478,243 research outputs found

    Constants in Future Cities and Regions

    Get PDF
    The paper resumes some of the conversations the authors had in three years of research, based on the review of best participatory planning practices worldwide. The case projects are selected and discussed with the protagonists across four leading issues: Simulation, Scenario and Visioning, Government and Governance, and Scale. The case-oriented discussion is a peculiarity of the book , contributing to give shape to future cities or regions. The aim is to build a critical thinking on how urban planning, policy and design issues are faced differently or similarly throughout every cases studied. The book include the description of computer models and media, socio-political experiments and professional practices which help communicating the future effects of different design, policy and planning strategies and schemes with a wide range of aims: from information, through consultation, towards active participation. The cases have confirmed that simulation tools can impact on local government and can drive new forms of "glocal" governance, shaping and implementing future plans and projects at different scale and time span. The following paragraphs will point at some of the constant thoughts the authors had around the selection and editing of the book's case studied and related issue

    Interfacing cultured neurons to microtransducers arrays: A review of the neuro-electronic junction models

    Get PDF
    Microtransducer arrays, both metal microelectrodes and silicon-based devices, are widely used as neural interfaces to measure, extracellularly, the electrophysiological activity of excitable cells. Starting from the pioneering works at the beginning of the 70's, improvements in manufacture methods, materials, and geometrical shape have been made. Nowadays, these devices are routinely used in different experimental conditions (both in vivo and in vitro), and for several applications ranging from basic research in neuroscience to more biomedical oriented applications. However, the use of these micro-devices deeply depends on the nature of the interface (coupling) between the cell membrane and the sensitive active surface of the microtransducer. Thus, many efforts have been oriented to improve coupling conditions. Particularly, in the latest years, two innovations related to the use of carbon nanotubes as interface material and to the development of micro-structures which can be engulfed by the cell membrane have been proposed. In this work, we review what can be simulated by using simple circuital models and what happens at the interface between the sensitive active surface of the microtransducer and the neuronal membrane of in vitro neurons. We finally focus our attention on these two novel technological solutions capable to improve the coupling between neuron and micro-nano transducer

    Cell Migration with Multiple Pseudopodia: Temporal and Spatial Sensing Models

    Get PDF
    Cell migration triggered by pseudopodia (or “false feet”) is the most used method of locomotion. A 3D finite element model of a cell migrating over a 2D substrate is proposed, with a particular focus on the mechanical aspects of the biological phenomenon. The decomposition of the deformation gradient is used to reproduce the cyclic phases of protrusion and contraction of the cell, which are tightly synchronized with the adhesion forces at the back and at the front of the cell, respectively. First, a steady active deformation is considered to show the ability of the cell to simultaneously initiate multiple pseudopodia. Here, randomness is considered as a key aspect, which controls both the direction and the amplitude of the false feet. Second, the migration process is described through two different strategies: the temporal and the spatial sensing models. In the temporal model, the cell “sniffs” the surroundings by extending several pseudopodia and only the one that receives a positive input will become the new leading edge, while the others retract. In the spatial model instead, the cell senses the external sources at different spots of the membrane and only protrudes one pseudopod in the direction of the most attractive one

    Discriminant analysis of solar bright points and faculae II. Contrast and morphology analysis

    Full text link
    Taken at a high spatial resolution of 0.1 arcsec, Bright Points (BPs) are found to coexist with faculae in images and the latter are often resolved as adjacent striations. Understanding the properties of these different features is fundamental to carrying out proxy magnetometry. To shed light on the relationship between BPs and faculae, we studied them separately after the application of a classification method, developed and described in a previous paper) on active region images at various heliocentric angles. In this Paper, we explore different aspects of the photometric properties of BPs and faculae, namely their G-band contrast profiles, their peak contrast in G-band and continuum, as well as morphological parameters. We find that: (1) the width of the contrast profiles of the classified BPs and faculae are consistent with studies of disk center BPs at and limb faculae, which indirectly confirms the validity of our classification, (2) the profiles of limb faculae are limbward skewed on average, while near disk center they exhibit both centerward and limbward skewnesses due to the distribution of orientations of the faculae, (3) the relation between the peak contrasts of BPs and faculae and their apparent area discloses a trend reminiscent of magnetogram studies. The skewness of facular profiles provides a novel constraint for 3D MHD models of faculae. As suggested by the asymmetry and orientation of their contrast profiles, faculae near disk center could be induced by inclined fields, while apparent BPs near the limb seem to be in fact small faculae misidentified. The apparent area of BPs and faculae could be possibly exploited for proxy magnetometry
    corecore