An arbitrary high-order discontinuous galerkin
method for elastic waves on unstructured meshesii. the three-dimensional
isotropic case,” Geophysical Journal International, vol. 167, no. 1, pp. 319–336,
2006. 1.1

[30] J. A. Bramwell, “A discontinuous petrov-galerkin method for seismic tomogra-
phy problems,” 2013. 1.1

[31] L. C. Wilcox, G. Stadler, C. Burstedde, and O. Ghattas, “A high-order discon-
tinuous galerkin method for wave propagation through coupled elastic–acoustic
media,” Journal of Computational Physics, vol. 229, no. 24, pp. 9373–9396,
2010. 1.1, 1.2, 4.6, 5

[32] P. Lailly, “The seismic inverse problem as a sequence of before stack migra-
tions,” in Conference on inverse scattering: theory and application. Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1983, pp. 206–220.
1.1, 4

[33] A. Tarantola, “Inversion of seismic reflection data in the acoustic approxima-
tion,” Geophysics, vol. 49, no. 8, pp. 1259–1266, 1984. 1.1, 4

[34] ——, “Inverse problem theory: Methods for data fitting and parameter estima-
tion,” 1987. 1.1, 4



Bibliography 156

[35] R. G. Pratt, C. Shin, and G. Hick, “Gauss–newton and full newton methods
in frequency–space seismic waveform inversion,” Geophysical Journal Interna-
tional, vol. 133, no. 2, pp. 341–362, 1998. 1.1

[36] J. Nocedal, “Updating quasi-newton matrices with limited storage,” Mathemat-
ics of computation, vol. 35, no. 151, pp. 773–782, 1980. 1.1

[37] R.-E. Plessix, “A review of the adjoint-state method for computing the gradi-
ent of a functional with geophysical applications,” Geophysical Journal Inter-
national, vol. 167, no. 2, pp. 495–503, 2006. 1.1

[38] L. C. Wilcox, G. Stadler, T. Bui-Thanh, and O. Ghattas, “Discretely exact
derivatives for hyperbolic pde-constrained optimization problems discretized by
the discontinuous galerkin method,” Journal of Scientific Computing, vol. 63,
no. 1, pp. 138–162, 2015. 1.1, 1.2, 1.4, 2.2.1, 4, 4.3, 4.3.2

[39] J. A. Scales, P. Docherty, and A. Gersztenkorn, “Regularisation of nonlinear
inverse problems: imaging the near-surface weathering layer,” Inverse Problems,
vol. 6, no. 1, p. 115, 1990. 1.1, 4

[40] Y. Yang, B. Engquist, J. Sun, and B. D. Froese, “Application of optimal trans-
port and the quadratic wasserstein metric to full-waveform inversion,” arXiv
preprint arXiv:1612.05075, 2016. 1.1, 4

[41] Z. Xue, N. Alger, S. Fomel et al., “Full-waveform inversion using smoothing
kernels,” in 2016 SEG International Exposition and Annual Meeting. Society
of Exploration Geophysicists, 2016. 1.1, 4

[42] M. J. Woodward, D. Nichols, O. Zdraveva, P. Whitfield, and T. Johns, “A
decade of tomography,” Geophysics, vol. 73, no. 5, pp. VE5–VE11, 2008. 1.1

[43] C. Shin and Y. H. Cha, “Waveform inversion in the laplace domain,” Geophys-
ical Journal International, vol. 173, no. 3, pp. 922–931, 2008. 1.1

[44] W. Reed and T. Hill, “Triangular mesh methods for the neutron transport
equation,” Los Alamos Scientific Laboratory, Los Alamos, NM, 1973. 1.2, 2

[45] B. Rivière, Discontinuous Galerkin methods for solving elliptic and parabolic
equations: theory and implementation. Society for Industrial and Applied
Mathematics, 2008. 1.2

[46] R. Gandham, D. Medina, and T. Warburton, “Gpu accelerated discontinuous
galerkin methods for shallow water equations,” arXiv preprint arXiv:1403.1661,
2014. 1.2, 1.3

[47] J. S. Hesthaven and T. Warburton, Nodal discontinuous Galerkin methods: al-
gorithms, analysis, and applications. Springer Science & Business Media, 2007.
1.2, 2, 2.2.1, 2.2.2, 2.2.2, 2.2.2, 2.3.2, 2.4.2, 2.7, 2.8, 2.10



Bibliography 157

[48] B. Cockburn, G. E. Karniadakis, and C.-W. Shu, The development of discon-
tinuous Galerkin methods. Springer, 2000. 1.2, 2
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