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ABSTRACT

In recent years, deep learning systems have outperformed traditional machine

learning systems in most domains. There has been a lot of research recently in the

field of hand gesture recognition using wearable sensors due to the numerous ad-

vantages these systems have over vision-based ones. However, due to the lack of

extensive datasets and the nature of the Inertial Measurement Unit (IMU) data,

there are difficulties in applying deep learning techniques to them. Although many

machine learning models have good accuracy, most of them assume that training data

is available for every user while other works that do not require user data have lower

accuracies. MirrorGen is a technique which uses wearable sensor data and generates

synthetic videos using hand movements and it mitigates the traditional challenges of

vision based recognition such as occlusion, lighting restrictions, lack of viewpoint vari-

ations, and environmental noise. In addition, MirrorGen allows for user-independent

recognition involving minimal human effort during data collection. It also helps lever-

age the advances in vision-based recognition by using various techniques like optical

flow extraction, 3D convolution. Projecting the orientation (IMU) information to a

video helps in gaining position information of the hands. To validate these claims,

we perform entropy analysis on various configurations such as raw data, stick model,

hand model and real video. Human hand model is found to have an optimal entropy

that helps in achieving user independent recognition. It also serves as a pervasive

option as opposed to a video-based recognition. The average user independent recog-

nition accuracy of 99.03% was achieved for a sign language dataset with 59 different

users, 20 different signs with 20 repetitions each for a total of 23k training instances.

Moreover, synthetic videos can be used to augment real videos to improve recognition

accuracy.
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Chapter 1

INTRODUCTION

With the advancements in deep learning techniques, the task of activity recogni-

tion is gaining more attention in the recent years. Various large scale datasets are

available for the purpose of activity recognition [14, 29, 31]. However, video based ap-

proaches have some basic problems. These include problems like occlusion, where the

subject or a part of the subject performing the activity is hidden from camera view-

point and is not visible; the lack of different viewpoints for the same activity, which

would greatly help any deep learning model to generalize effectively; the presence

of background noise affects the confidence score of classification; Object localization

issue, for example, presence of a bed in a given scene increases the confidence of

the class ”subject is sleeping” even though this may not be true. Humans recog-

nize actions even if objects involved in performing the action are not present. Using a

camera or an infrared (IR) camera like Microsoft Kinect might seem to be intrusive to

some users and raises privacy concerns. It has a fixed setup and is also not pervasive.

Another major problem is building a good quality dataset with annotations needs

a significant amount of human effort which involves tasks like background removal,

de-identification.

Sign Language Recognition (SLR) is a very important sub-field of activity recog-

nition due to its impact on accessibility and gesture based Human Computer Inter-

action. Researchers have approached SLR from the perspective of either video based

systems or wearable sensor based ones. Video based systems utilize RGB and/or

depth sensors while most wearable sensors for this purpose use IMU (Inertial Mea-

surement Units). IMU sensors use a combination of accelerometers and gyroscope, to
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give raw specific force and angular rates of the mounted body.

Most of the state-of-the-art video based recognition systems with high performance

use Convolutional Neural Networks (CNN) [14, 16, 17].

One of the reasons for this high performance is that when training examples are

scarce such as in the case of special-case applications like SLR, these systems use

models pre-trained on a more extensive dataset like ImageNet [16] and then fine-tune

them for a special case application. This idea, known as transfer learning, improves

performance by transferring the lower to mid-level features from one problem domain

to another [21].

With recent advancements in wearable technologies, a lot of research has been

dedicated to solving the problems of SLR using armband sensors such as the Myo

[22, 23, 27, 38]. One of the key advantages of this approach is that wearable sensors

enhance usability [1] and are resistant to classic problems associated with image/video

recognition such as occlusion, lighting restrictions and environmental noise. Further,

data collection for wearables is less cumbersome and more privacy preserving than for

videos. Modern deep learning techniques such as CNNs are not generally used with

wearable systems due to the lack of extensive training datasets and the nature of IMU

data. Thus, research that focus on wearable sensor based techniques have not been

able to leverage the advances in deep learning techniques effectively. Furthermore,

due to the split in approach for solving the same underlying problem of gesture

recognition, the datasets created have also been bifurcated. In an attempt to bridge

this gap while achieving state-of-the-art accuracy, MirrorGen, a technique to convert

armband orientation data into animated videos is proposed as shown in Fig. 1.1.

Experimental results show that user-independent recognition accuracy for MirrorGen

based system was significantly higher than other state-of-the-art user independent

systems.
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Figure 1.1: Conversion of Raw Sensor IMU Data to 3D Human Hand Model Video

Frames.

MirrorGen also provides an efficient way of generating synthetic data to make the

recognition algorithm robust to change of camera angles, as animations for different

camera angles can be easily generated and added to the training set as explained in

Section 4.1. Rather than describing gestures as time series data, the gestures are

visualized as continuous frames of hand models as seen in Fig. 1.1 and inference is

done by the Two Stream networks as seen in Fig. 5.2.

Gestures can be classified into two types. (a) Structured - Gestures like Ameri-

can Sign Language which need a structured learning system and are not easily un-

derstood by other humans who are not familiar with the gestures. (b) Unstruc-

tured/Pantomimes - Gestures which are common to all humans irrespective of cultural

diversity like eating, opening a door, opening a bottle, wave, etc., [10].

The name MirrorGen was inspired from the concept of Mirror Neurons from [10]

and also because the video generation technique is similar to a basic mirroring of

human gesture. Mirror neurons are neurons in the human brain which activate when

a person performs or when the person observes another person performing the same

action. The neuron mirrors the behaviour of the other.

User independent recognition of gestures is a well known issue in the field of

activity recognition. Since sensor data from all users are visually reconstructed using
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the same model, all users have the same video representation of their gestures which

allows effective generalization.

There is also not much video data available for specific domains like ASL. To

experiment with this theory if synthetically generated data can be used to augment

the limited real videos for large scale video classification, real and synthetic videos

are mixed to test the transfer of mid level feature representations.

Contributions: The main contributions of this work are as follows:

1. MirrorGen: A technique to create animated videos using only wrist-worn orien-

tation sensors that achieves state-of-the-art user independent recognition accuracy

while increasing ease of use during training and testing.

2. Results on real videos using augmented synthetic data to get a mixed dataset of

both real and synthetic videos for training.

This thesis report is structured as follows: First, in Chapter 2, the works related

to all the domains involved are discussed. Then, in Chapter 3 the process of acqui-

sition of data is explained. Then, in Chapter 4 the process about how MirrorGen

converts orientation data from armband sensors and generates synthetic videos from

them and an analysis of the generated videos is explained. Then, in Chapter 5 the

different models and the system architecture for training and testing are explained.

In Chapter 6, in the results section, a comparative analysis of MirrorGen technique

against other machine learning techniques is performed. In the discussion section,

the possible shortcomings of this technique, as well as the preliminary results for live

video recognition using models trained only on synthetic videos and tested on real

life videos are discussed. Finally, some of the possible future work is discussed.
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Chapter 2

RELATED WORK

In this chapter, work related to wearable sensors, dataset generation, transfer

learning, activity recognition and deep learning architectures suitable for activity

recognition are discussed.

Wearable Sensors: Thomaz et al. [32] have used an IMU based activity recogni-

tion using smartwatches for eating activities while Chung et al. [6] have used glass-like

wearables for chewing detection using temporalis muscles and Paudyal et al. [22, 23]

have used armbands for sign language recognition. All of the above techniques use

handcrafted features which requires domain expertise and generally do not scale well.

Using deep learning to learn representations is possible, for example, Fang et al. [11]

used a Leap Motion sensor to track the skeleton joints of the palm to identify ASL

signs. However, this method has a restricted field of vision in front of the chest and

ASL words which involve gestures like ”father” that are performed near the face can-

not be recognized. One of the main drawbacks of using deep learning techniques is

the lack of large datasets to train on. However, this work focuses on considering a

small raw sensor dataset for the task of hand gesture recognition, converting it into

visual data by generating synthetic videos and using various mid level representations

of videos [21] to fine tune a larger network resulting in good recognition accuracy of

gestures.

Vision-based approaches: There are various vision based deep learning ap-

proaches that address the problem of SLR [4, 7]. These approaches suffer from con-

ventional problems for computer vision like occlusion, lighting, viewpoint variation,

background noise as well as privacy concerns. Using only depth sensors mitigates

5



some of the privacy concerns, however, there is a trade-off with accuracy and this

approach is not robust to viewpoint variations [9].

Synthetic Videos: Synthetically generated data has been used to train complex

CNN architectures to perform various tasks on the real world such as pose iden-

tification, learning from 3D games tracking and action recognition [12]. The PHAV

dataset [8], one of the largest synthetically generated datasets is built by procedurally

generating human activities and using various external factors like weather, outside

lighting, and environments. The MOCAP extracts descriptors like trajectories from

videos to generate videos by using a reduced number of randomly selected features.

However, there are a different set of requirements for using synthetic videos for sign

language recognition such as the need for viewpoint variance, visibility of the entire

signing area, and proper handling of occlusion and other environmental variations.

Although these problems also exist for activity recognition, there are additional

heuristics obtained from the objects present in the scene that aid in recognition.

[24, 28, 36]. Due to this reason, this work uses only the trajectories of the lower arms

by using the quaternions obtained from armband sensors on each arm so that clean

video can be generated with only hand motion trajectories from various viewpoints.

Similar to the works [2, 8, 12], a predefined 3D hand model which is a part of a

3D human model available in the Unity Asset Store is used. It includes arm joints,

which facilitates the use of wearable sensors as a controller for the hand movements

of the model. The state-of-the-art deep learning architectures for activity recognition

[30, 35] are used to perform recognition on the generated synthetic videos.

Some works involve training the models using visual abstractions like clipart,

sketches [5, 39] and the concept of Zero Shot Learning which is an extreme case of

transfer learning where real world data is classified based on synthetically learned
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features [25]. This work, however, has specific constraints as discussed in Section 4.2

which makes Zero Shot recognition to perform poorly.

In this case of generating videos using a game engine, hand gestures can have mul-

tiple viewpoint perspectives as opposed to generating video datasets of gestures which

require all possible camera view points. This is a special case of data augmentation

where the data is not augmented using random skews, flipping images, modality or

color channel modification. This is an additional human knowledge infusion used to

augment the training dataset for improved performance. The work on using depth

information to learn side representations of the RGB image has a similar idea [34].

However, it relies heavily on the need for depth information and to hallucinate side

images [13] or getting depth information by surface normal estimation technique [37].
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Chapter 3

DATA ACQUISITION

In this chapter, the process of acquisition of data is explained in detail. The

process of data collection, the setup of the system, user interface and the systematic

variations made in the dataset are discussed.

The dataset consisted of 20 words from the American Sign Language words. Each

subject is made to perform each word 20 times from 59 different users. (IRB :

STUDY00004155)

These words were picked in order to introduce significant variations in hand tra-

jectories and also included a significant amount of highly correlated signs (eg., if and

father) to make sure that the model not only performs well on signs with highly dif-

ferent hand trajectories but also picks up on the minor trajectory variations as well.

This included a mixture of 10 one and 10 two handed signs as shown in Tab. 3.1.

Around 24000 videos of Synthetic-ASL (S-ASL) are generated, which is approx-

imately 20 hours of video and 1000 videos per category. The generated videos also

include three angles of viewpoint variation left, center and right.

3.1 System Setup

The setup consists of two armbands (Myo) worn on each hand of the user. A depth

camera (Microsoft Kinect) is focused on the user to give a skeletal structure feedback

and RGB frames to observe ground truth position coordinates of all the body joints.

The Myos are calibrated by following a rest position. This work primarily focuses on

the quaternion values from the armband sensors which gives the rotation of the arm

about the elbow joint. The calibration step is done by making the user start at a
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Table 3.1: Dataset of 20 ASL Words Generated for the Task of Hand Gesture Recog-

nition.

ASL Words

One hand And, Cop, Father, If, Hearing

Cat, Go out, Deaf, Find, Gold

Two hands Good Night, Can, Cost, Day, Hurt

Here, About, Decide, Large, Hospital

rest position. The user stands in front of the Kinect with calibrated Myo armbands

and performs the ASL words. Each word is given a fixed time of three seconds. The

user starts at rest, performs the sign, goes back to rest position. Multiple users are

allowed to stand in front of Kinect, move around (within the range of the Kinect) to

include spatial variations.

Only the roll, pitch and yaw values from the right and left hand are used to

capture the relative rotation of the arm. These rotation angles are one of the three

Inertial Measurement Units (IMU) orientation data provided by the Myo armbands.

The complete dataset includes all joints position of the body from the Kinect and the

orientation (3 sensors), accelerometer(3 sensors), gyroscope values (3 sensors) (IMU)

and electromyogram (EMG) sensors(8 sensors) from the armband sensors for each

hand. The data is collected at 15 frames per second.

Summary:

Myo armbands and a depth sensor (Microsoft Kinect) are the primary sensors

used to collect the data. This is an extensive dataset consisting of around 24,000

instances and will be available on the Impact Lab server for future work.
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Chapter 4

APPROACH

In this chapter, the method of generation of animated videos from the raw sensor

data obtained from the armband is discussed in detail. The analysis of how much

error this system has when compared to the ground truth values when transforming

the sensor values into videos is performed and the approaches that were used to train

this system are discussed.

4.1 Synthetic Video Generation

The following subsections explain in detail the individual components involved in

the synthetic video generation process.

4.1.1 Scene

The scene contains an empty synthetic environment which appears as a black

background in the generated videos. A predefined set of 3D hands from a 3D human

model available in the Unity Asset Store is used. Only the upper and lower arms

from the 3D human model are used to generate the videos. These hand models will

be performing the hand gestures based on the orientation data. The lower arm is

attached to the upper arm using the elbow joint. Since only lower arm movements

are considered, the rotation is on both the lower arms with respect to the elbow joint.

To track the movement an in-scene camera placed at a fixed distance from the hand

models is used. The camera is placed so that it gives an appearance of a third person

camera.
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4.1.2 Video Generation:

The 3D human model used here consists of only the left and right hands since only

hand tracking and hand gesture recognition is the primary focus. The motion of the

hand model is performed by rotating the hand model around the elbow joint using

the raw orientation data. The raw orientation time series data obtained from the

armbands are used to generate the video frames (320 × 240) at 30 frames per second

as shown in Fig. 1.1. The hand coordinates of the 3D hand model are tracked to obtain

the position data. The position data from Kinect is used to do error estimation as

discussed in 4.2 and shown in Fig. 5.2.

4.1.3 Viewpoint variations

In order to introduce diversity and to account for viewpoint variations in real time

datasets, the angles at which the camera points to the hand models are varied. By

doing this, generation of videos of hand gestures as if the third person is viewing

them from an angle is made possible. In real-world scenarios, a dataset collection

process typically involves a subject standing in front of an RGB camera or a Depth

sensor and performing the gestures. Either multiple cameras are placed in different

angles to capture various viewpoint versions of each gesture or the person has to

perform the sign multiple times at different angles to the camera. This is not only

time consuming but also it is not feasible to generate a single gesture for all possible

real-time viewpoint scenarios.

4.2 Synthetic Video Analysis

The following are the observations when the generated synthetic videos are ana-

lyzed.
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Figure 4.1: Region of Occurrences of Various Words.

4.2.1 Choice of Words:

The 20 words in this dataset are picked in such a way that they fall in various

regions of interests as shown in Fig. 4.1. This subset of words serves as a sufficient

representation of the words in American Sign Language since all the words involve

hand trajectories which lie only inside the above region of interests. Due to the

dominant right hand, region 4 has more occurrences of words as shown in Tab. 4.1.

Ignoring the regions with very high and very low frequencies (caused due to dominant

hand), chi-squared test to see if the frequency of signs follow a uniform distribution

gives a score of 0.81.

4.2.2 Failed Generations:

While generating videos, sometimes there are noisy sensor data which leads to

erroneous rotation of the lower arm. These videos were manually identified and

removed. Some of the generated error cases are shown in Fig. 4.2. All the bad

quality data generated were pruned in the preprocessing step.

12



Table 4.1: Word Occurrences of Regions Shown in Fig. 4.1.

Region Words

1 And, Cat, Decide, Day, Go Out, Gold

2 And, Cat, Father, If, Hearing, Day, Deaf, Gold, Good Night

3 And, Day

4 Can, Cop, About, Father, If, Hearing, Find, Gold, Hurt, Here

Hospital, Large, Decide, Day

5 About, Cop, Good Night, Cost, Hurt, Hospital, Large, Day

6 Hospital, Large, Decide, Day, Can, About, Hurt, Here

7 Can, Find, Here, Decide

8 Good Night

9 Can, Here, Decide

4.2.3 Lower Arm Side-effects:

Since only the rotation movements of the lower arm are being considered, there are

ASL words with significant similarity like ”father” and ”if” which both have almost

the same lower arm movement. So most of the signs have a significant movement of

the upper arm, which are represented by the 3D hand model by moving behind the

XY plane. This although ensures a unique way of representing the gestures.

13



Figure 4.2: Bad Generations Due to Noise in Sensor Readings.

4.2.4 Entropy Analysis

Preprocessing with synthetic hand models helps in obtaining position data for the

various locations of the hands while performing gestures. Theoretically, 3D position

coordinates information can be extracted by double integrating raw accelerometer

values. This technique, however, was found to introduce significant errors while ob-

taining displacement information caused by the gesture on the original position point.

This happens because getting displacement by double integrating accelerometer val-

ues causes the errors to accumulate through the integrals. Synthetic videos help to

mitigate these issues since the hand positions are calculated using orientation changes

from the initial calibration point. The values can be input directly to a hand model

generator such as the one in Unity Game engine to create movement and future orien-

tation information with more fidelity and with fewer displacement errors as compared

to the locations generated by using accelerometer sensors.

Real video analysis: Raw RGB videos can also be used for recognizing gestures.

The recognition accuracy of 91.20% was achieved by using only raw RGB pixels is

significantly lower than was achieved by using synthetic video data. There are various

reasons for this: 1) Video data includes information unnecessary for gesture recog-

nition such as background objects and their movements, and color information for
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clothes and body of users, and 2) Rotation information for hands is not significantly

noticeable.

A simple machine learning model for gesture recognition can also be trained with

only the information from orientation time-series. However, it is found that using

only orientation information does not give recognition accuracies comparable to us-

ing synthetic videos as seen in Tab. 6.1. Although the videos are created solely from

the orientation sensors, synthetic videos include more information than contained in

the orientation information. This is because the use of hand models provides a means

of domain constrained extrapolation to create more data points. The optical flow of

a synthetic video contains information not only on the point on the arm that the Myo

device was worn in but it has extrapolated data points throughout the arm starting

from the palm and ending at the elbow joint. This adds a significant amount of infor-

mation for learning quantified as the entropy information between the optical flow of

generated videos versus that of the raw sensor data as seen in Fig. 4.4. This added

information is especially useful as the use of human movement model constrains the

extrapolation to include only movements that are possible for a human hand. Thus,

the use of human models provides an accurate and useful extrapolation which other-

wise would have to be performed using mathematical equations which would be less

precise and would require significant human effort.

Stick model analysis: To test the need for human hands for the synthetic video

model, experiments were performed replacing the human hand with sticks as shown

in Fig. 4.3. Although the generated videos using the stick models were useful, there

was a loss in accuracy of 6%. Although, the generated videos using sticks instead of

hands had similar entropy as seen in Fig. 4.4, the difference in recognition accuracy

is explained since the stick models, due to their 2D nature, can use only the yaw, and
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Figure 4.3: Stick Model Versus 3D Human Hand Model.

pitch information while the complete human hand model is able to capture the roll

information as well. In many instances, ASL gestures are differentiated not only by

the location and movement of the hands but also by the orientation as explained by

[26]. Thus, the use of synthetic videos using human hand models for ASL recognition

is justified.

For performing entropy analysis, the gray-scale optical flow images are flattened

to represent a 1-dimensional array and Shannon Entropy is calculated for this 1D

array of gray-scale values to check the distribution of information.

A single video consists of multiple frames. The 1D array is generated by averaging

all the pixel values from the frames. This is done for each word video and is shown

in Fig. 4.4. The accelerometer raw data for both hands is a 6 value feature for each

row and has the time dimension. This is also flattened to a 1-dimensional array to

calculate Shannon Entropy. Projecting position data with high errors obtained by

the double integral of accelerometer values to a higher dimension will increase errors

and hence it is not performed.

The time-series data di is considered as input to calculate the Shannon Entropy
n∑

i=1

−p(di) log2(p(di)). The data is distributed into histograms and entropy is calcu-

lated as explained in Alg. 1.

The entropy of linear stick-based image model is similar to that of the non-linear

hand model. The stick model lacks the information that a 3D non-linear hand model
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Algorithm 1 Entropy Calculation

1: procedure Shannon Entropy

2: dataSet← list of unique items in timeSeries

3: freqList← [ ]

4: for entry in dataSet do

5: counter ← 0

6: for i in timeSeries do

7: if i = entry then counter ← counter + 1.

8: tsLen← length of timeSeries

9: freq← counter/tsLen

10: append freq to freqList

11: ent← 0.0

12: for freq in freqList do

13: ent← ent+freq*log(freq)

14: ent← -ent

15: return ent

contains, since this only uses pitch and yaw information. The lack of information

affects the recognition accuracy and this is improved with the help of a 3D human

non-linear hand model by incorporating the roll information.

4.2.5 Error Estimation

An error estimation is performed on the synthetically generated dataset to see

how much trajectory shift occurs during the conversion. The palm of the 3D hu-

man hand model is tracked and the Cartesian coordinates in the XYZ space for both

hands is obtained. For each ASL word instance, the hand positions are normalized

17



Figure 4.4: Entropy Analysis From Using Various Representations of Data.

between 0 and 1 for effective comparison with other instances. The actual XYZ coor-

dinates of the palm for both hands is obtained from the Kinect which tracks the wrist

joint. Root mean squared error is used to compute the average error for each ASL

word and is averaged over all the users between the Myo generated(reconstruction)

and Kinect(actual) coordinates. The RMSE normalized is shown in Fig. 4.5. Since

only the movement and rotation of only the elbow joint is considered, the upper arm

movement is ignored. However, many of the ASL signs involved significant upper arm

movement and these words have higher error compared to the words which involve no

upper arm movement. Minimizing this error would certainly improve the accuracy of

the system.

Summary:

In this chapter, synthetic hand movement videos are generated and a detailed

analysis of the generated videos consisting of error estimation and entropy analysis
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Figure 4.5: The Normalized RMSE Error of Converting Quaternions to Hand Model

Compared to the Actual Kinect Ground Truth Position Coordinates.

is performed. The synthetic scene and camera can be varied for various viewpoint

generations of the video. The entropy of the frame images is used to calculate the

amount of information present in the videos and the gain in information is quantified

by comparing with the entropy of raw signals. The depth sensor position value is

considered as ground truth and an RMSE error estimation is performed to calculate

the error in generation.
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Chapter 5

MODEL ARCHITECTURES

In this chapter, the deep learning architectures used to perform recognition are ex-

plained in detail. Convolution 3D (C3D) [33] and the two stream networks from the

Temporal Segment Networks [35] are used to test this hypothesis.

5.1 Convolution 3D

Convolution 3D (C3D) net has 8 convolution, 5 max-pooling, and 2 fully connected

layers, followed by a soft-max output layer as shown in Fig. 5.1. All 3D convolution

kernels are 3 × 3 × 3 with stride 1 in both spatial and temporal dimensions. Number

of filters are denoted in each box. The 3D pooling layers are denoted from pool1 to

pool5. All pooling kernels are 2 × 2 × 2, except for pool1 is 1 × 2 × 2. Each fully

connected layer has 4096 output units.

The same approach is followed as mentioned in the C3D paper. The feature ex-

traction is as follows: The video is split into 16 frame long clips and has a 8-frame

overlap between two consecutive clips. They are fed into the network and the fc6

activations are obtained. These activations are averaged and followed by a L2-norm

for the final output.

Figure 5.1: Convolution 3D Architecture [33].
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Figure 5.2: Two Stream Model Overview for Synthetic Video Recognition [35].

5.2 Two Stream Networks

The temporal segment networks are an improvisation on the Two Stream Model

[30]. They use Inception architecture and an ImageNet [16] prior as initialization.

Optical flow frames in addition to the RGB frames are generated, to train the Two

Stream networks as shown in Fig. 5.2. For the RGB Network, the learning rate is

initialized as 0.001 and decreases 0.1 every 1,500 iterations. The total number of

iterations is 3,500. For the Flow network, initialize the learning rate as 0.005 and it

reduces by 0.1 after 10,000 and 16,000 iterations. The total number of iterations is

18,000. The optical flow extraction technique is the same as used in the paper [35].

5.2.1 Optical Flow

Optical flow is used to calculate the displacement of brightness patterns between

frames by using the information from the neighboring pixels [20]. All the pixels are

considered when extracting optical flow here, hence, this is a dense optical flow ex-

traction.
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Summary:

The convolution 3D architecture is used because it can effectively model both

spatial and temporal dimensions of a video. The Two Stream model which uses two

tracks of recognition is used. The two tracks are the RGB frame and the optical flow

track. It combines the results of both networks to perform improved recognition on

the videos.
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Chapter 6

RESULTS

In this chapter, the various analysis on the models and their results are discussed.

The concept of user independent gesture recognition, multimodal gesture recognition

are very important topics and there is a great deal of ongoing research in both wearable

sensor domain and in computer vision. Some of the existing techniques use signal

processing techniques and performing feature extraction on the raw data [22, 23] but

are user dependent. In this proposed method of constructing the dataset, only the

raw sensor values are used and the same hand model with data from multiple user

is animated. This effectively enables us to capture one of the core meanings of the

gesture i.e., the hand trajectory. All the experiments below are user independent

evaluations. A split of 32 users for training and 27 users for testing is considered.

6.1 Wearable Sensor - Armband sensors

For IMU based experiment, the statistical feature set benchmarked features from

Thomaz et al. [32] experiment is used. The sensors from the Myo armband consists

of gyroscope, accelerometer, orientation and EMG which is a total of 34 sensors. The

feature set consists of five statistical features: mean, variable, skewness (
∑N

n=1(xn−x)3

(N−1)s3
),

kurtosis (
∑N

n=1(xn−x)4

(N−1)s4
), and Root-Mean-Square ( 1

N

∑N−1
n=0 |Xn|2). Therefore, the fea-

ture size for one instance is 170 (5 feature × 34 sensor). Then, traditional machine

learning techniques (supervised learning) such as Naive Bayes (NB), Random Forest

(RF), Support Vector Machine (SVM), and Deep Neural Network (DNN) are applied.

The DNN model has four or five hidden layers with 256 or 512 nodes for each layer.

The activation function is ReLU, and the gradient descent optimization is ADaptive

23



Moment Estimation (ADAM) [15]. The results are shown in Tab. 6.1. This model

trained on synthetic videos as discussed in Chapter 5 significantly outperforms the

other models.

Table 6.1: Signal Processing Versus MirrorGen TwoStream Model.

Model 34 sensors Orientation (6 sensors)

Naive Bayes 34.51 26.38

SVM 50.65 46.34

Random Forest 71.63 60.36

DNN (255 Nodes 4 Layers) 56.72 47.87

DNN (512 Nodes 5 Layers) 50.85 44.34

Proposed Method - 99.03

6.2 Results on Convolution 3D

From the generated synthetic videos, for each gesture instance, a 16-frame non-

overlapping set is used as the input to the network which is the same as the [33].

Only spatial images are used here and no preprocessing is required. The results

on Convolution 3D is shown in Tab. 6.2. It is observed that the Convolution 3D

effectively captures the salient motion of the arm.

The confusion matrix shown in Fig. 6.1 and in Fig. 6.2, is the average prediction

scores for each ASL word from the 20 word S-ASL dataset. Words like cat, decide

involve significant upper arm movement. This affects the accuracy of the model since

only the lower arm movement is considered but the effect is not that significant. The
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Table 6.2: Results Using Synthetic Videos on Convolution 3D.

Dataset Accuracy

One Angle 88.68

Three Angle 92.75

Figure 6.1: Left: t-SNE Visualization of the fc2 Layer of the Convolution 3D Trained

Network on Direct Angle Dataset Right: Confusion Matrix Generated Based on

Average Prediction Probabilities of Multiple Instance of Each Gesture From S-ASL

Using C3D on Direct Angle Dataset.

minor glows in the confusion matrix are because of the semantic similarity between

the signs. For example, the word ”if” and ”go out” have the same region of execution

which is near the dominant arm shoulder.
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Figure 6.2: Left: t-SNE Visualization of the fc2 Layer of the Convolution 3D Trained

Network on 3-Angle Dataset Right: Confusion Matrix Generated Based on Average

Prediction Probabilities of Multiple Instance of Each Gesture From S-ASL Using C3D

on 3-Angle Dataset.

6.3 Results on Temporal Segment Networks

6.3.1 Real - RGB Videos

Since RGB frames are also collected during the data collection process, training

the same Two Stream network on only real RGB videos by extracting optical flow for

RGB videos is also performed. These videos have a person standing in front of the

camera and perform all the ASL words. The results for various size of training data

is shown in increasing order in Tab. 6.3.

6.3.2 Synthetic Videos

The model is trained on synthetic videos from 32 train users and tested on syn-

thetic videos from 27 test users. The results are shown in Tab. 6.4.

Both training and testing on generated video data is done to compare recognition
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Table 6.3: Results for Train and Test on RGB Videos (No Synthetic Data) Using the

Two Stream Model.

No of Real Videos RGB Flow Fusion

2000 78.52 91.12 91.50

5000 80.16 91.53 91.46

10000 80.56 90.75 91.20

Table 6.4: Results for Train and Test on Synthetic Videos Using the Two Stream

Model.

Dataset RGB Flow Fusion

One Angle 84.46 99.03 99.02

Three Angle 80.31 98.98 98.81

accuracies of purely IMU based data with other recognition models as shown in the

Tab. 6.1. The Flow model performs better since the dataset has more temporal

information.

The confusion matrix and the t-SNE visualization [19] of the global-pooling layer

for the optical flow model of the one-angle video generation is shown in Fig. 6.3. The

clustering of data points in the t-SNE visualization shows effective learned represen-

tation of the global-pool layer of the network.
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Figure 6.3: Left: t-SNE Visualization of the Global-Pooling Layer of the Optical

Flow Trained Network Using Synthetic Data. Right: Confusion Matrix Generated

Based on Normalized Average Prediction Score of Multiple Instances of Each Gesture

From the Optical Flow Trained Network Using Synthetic Data.

6.4 Discussion

The objective here is to use minimal amount of real videos with a large amount

of synthetic videos to get similar performance. The ratio is fixed at 80% generated

videos - 20% real videos as the threshold point and further experimented by varying

the size of the train data as shown in Tab. 6.5 and Fig. 6.5.

The architecture shown in Fig. 5.1 is modified to support mix of synthetic videos

as shown in Fig. 6.4

We can see that from the 20-80 split there is a significant increase in accuracy.

The threshold point is fixed at 20-80 and is further experimented by varying the size

of the train data. The above experiment was done with a fixed train data size of

10,000 videos.

To evaluate the performance of synthetic videos, a comparison test between a

model trained only on Real videos and a model trained on a mix of real and synthetic
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Figure 6.4: Modified System Overview to Support Mixing of Real and Synthetic

Videos.

Figure 6.5: Change in Accuracy of the Flow Model Over Various Mix Ratios of Videos

on a Total of 10000 Videos.
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Table 6.5: Performance of the Two Stream Model Over Various Mix Ratios of Videos

on a Total of 10000 Videos.

Train Split (%) Accuracy (%)

Real Synthetic

videos videos RGB Flow Fusion

100 0 80.56 90.75 91.20

90 10 82.54 91.43 91.91

80 20 80.39 90.09 91.58

70 30 78.18 89.82 91.01

60 40 83.09 90.23 90.88

50 50 80.70 90.30 90.66

40 60 75.64 88.04 89.56

30 70 64.92 89.19 90.31

20 80 46.87 83.72 84.36

videos are tested on a test dataset containing both real and synthetic videos. The

mix model performs significantly better than the model trained only on real videos

is shown in Fig. 6.6.

The confusion matrix and the tSNE visualization of the global-pooling layer for

the optical flow model of the 90 real - 10 generated model with highest accuracy of

91.91% video generation is shown in Fig. 6.7. The clustering of data points in the

tSNE visualization shows effective learned representation of the global-pool layer.

The average entropy for all the modalities is calculated by averaging the entropy

of all the words. As shown in Tab. 6.6, the RGB videos have information unnecessary

for gesture recognition. They have a high entropy which affects the accuracy. Prepro-
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Figure 6.6: Accuracy of the Flow Model Versus Splits Ratio Graph Containing Both

Real and Mix Model Data on a Total of 10000 Videos.

Figure 6.7: t-SNE Visualization of the Global-Pooling Layer of the Inception Optical

Flow Trained Network for 9010 Mix Model. Confusion Matrix Generated Based on

Average Prediction Probabilities of Multiple Instances of Each Gesture From S-ASL

Using the 9010 Mix Model.
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cessing can be performed to remove background and perform recognition, however,

this is not feasible in real-time and significant human effort is needed to perform

guided preprocessing. The stick model even though has a similar entropy to the hand

model lacks in roll information. When a model trained on synthetic hands is tested on

RGB videos (Real) they give very low accuracy since the distribution of data is very

different. Since, the non-linear hand model gives a low accuracy the stick model will

perform equally bad, hence, this experiment is not performed. For the Mix model,

the best performing mix model (90-10 mix) is considered. The mix model performs

marginally better compared to the all real model but still has high entropy. The

entropy of the mixed model is a weighted average of the two modalities (90-10 mix).

Table 6.6: Comparison of Real, Hand and Stick Models Accuracies.

Modality Real Stick Hand Mix

Average
(Hand & Real)

Entropy (bits) 577.08 191.17 252.82 544.65

Real - Train 91.20 - - -

Stick - Train - 93.75 - -

Hand - Train 10.67 - 99.03 -

Mix (Hand & Real) 91.91 - 99.03 92.62

Summary: The results based purely on using the raw sensor data using signal

processing techniques for feature extraction is discussed first and compared with the

proposed thesis work. Summary on the experiments on the two architectures are

as follows: The two stream model is found to perform the best on synthetic data.

Further, a recognition model purely on real video based input instead of synthetic
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input is also used. The generated synthetic videos can be used to augment the real

videos for improving results as shown in the discussion section. An analysis of various

modalities to intuitively infer the gain in information is performed.
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Chapter 7

CONCLUSIONS

In this thesis, a novel way of generating synthetic video dataset for hand gestures

by focusing mainly on the rotation of the lower arm is discussed. There is a significant

accuracy increase for recognition using synthetic video vision as compared to conven-

tional signal processing. This is partly because robust pre-trained mid-level features

are available for video recognition but are not available for raw sensor signals.

The idea of using this generated synthetic videos to improve recognition accuracy

on real-world gesture datasets is experimented. The experimental results for mixing

synthetic and real-world data for training to test on real-world videos is shown to

support the idea of data augmentation using MirrorGen generated videos.

By using synthetically generated videos, it can be seen that they can be used

as a substitute for problems where the actual dataset is small. The small dataset

can be augmented with synthetic videos to make a large scale dataset for training

large networks without affecting the accuracy and to perform recognition in different

modalities.

In addition to performing well on the transformed sensor data, this synthetic

dataset also helps in multitask classification of real-time gesture data by serving as a

relevant prior.

Future Work:

(a) The wearable sensors used also provide EMG data for the lower arm. This EMG

data can be further used to improve recognition confidence by differentiating similar

hand rotations which have different wrist/palm poses.
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(b) The usage of synthetic video to augment the training data is analyzed. However,

they do not show promising consistent increase and there is marginal gain in some

specific cases. This is because of the difference in distribution between the synthetic

videos and the real videos. This distribution gap problem could be solved by intro-

ducing a whole body avatar instead of only synthetic arms.

(c) Further, this proposed method can also be used for recognition of generic hand

gestures (pantomimes). This may involve detecting gestures like opening a door, wav-

ing hands and even continuous gestures involving complex activities like eating [18]

and drinking.

(d) Using information from additional sensors other than armband sensors like a

smartwatch, leap motion sensor or ear mounted sensors [3], more information can be

added to the generated synthetic videos to recognize gestures which also involve parts

other than the lower arm.

(e) Using wearable sensors to interact with Virtual Reality applications coupled with

gesture recognition opens the door to countless opportunities since multiple combina-

tions of gestures are possible with high precision recognition using synthetic models.
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