3,485 research outputs found

    Robust Signal Processing Techniques for Wearable Inertial Measurement Unit (IMU) Sensors

    Get PDF
    Activity and gesture recognition using wearable motion sensors, also known as inertial measurement units (IMUs), provides important context for many ubiquitous sensing applications including healthcare monitoring, human computer interface and context-aware smart homes and offices. Such systems are gaining popularity due to their minimal cost and ability to provide sensing functionality at any time and place. However, several factors can affect the system performance such as sensor location and orientation displacement, activity and gesture inconsistency, movement speed variation and lack of tiny motion information. This research is focused on developing signal processing solutions to ensure the system robustness with respect to these factors. Firstly, for existing systems which have already been designed to work with certain sensor orientation/location, this research proposes opportunistic calibration algorithms leveraging camera information from the environment to ensure the system performs correctly despite location or orientation displacement of the sensors. The calibration algorithms do not require extra effort from the users and the calibration is done seamlessly when the users present in front of an environmental camera and perform arbitrary movements. Secondly, an orientation independent and speed independent approach is proposed and studied by exploring a novel orientation independent feature set and by intelligently selecting only the relevant and consistent portions of various activities and gestures. Thirdly, in order to address the challenge that the IMU is not able capture tiny motion which is important to some applications, a sensor fusion framework is proposed to fuse the complementary sensor modality in order to enhance the system performance and robustness. For example, American Sign Language has a large vocabulary of signs and a recognition system solely based on IMU sensors would not perform very well. In order to demonstrate the feasibility of sensor fusion techniques, a robust real-time American Sign Language recognition approach is developed using wrist worn IMU and surface electromyography (EMG) sensors

    Robust Signal Processing Techniques for Wearable Inertial Measurement Unit (IMU) Sensors

    Get PDF
    Activity and gesture recognition using wearable motion sensors, also known as inertial measurement units (IMUs), provides important context for many ubiquitous sensing applications including healthcare monitoring, human computer interface and context-aware smart homes and offices. Such systems are gaining popularity due to their minimal cost and ability to provide sensing functionality at any time and place. However, several factors can affect the system performance such as sensor location and orientation displacement, activity and gesture inconsistency, movement speed variation and lack of tiny motion information. This research is focused on developing signal processing solutions to ensure the system robustness with respect to these factors. Firstly, for existing systems which have already been designed to work with certain sensor orientation/location, this research proposes opportunistic calibration algorithms leveraging camera information from the environment to ensure the system performs correctly despite location or orientation displacement of the sensors. The calibration algorithms do not require extra effort from the users and the calibration is done seamlessly when the users present in front of an environmental camera and perform arbitrary movements. Secondly, an orientation independent and speed independent approach is proposed and studied by exploring a novel orientation independent feature set and by intelligently selecting only the relevant and consistent portions of various activities and gestures. Thirdly, in order to address the challenge that the IMU is not able capture tiny motion which is important to some applications, a sensor fusion framework is proposed to fuse the complementary sensor modality in order to enhance the system performance and robustness. For example, American Sign Language has a large vocabulary of signs and a recognition system solely based on IMU sensors would not perform very well. In order to demonstrate the feasibility of sensor fusion techniques, a robust real-time American Sign Language recognition approach is developed using wrist worn IMU and surface electromyography (EMG) sensors

    Detection of bimanual gestures everywhere: why it matters, what we need and what is missing

    Full text link
    Bimanual gestures are of the utmost importance for the study of motor coordination in humans and in everyday activities. A reliable detection of bimanual gestures in unconstrained environments is fundamental for their clinical study and to assess common activities of daily living. This paper investigates techniques for a reliable, unconstrained detection and classification of bimanual gestures. It assumes the availability of inertial data originating from the two hands/arms, builds upon a previously developed technique for gesture modelling based on Gaussian Mixture Modelling (GMM) and Gaussian Mixture Regression (GMR), and compares different modelling and classification techniques, which are based on a number of assumptions inspired by literature about how bimanual gestures are represented and modelled in the brain. Experiments show results related to 5 everyday bimanual activities, which have been selected on the basis of three main parameters: (not) constraining the two hands by a physical tool, (not) requiring a specific sequence of single-hand gestures, being recursive (or not). In the best performing combination of modeling approach and classification technique, five out of five activities are recognized up to an accuracy of 97%, a precision of 82% and a level of recall of 100%.Comment: Submitted to Robotics and Autonomous Systems (Elsevier

    MirrorGen Wearable Gesture Recognition using Synthetic Videos

    Get PDF
    abstract: In recent years, deep learning systems have outperformed traditional machine learning systems in most domains. There has been a lot of research recently in the field of hand gesture recognition using wearable sensors due to the numerous advantages these systems have over vision-based ones. However, due to the lack of extensive datasets and the nature of the Inertial Measurement Unit (IMU) data, there are difficulties in applying deep learning techniques to them. Although many machine learning models have good accuracy, most of them assume that training data is available for every user while other works that do not require user data have lower accuracies. MirrorGen is a technique which uses wearable sensor data and generates synthetic videos using hand movements and it mitigates the traditional challenges of vision based recognition such as occlusion, lighting restrictions, lack of viewpoint variations, and environmental noise. In addition, MirrorGen allows for user-independent recognition involving minimal human effort during data collection. It also helps leverage the advances in vision-based recognition by using various techniques like optical flow extraction, 3D convolution. Projecting the orientation (IMU) information to a video helps in gaining position information of the hands. To validate these claims, we perform entropy analysis on various configurations such as raw data, stick model, hand model and real video. Human hand model is found to have an optimal entropy that helps in achieving user independent recognition. It also serves as a pervasive option as opposed to a video-based recognition. The average user independent recognition accuracy of 99.03% was achieved for a sign language dataset with 59 different users, 20 different signs with 20 repetitions each for a total of 23k training instances. Moreover, synthetic videos can be used to augment real videos to improve recognition accuracy.Dissertation/ThesisMasters Thesis Computer Science 201

    A Pervasive Middleware for Activity Recognition with Smartphones

    Get PDF
    Title from PDF of title page, viewed on August 28, 2015Thesis advisor: Yugyung LeeVitaIncludes bibliographic references (pages 61-67)Thesis (M.S.)--School of Computing and Engineering. University of Missouri--Kansas City, 2015Activity Recognition (AR) is an important research topic in pervasive computing. With the rapid increase in the use of pervasive devices, huge sensor data is generated from diverse devices on a daily basis. Analysis of the sensor data is a significant area of research for AR. There are several devices and techniques available for AR, but the increasing number of sensor devices and data demands new approaches for adaptive, lightweight and accurate AR. We propose a new middleware called the Pervasive Middleware for Activity Recognition (PEMAR) to address these problems. We implemented PEMAR on a Big Data platform incorporating machine-learning techniques to make it adaptive and accurate for the AR of sensor data. The middleware is composed of the following: (1) Filtering and Segmentation to detect different activities; (2) A human centered adaptive approach to create accurate personal models, leveraging on the existing impersonal models; (3) An activity library to serve different mobile applications; and (4) Activity Recognition services to accurately perform AR. We evaluated recognition accuracy of PEMAR using a generated dataset (15 activities, 50 subjects) and USC-Human Activity Dataset (12 activities, 14 subjects) and observed a better accuracy for personal trained AR compared to impersonal trained AR. We tested the applicability and adaptivity of PEMAR by using several motion based applications.Introduction -- Related work -- Middleware for gesture recognition -- Implementation and applications -- Results and evaluation -- Conclusion and future wor
    • …
    corecore