32 research outputs found

    Adaptive Design in Discrete Stochastic Optimization

    Get PDF
    We present adaptive assignment rules for the design of the necessary simulations when solving discrete stochastic optimization problems. The rules are constructed in such a way, that the expected size of confidence sets for the optimizer is as small as possible

    Selecting the best stochastic systems for large scale engineering problems

    Get PDF
    Selecting a subset of the best solutions among large-scale problems is an important area of research. When the alternative solutions are stochastic in nature, then it puts more burden on the problem. The objective of this paper is to select a set that is likely to contain the actual best solutions with high probability. If the selected set contains all the best solutions, then the selection is denoted as correct selection. We are interested in maximizing the probability of this selection; P(CS). In many cases, the available computation budget for simulating the solution set in order to maximize P(CS) is limited. Therefore, instead of distributing these computational efforts equally likely among the alternatives, the optimal computing budget allocation (OCBA) procedure came to put more effort on the solutions that have more impact on the selected set. In this paper, we derive formulas of how to distribute the available budget asymptotically to find the approximation of P(CS). We then present a procedure that uses OCBA with the ordinal optimization (OO) in order to select the set of best solutions. The properties and performance of the proposed procedure are illustrated through a numerical example. Overall results indicate that the procedure is able to select a subset of the best systems with high probability of correct selection using small number of simulation samples under different parameter settings

    Optimal Simple Regret in Bayesian Best Arm Identification

    Full text link
    We consider Bayesian best arm identification in the multi-armed bandit problem. Assuming certain continuity conditions of the prior, we characterize the rate of the Bayesian simple regret. Differing from Bayesian regret minimization (Lai, 1987), the leading factor in Bayesian simple regret derives from the region where the gap between optimal and sub-optimal arms is smaller than log⁑TT\sqrt{\frac{\log T}{T}}. We propose a simple and easy-to-compute algorithm with its leading factor matches with the lower bound up to a constant factor; simulation results support our theoretical findings

    Convergence of Sample Path Optimal Policies for Stochastic Dynamic Programming

    Get PDF
    We consider the solution of stochastic dynamic programs using sample path estimates. Applying the theory of large deviations, we derive probability error bounds associated with the convergence of the estimated optimal policy to the true optimal policy, for finite horizon problems. These bounds decay at an exponential rate, in contrast with the usual canonical (inverse) square root rate associated with estimation of the value (cost-to-go) function itself. These results have practical implications for Monte Carlo simulation-based solution approaches to stochastic dynamic programming problems where it is impractical to extract the explicit transition probabilities of the underlying system model

    Convergence Rate Analysis for Optimal Computing Budget Allocation Algorithms

    Full text link
    Ordinal optimization (OO) is a widely-studied technique for optimizing discrete-event dynamic systems (DEDS). It evaluates the performance of the system designs in a finite set by sampling and aims to correctly make ordinal comparison of the designs. A well-known method in OO is the optimal computing budget allocation (OCBA). It builds the optimality conditions for the number of samples allocated to each design, and the sample allocation that satisfies the optimality conditions is shown to asymptotically maximize the probability of correct selection for the best design. In this paper, we investigate two popular OCBA algorithms. With known variances for samples of each design, we characterize their convergence rates with respect to different performance measures. We first demonstrate that the two OCBA algorithms achieve the optimal convergence rate under measures of probability of correct selection and expected opportunity cost. It fills the void of convergence analysis for OCBA algorithms. Next, we extend our analysis to the measure of cumulative regret, a main measure studied in the field of machine learning. We show that with minor modification, the two OCBA algorithms can reach the optimal convergence rate under cumulative regret. It indicates the potential of broader use of algorithms designed based on the OCBA optimality conditions

    Adaptive Data Depth via Multi-Armed Bandits

    Full text link
    Data depth, introduced by Tukey (1975), is an important tool in data science, robust statistics, and computational geometry. One chief barrier to its broader practical utility is that many common measures of depth are computationally intensive, requiring on the order of ndn^d operations to exactly compute the depth of a single point within a data set of nn points in dd-dimensional space. Often however, we are not directly interested in the absolute depths of the points, but rather in their relative ordering. For example, we may want to find the most central point in a data set (a generalized median), or to identify and remove all outliers (points on the fringe of the data set with low depth). With this observation, we develop a novel and instance-adaptive algorithm for adaptive data depth computation by reducing the problem of exactly computing nn depths to an nn-armed stochastic multi-armed bandit problem which we can efficiently solve. We focus our exposition on simplicial depth, developed by Liu (1990), which has emerged as a promising notion of depth due to its interpretability and asymptotic properties. We provide general instance-dependent theoretical guarantees for our proposed algorithms, which readily extend to many other common measures of data depth including majority depth, Oja depth, and likelihood depth. When specialized to the case where the gaps in the data follow a power law distribution with parameter Ξ±<2\alpha<2, we show that we can reduce the complexity of identifying the deepest point in the data set (the simplicial median) from O(nd)O(n^d) to O~(ndβˆ’(dβˆ’1)Ξ±/2)\tilde{O}(n^{d-(d-1)\alpha/2}), where O~\tilde{O} suppresses logarithmic factors. We corroborate our theoretical results with numerical experiments on synthetic data, showing the practical utility of our proposed methods.Comment: Keywords: multi-armed bandits, data depth, adaptivity, large-scale computation, simplicial dept
    corecore