56,295 research outputs found

    On the maximum order of graphs embedded in surfaces

    Get PDF
    The maximum number of vertices in a graph of maximum degree Δ≥3\Delta\ge 3 and fixed diameter k≥2k\ge 2 is upper bounded by (1+o(1))(Δ−1)k(1+o(1))(\Delta-1)^{k}. If we restrict our graphs to certain classes, better upper bounds are known. For instance, for the class of trees there is an upper bound of (2+o(1))(Δ−1)⌊k/2⌋(2+o(1))(\Delta-1)^{\lfloor k/2\rfloor} for a fixed kk. The main result of this paper is that graphs embedded in surfaces of bounded Euler genus gg behave like trees, in the sense that, for large Δ\Delta, such graphs have orders bounded from above by begin{cases} c(g+1)(\Delta-1)^{\lfloor k/2\rfloor} & \text{if $k$ is even} c(g^{3/2}+1)(\Delta-1)^{\lfloor k/2\rfloor} & \text{if $k$ is odd}, \{cases} where cc is an absolute constant. This result represents a qualitative improvement over all previous results, even for planar graphs of odd diameter kk. With respect to lower bounds, we construct graphs of Euler genus gg, odd diameter kk, and order c(g+1)(Δ−1)⌊k/2⌋c(\sqrt{g}+1)(\Delta-1)^{\lfloor k/2\rfloor} for some absolute constant c>0c>0. Our results answer in the negative a question of Miller and \v{S}ir\'a\v{n} (2005).Comment: 13 pages, 3 figure

    Untangling polygons and graphs

    Full text link
    Untangling is a process in which some vertices of a planar graph are moved to obtain a straight-line plane drawing. The aim is to move as few vertices as possible. We present an algorithm that untangles the cycle graph C_n while keeping at least \Omega(n^{2/3}) vertices fixed. For any graph G, we also present an upper bound on the number of fixed vertices in the worst case. The bound is a function of the number of vertices, maximum degree and diameter of G. One of its consequences is the upper bound O((n log n)^{2/3}) for all 3-vertex-connected planar graphs.Comment: 11 pages, 3 figure

    On the diameter of random planar graphs

    Get PDF
    We show that the diameter D(G_n) of a random labelled connected planar graph with n vertices is equal to n^{1/4+o(1)}, in probability. More precisely there exists a constant c>0 such that the probability that D(G_n) lies in the interval (n^{1/4-\epsilon},n^{1/4+\epsilon}) is greater than 1-\exp(-n^{c\epsilon}) for {\epsilon} small enough and n>n_0(\epsilon). We prove similar statements for 2-connected and 3-connected planar graphs and maps.Comment: 24 pages, 7 figure

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved
    • …
    corecore