2,001,301 research outputs found

    Self-organization of quasi-equilibrium stationary condensation in accumulative ion-plasma devices

    Full text link
    We consider both theoretically and experimentally self-organization process of quasi-equilibrium steady-state condensation of sputtered substance in accumulative ion-plasma devices. The self-organization effect is shown to be caused by self-consistent variations of the condensate temperature and the supersaturation of depositing atoms. On the basis of the phase-plane method, we find two different types of the self-organization process to be possible. Experimental data related to aluminum condensates are discussed to confirm self-organization nature of quasi-equilibrium steady-state condensation process.Comment: 14 pages, 3 figure

    Unsupervised machine learning for detection of phase transitions in off-lattice systems II. Applications

    Get PDF
    We outline how principal component analysis (PCA) can be applied to particle configuration data to detect a variety of phase transitions in off-lattice systems, both in and out of equilibrium. Specifically, we discuss its application to study 1) the nonequilibrium random organization (RandOrg) model that exhibits a phase transition from quiescent to steady-state behavior as a function of density, 2) orientationally and positionally driven equilibrium phase transitions for hard ellipses, and 3) compositionally driven demixing transitions in the non-additive binary Widom-Rowlinson mixture

    Atom-light crystallization of BECs in multimode cavities: Nonequilibrium classical and quantum phase transitions, emergent lattices, supersolidity, and frustration

    Full text link
    The self-organization of a Bose-Einstein condensate in a transversely pumped optical cavity is a process akin to crystallization: when pumped by a laser of sufficient intensity, the coupled matter and light fields evolve, spontaneously, into a spatially modulated pattern, or crystal, whose lattice structure is dictated by the geometry of the cavity. In cavities having multiple degenerate modes, the quasi-continuum of possible lattice arrangements, and the continuous symmetry breaking associated with the adoption of a particular lattice arrangement, give rise to phenomena such as phonons, defects, and frustration, which have hitherto been unexplored in ultracold atomic settings involving neutral atoms. The present work develops a nonequilibrium field-theoretic approach to explore the self-organization of a BEC in a pumped, lossy optical cavity. We find that the transition is well described, in the regime of primary interest, by an effective equilibrium theory. At nonzero temperatures, the self-organization occurs via a fluctuation-driven first-order phase transition of the Brazovskii class; this transition persists to zero temperature, and crosses over into a quantum phase transition of a new universality class. We make further use of our field-theoretic description to investigate the role of nonequilibrium fluctuations on the self-organization transition, as well as to explore the nucleation of ordered-phase droplets, the nature and energetics of topological defects, supersolidity in the ordered phase, and the possibility of frustration controlled by the cavity geometry. In addition, we discuss the range of experimental parameters for which we expect the phenomena described here to be observable, along with possible schemes for detecting ordering and fluctuations via either atomic correlations or the correlations of the light emitted from the cavity.Comment: 34 pages, 13 figures; follow up to Nat. Phys. 5, 845 (2009

    Self Organization and a Dynamical Transition in Traffic Flow Models

    Get PDF
    A simple model that describes traffic flow in two dimensions is studied. A sharp {\it jamming transition } is found that separates between the low density dynamical phase in which all cars move at maximal speed and the high density jammed phase in which they are all stuck. Self organization effects in both phases are studied and discussed.Comment: 6 pages, 4 figure

    Volume fluctuations and geometrical constraints in granular packs

    Get PDF
    Structural organization and correlations are studied in very large packings of equally sized acrylic spheres, reconstructed in three-dimensions by means of X-ray computed tomography. A novel technique, devised to analyze correlations among more than two spheres, shows that the structural organization can be conveniently studied in terms of a space-filling packing of irregular tetrahedra. The study of the volume distribution of such tetrahedra reveals an exponential decay in the region of large volumes; a behavior that is in very good quantitative agreement with theoretical prediction. I argue that the system's structure can be described as constituted of two phases: 1) an `unconstrained' phase which freely shares the volume; 2) a `constrained' phase which assumes configurations accordingly with the geometrical constraints imposed by the condition of non-overlapping between spheres and mechanical stability. The granular system exploits heterogeneity maximizing freedom and entropy while constraining mechanical stability.Comment: 5 pages, 4 figure

    Self-organization and phase transition in financial markets with multiple choices

    Full text link
    Market confidence is essential for successful investing. By incorporating multi-market into the evolutionary minority game, we investigate the effects of investor beliefs on the evolution of collective behaviors and asset prices. When there exists another investment opportunity, market confidence, including overconfidence and under-confidence, is not always good or bad for investment. The roles of market confidence is closely related to market impact. For low market impact, overconfidence in a particular asset makes an investor become insensitive to losses and a delayed strategy adjustment leads to a decline in wealth, and thereafter, one's runaway from the market. For high market impact, under-confidence in a particular asset makes an investor over-sensitive to losses and one's too frequent strategy adjustment leads to a large fluctuation in asset prices, and thereafter, a decrease in the number of agents. At an intermediate market impact, the phase transition occurs. No matter what the market impact is, an equilibrium between different markets exists, which is reflected in the occurrence of similar price fluctuations in different markets. A theoretical analysis indicates that such an equilibrium results from the coupled effects of strategy updating and shift in investment. The runaway of the agents trading a specific asset will lead to a decline in the asset price volatility and such a decline will be inhibited by the clustering of the strategies. A uniform strategy distribution will lead to a large fluctuation in asset prices and such a fluctuation will be suppressed by the decrease in the number of agents in the market. A functional relationship between the price fluctuations and the numbers of agents is found

    Surface organization of homoepitaxial InP films grown by metalorganic vapor-phase epitaxy

    Full text link
    We present a systematic study of the morphology of homoepitaxial InP films grown by metalorganic vapor-phase epitaxy which are imaged with ex situ atomic force microscopy. These films show a dramatic range of different surface morphologies as a function of the growth conditions and substrate (growth temperature, V/III ratio, and miscut angle < 0.6deg and orientation toward A or B sites), ranging from stable step flow to previously unreported strong step bunching, over 10 nm in height. These observations suggest a window of growth parameters for optimal quality epitaxial layers. We also present a theoretical model for these growth modes that takes account of deposition, diffusion, and dissociation of molecular precursors, and the diffusion and step incorporation of atoms released by the precursors. The experimental conditions for step flow and step bunching are reproduced by this model, with the step bunching instability caused by the difference in molecular dissociation from above and below step edges, as was discussed previously for GaAs (001)
    corecore