6 research outputs found

    Despliegue de un Cloud Privado para entornos de cómputo científico

    Get PDF
    Considerando el desarrollo actual del paradigma Cloud Computing, en este trabajo se presenta un análisis de la arquitectura y se describe el despliegue de un entorno Cloud Privado con el objetivo de ejecutar aplicaciones de cómputo científico. Se utiliza el software de código abierto Eucalyptus, el cual brinda la posibilidad de desplegar un Cloud Privado. Además, se construye una imagen para poder instanciar una máquina virtual que permita la ejecución de aplicaciones científicas. Por otro lado, con el objetivo de probar el entorno y realizar una primera medición del overhead introducido por la arquitectura, se utiliza la solución paralela del algoritmo N-Reinas.Presentado en el XI Workshop Procesamiento Distribuido y Paralelo (WPDP)Red de Universidades con Carreras en Informática (RedUNCI

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Multi-objective scheduling of many tasks in cloud platforms.

    Get PDF
    h i g h l i g h t s • We propose an ordinal optimized method for multi-objective many-task scheduling. • We prove the suboptimality of the proposed method through mathematical analysis. • Our method significantly reduces scheduling overhead by introducing a rough model. • Our method delivers a set of semi-optimal good-enough scheduling solutions. • We demonstrate the effectiveness of the method on a real-life workload benchmark. a r t i c l e i n f o b s t r a c t The scheduling of a many-task workflow in a distributed computing platform is a well known NP-hard problem. The problem is even more complex and challenging when the virtualized clusters are used to execute a large number of tasks in a cloud computing platform. The difficulty lies in satisfying multiple objectives that may be of conflicting nature. For instance, it is difficult to minimize the makespan of many tasks, while reducing the resource cost and preserving the fault tolerance and/or the quality of service (QoS) at the same time. These conflicting requirements and goals are difficult to optimize due to the unknown runtime conditions, such as the availability of the resources and random workload distributions. Instead of taking a very long time to generate an optimal schedule, we propose a new method to generate suboptimal or sufficiently good schedules for smooth multitask workflows on cloud platforms. Our new multi-objective scheduling (MOS) scheme is specially tailored for clouds and based on the ordinal optimization (OO) method that was originally developed by the automation community for the design optimization of very complex dynamic systems. We extend the OO scheme to meet the special demands from cloud platforms that apply to virtual clusters of servers from multiple data centers. We prove the suboptimality through mathematical analysis. The major advantage of our MOS method lies in the significantly reduced scheduling overhead time and yet a close to optimal performance. Extensive experiments were carried out on virtual clusters with 16 to 128 virtual machines. The multitasking workflow is obtained from a real scientific LIGO workload for earth gravitational wave analysis. The experimental results show that our proposed algorithm rapidly and effectively generates a small set of semi-optimal scheduling solutions. On a 128-node virtual cluster, the method results in a thousand times of reduction in the search time for semi-optimal workflow schedules compared with the use of the Monte Carlo and the Blind Pick methods for the same purpose
    corecore