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• We propose an ordinal optimized method for multi-objective many-task scheduling.
• We prove the suboptimality of the proposed method through mathematical analysis.
• Our method significantly reduces scheduling overhead by introducing a rough model.
• Our method delivers a set of semi-optimal good-enough scheduling solutions.
• We demonstrate the effectiveness of the method on a real-life workload benchmark.
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a b s t r a c t

The scheduling of a many-task workflow in a distributed computing platform is a well known NP-hard
problem. The problem is even more complex and challenging when the virtualized clusters are used to
execute a large number of tasks in a cloud computing platform. The difficulty lies in satisfying multiple
objectives that may be of conflicting nature. For instance, it is difficult to minimize themakespan of many
tasks, while reducing the resource cost and preserving the fault tolerance and/or the quality of service
(QoS) at the same time. These conflicting requirements and goals are difficult to optimize due to the
unknown runtime conditions, such as the availability of the resources and randomworkload distributions.
Instead of taking a very long time to generate an optimal schedule, we propose a newmethod to generate
suboptimal or sufficiently good schedules for smooth multitask workflows on cloud platforms.

Our new multi-objective scheduling (MOS) scheme is specially tailored for clouds and based on the
ordinal optimization (OO) method that was originally developed by the automation community for the
design optimization of very complex dynamic systems. We extend the OO scheme to meet the special
demands from cloud platforms that apply to virtual clusters of servers from multiple data centers. We
prove the suboptimality through mathematical analysis. The major advantage of our MOS method lies in
the significantly reduced scheduling overhead time and yet a close to optimal performance. Extensive
experiments were carried out on virtual clusters with 16 to 128 virtual machines. The multitasking
workflow is obtained from a real scientific LIGO workload for earth gravitational wave analysis. The
experimental results show that our proposed algorithm rapidly and effectively generates a small set of
semi-optimal scheduling solutions. On a 128-node virtual cluster, the method results in a thousand times
of reduction in the search time for semi-optimal workflow schedules comparedwith the use of theMonte
Carlo and the Blind Pick methods for the same purpose.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Large-scale workflow scheduling demands efficient and simul-
taneous allocation of heterogeneous CPU, memory, and network
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bandwidth resources for executing a large number of computa-
tional tasks. This resource allocation problem is NP-hard [1,2]. How
to effectively schedule many dependent or independent tasks on
distributed sources that could be virtualized clusters of servers in
a cloud platformmakes the problem evenmore complex and chal-
lenging to solve, with a guaranteed solution quality.

The many-task computing paradigms were treated in [3–5].
These paradigms pose new challenges to the scalability problem,
because they may contain large volumes of datasets and loosely
coupled tasks. The optimization requires achieving multiple
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Fig. 1. A cloud platform built with four virtual clusters over three physical clusters. Each physical cluster consists of a number of interconnected servers, represented by the
rectangular boxes with three different shadings for the three physical clusters shown. The virtual machines (VMs) are implemented on the servers (physical machines). Each
virtual cluster can be formed with either physical machines or VMs hosted by multiple physical clusters. The virtual clusters boundaries are shown by four dot/dash-line
boxes. The provisioning of VMs to a virtual cluster can be dynamically done upon user demands.
objectives. For example, it is rather difficult to minimize the
scheduling makespan, the total cost, to preserve fault tolerance,
and the QoS at the same time. Many researchers have suggested
heuristics for the aforesaid problem [6].

The execution of a large-scale workflow encounters a high de-
gree of randomness in the system and workload conditions [7,8],
such as unpredictable execution times, variable cost factors, and
fluctuating workloads that makes the scheduling problem com-
putationally intractable [9]. The lack of information on runtime
dynamicity defies the use of deterministic scheduling models, in
which the uncertainties are either ignored or simplified with an
observed average.

Structural information of the workflow scheduling problem
sheds a light on its inner properties and opens the door to many
heuristic methods. No free lunch theorems [10] suggest that all
of the search algorithms for an optimum of a complex problem
perform exactly the same without the prior structural knowledge.
We need to dig into the prior knowledge on randomness, or reveal
a relationship between scheduling policy and performancemetrics
applied.

The emerging cloud computing paradigm [11–13] attracts in-
dustrial, business, and academic communities. Cloud platforms ap-
peal to handle many loosely coupled tasks simultaneously. Our
LIGO [14] benchmark programs are carried out using a virtual-
ized cloud platformwith a variable number of virtual clusters built
with many virtual machines on fewer physical machines and vir-
tual nodes as shown in Fig. 1 of Section 3. However, due to the
fluctuation of many task workloads in realistic and practical cloud
platforms, resource profiling and simulation stage on thousands of
feasible schedules are needed. An optimal schedule on a cloudmay
take an intolerable amount of time to generate. Excessive response
time for resource provisioning in a dynamic cloud platform is not
acceptable at all.

Motivated by the simulation-based optimization methods in
traffic analysis and supply chain management, we extend the or-
dinal optimization (OO) [15,16] for cloud workflow scheduling. The
core of the OO approach is to generate a rough model resembling
the life of the workflow scheduling problem. The discrepancy be-
tween the rough model and the real model can be resolved with
the optimization of the rough model. We do not insist on finding
the best policy but a set of suboptimal policies. The evaluation of
the roughmodel results inmuch lower scheduling overhead by re-
ducing the exhaustive searching time in a much narrowed search
space. Our earlier publication [17] indicated the applicability of
using OO in performance improvement for distributed computing
systems.

The remainder of the paper is organized as follows. Section 2
introduces related work on workflow scheduling and ordinal opti-
mization. Section 3 presents our model formulti-objective schedul-
ing (MOS) applications. Section 4 proposes the algorithms for
generating semi-optimal schedules to achieve efficient resource
provision in clouds. Section 5 presents the LIGO workload [18] to
verify the efficiency of our proposed method. Section 6 reports the
experimental results using our virtualized cloud platform. Finally,
we conclude with some suggestions on future research work.

2. Related work and our unique approach

Recently, we have witnessed an escalating interest in the re-
search towards resource allocation in grid workflow scheduling
problems. Many classical optimization methods, such as oppor-
tunistic load balance, minimum execution time, and minimum
completion time are reported in [19], and suffrage, min–min,
max–min, and auction-based optimization are reported in [20,21].

Yu et al. [22,23] proposed economy-based methods to handle
large-scale grid workflow scheduling under deadline constraints,
budget allocation, and QoS. Benoit et al. [24] designed resource-
aware allocation strategies for divisible loads. Li and Buyya [25]
proposed model-driven simulation and grid scheduling strategies.
Lu and Zomaya [26] and Subrata et al. [27] proposed a hybrid pol-
icy and another cooperative game framework. J. Cao et al. [28]
applied a queue-basedmethod to configure amulti-server tomax-
imize profit for cloud service providers.

Most of these methods were proposed to address single ob-
jective optimization problems. Multiple objectives, if considered,
were usually being converted to either a weighted single objective
problem or modeled as a constrained single objective problem.

Multi-objective optimization methods were studied by many
research groups [29–33,22,34] for grid workflow scheduling. To
make a summarization, normally two methods are used. The first
one, as introduced before, is by converting all of the objectives into
one applying weights to all objectives. The other one is a cone-
based method to search for a non-dominated solution, such as
the Pareto optimal front [35]. The concept of a layer is defined
by introducing the Pareto-front in order to compare policy perfor-
mances [36]. An improved version [37] uses the count that one par-
ticular policy dominates others as ameasure of the goodness of the
policy. Ourmethod extends the Pareto-frontmethod by employing
a new noise level estimation method as introduced in Section 4.2.

Recently, Duan et al. [1] suggested a low complexity game-
theoretic optimization method. Dogan and Özgüner [29] devel-
oped a matching and scheduling algorithm for both the execution
time and the failure probability that can trade off them to get an
optimal selection. Moretti et al. [38] suggested all of the pairs to
improve usability, performance, and efficiency of a campus grid.

Wieczorek et al. [6] analyzed five facetswhichmayhave amajor
impact on the selection of an appropriate scheduling strategy, and
proposed taxonomies for multi-objective workflow scheduling.
Prodan and Wieczorek [30] proposed a novel dynamic constraint
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algorithm that outperforms many existing methods, such as LOSS
and BDLS to optimize bi-criteria problems. Calheiros et al. [39]
used a cloud coordinator to scale applications in the elastic cloud
platform.

Smith et al. [40] proposed robust static resource allocation for
distributed computing systems operating under imposed quality
of service (QoS) constraints. Ozisikyilmaz et al. [41] suggested an
efficient machine learning method for system space exploration.
To deal with the complexity caused by the large size of a scale
crowd, a hybrid modeling and simulation based method was
proposed in [42].

None of the above methods, to the furthest of our knowledge,
consider the dynamic and stochastic nature of a cloud workflow
scheduling system. However, the predictability of cloud comput-
ing is less likely. To better understand the run-time situation,
we propose the MOS, which is a simulation based optimization
method systematically built on top of OO, to handle large-scale
search space in solving many-task workflow scheduling problems.
We took into account multi-objective evaluation, dynamic and
stochastic runtime behavior, limited prior structural information,
and resource constraints.

Ever since the introduction of OO in [15], one can search for a
small subset of solutions that are sufficiently good and computa-
tionally tractable. Along the OO line, many heuristic methods have
been proposed in [16,43]. The OO quickly narrows down the solu-
tion to a subset of ‘‘good enough’’ solutions withmanageable over-
head. The OO is specifically designed to solve a problem with a
large search space. The theoretical extensions and successful appli-
cations of OOwere fully investigated in [44]. Constrained optimiza-
tion [45] converts amulti-objective problem into a single-objective
constrained optimization problem. Different from this work, we
apply OO directly in multi-objective scheduling problems, which
simplify the problem by avoiding the above constrained conver-
sion. Selection rules comparison [46] combined with other classi-
cal optimization methods such as genetic algorithm, etc. have also
been proposed.

In this paper, we modify the OO scheme to meet the special
demands from cloud platforms, which we apply to virtual clusters
of servers from multiple data centers.

3. Multi-objective scheduling

In this section, we introduce our workflow scheduling model.
In the latter portion of the section, we will identify the major
challenges in realizing the model for efficient applications.

3.1. Workflow scheduling system model

Consider a workflow scheduling system over S virtual clusters.
Each virtual cluster has mi (i = 1, 2, . . . , S) virtual nodes. We
useW workflowmanagers to control the job processing rates over
multiple queues, as shown in Fig. 2. Each workflow manager faces
S queues, and each queue corresponds to only one virtual cluster.
A task class is defined as a set of tasks that have the same task
type and can be executed concurrently. There are a total of K task
classes.

To benefit readers, we summarize the basic notations and their
meanings below. The subscript i denotes virtual cluster i. The
superscript k denotes the task class k.

For simplicity, we describe a bi-objective model for minimizing
the task execution time and resource operational cost. The first
metric J1 is the minimization of the sum of all execution times tk.
The minimization of the total cost J2 is our second optimization
metric.

These two objective functions and the constraints are defined in
the belowmentioned equation to formulate our schedulingmodel.
Fig. 2. A queuing model of the VM resource allocation system for a virtualized
cloud platform. Multiple workflow dispatchers are employed to distribute tasks to
various queues. Each virtual cluster uses a dedicated queue to receive the incoming
tasks from various workflows. The number of VMs (or virtual nodes) in each virtual
cluster is denoted bymi . The service rate is denoted by δi for queue i.

Weneed to choose a set of virtual node allocation policies {θ (k)
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each task class k at virtual cluster i. The purpose is to minimize the
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tive functions if there are N performance metrics to optimize.

3.2. Randomness and simulation-based optimization

Let Θ be the scheduling policy space of all of the possible so-
lutions, i.e., Θ = {θ

(k)
i |i = 1, 2, . . . , S; k = 1, 2, . . . , K}. Let ξ

be a random variable to cover the randomness associated with re-
source uncertainty. In our problem, they are characterized by two
parameters, i.e., t(k)i and c(k)

i , defined in Eq. (1). The following objec-
tive function is used to search for suboptimal policies for workflow
scheduling.We attempt tominimize among the expected values as
shown in Eq. (2):
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Mathematically, we formulate the performance of the model as
Jl

θ
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i ; c

(k)
i , t(k)i ; T


, l = 1, 2 that is a trajectory or sample path as

the experiment evolves by time T . Then, we take the expectation
with respect to the distribution of all the randomness, t(k)i and c(k)

i .
To simplify the representation, we use ξj to denote the randomness
in the j th replication of experiment. At last, the arithmetic mean
of the N experiment is taken to get the true performance or ideal
performance as we illustrate later, for policy θ

(k)
i . Usually, we use a

large number n in real experiments in order to compensate for the
existence of large randomness.

3.3. Four technical challenges

To apply the above model, we must face four major technical
challenges as briefed below.
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(1) Limited knowledge of the randomness—The runtime condi-
tions of the random variables (t(k)i , c(k)

i ) in real time are in-
tractable. Profiling is the only solution to get their real time
values for scheduling purposes. However, the collecting of CPU
and memory information should be applied to all the schedul-
ing policies in the search space.

(2) Very large search space—The number of feasible policies
(search space size) in the above resource allocation problem
is |Θ| = S∗H(K , θi − K) = S(θi − 1)!/((θi − K)!(K − 1)!).
This parameter H(K , θi − K) counts the number of ways to
partition a set of θi VMs into K nonempty clusters. Then |Θ|
gives the total number of partition ways over all the S clusters.
This number can become extremely large when a new task
class, namely K + 1, or a new site, namely S + 1, becomes
available.

(3) Too many random variables to handle—There are 2∗K ∗S ran-
dom variables in this scheduling model to handle.

(4) Multiple objectives evaluation—In this workflow scenario, we
have two objectives to optimize, which is much more diffi-
cult than having only one objective. We resort to a cone-based
method (Pareto Optimal Front) [35] to handle such a problem,
which is extendable to more objectives. The Pareto Optimal
Front usually contains a set of policies. The details of this con-
cept and the related solutions are introduced in Section 4.2.

4. Vectorized ordinal optimization

The OO method applies only to single objective optimization.
The vector ordinal optimization (VOO) [35]method optimizes over
multiple objective functions. In this section, we first specify the
OO algorithm. Thereafter, we describe the MOS algorithm based
on VOO as an extension of the OO algorithm.

4.1. Ordinal optimization (OO) method

The tenet in the OO method is the order versus value observa-
tion. More specifically, exploring the best (order) policy is much
easier than finding out the execution time and cost of that policy
(value).

Instead of finding the optimal policy θ∗ in the whole search
space, the OO method searches for a small set S, which contains
k good enough policies. The success probability of such a search is
set at α (e.g., 98%). The good enough policies are the top g (g ≥ k)
in the search spaceΘ . The numbers k and g are preset by the users.
They follow the condition in Eq. (3):

P[|G ∩ S| ≥ k] ≥ α. (3)

Formally, we specify the OO method in Algorithm 1. The ideal
performance, denoted by J(θ (k)

i ), is obtained by averaging an N
times repeated Monte Carlo simulation for all the random vari-
ables. This N is a large number, such as 1000 times in our case. The
measured performance or observed performance, denoted by Ĵ(θ (k)

i ),
is obtained by averaging a less times repeated Monte Carlo simu-
lation, say n (n ≪ N) times, for all the random variables. That is
why it is called a rough model. Then, we formulate the discrepancy
between the two models in Eq. (4):

Ĵ

θ
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i


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
θ

(k)
i


+ noise. (4)

Instead of using the time consuming N-repeated simulations,
we only have to use the rough model, which simulates n times.
The top s best performance policies under the rough model are
selected. The OO method guarantees that the s policies include
at least k good enough policies with a high probability. The
probability is set as α in Eq. (3). Finally, the selected s policies
should be evaluated under the N-repeated simulations in order to
get one for scheduling use.We can see that theOOmethod narrows
down the search space to s, instead of searching among the entire
space Θ that may have millions of policies to go through.

The number s is determined by the following regression func-
tion f with an approximated value:

s = f (α, g, k, ω, noise level) = eZ0(k)ρ(g)β + η. (5)

The values ω and noise level can be estimated based on the
roughmodel simulation runs. The values such asα, k, g are defined
before experiment runs in Eq. (3). Value η can be looked up in
the OO regression table. Value e is a mathematical constant which
equals to 2.71828.

In Fig. 3, we give a simple but concrete example to explain
the OO method. Suppose the optimization function is linear
minθ∈Θ J(θ) = θ, Θ = {0, 1, . . . , 9}. (This function is unknown
beforehand.) Therefore, we use a rough model Ĵ(θ) where Ĵ(θ) =
J(θ) + noise. With this noise, the order has changed as shown in
Fig. 3. For example, the best policy in J(θ) becomes rank 2 in Ĵ(θ),
and the second best policy in J(θ) becomes rank 4 in Ĵ(θ). However,
this variation is not too large. Selecting the top two policies in the
rough model Ĵ(θ) has one good-enough policy in J(θ).

In Algorithm 1, we show the steps of applying the OO method.
Suppose there is only one optimization objective. From lines 1–9,
we use a rough model (10 repeated runs) to get the s candidate
policies. Then we apply the true model (N = 1000) simulation
runs on the s candidate policies to find one for use. We select the
10 repeated runs intentionally, which accounts for 1% of the true
model runs. In Corollary 1,we show this increases the samplemean
variation by one order of magnitude. This variation is within the
tolerance scope of our benchmark application.

Corollary 1. Suppose each simulation sample has Gaussian noise
(0, σ 2). The variance of n samples mean is σ 2/n. Furthermore, if
the noise is i.i.d., then following the Central Limit Theorem, when n
is large the distribution of the sample mean converges to Gaussian
with variance σ 2/n. If σ = 1, in order to make sqrt {σ 2/n} = 0.1
(reduce by one order of magnitude), we have σ 2/n = 0.01. Therefore
n = 1000 (two orders of magnitude larger than n = 10).

Algorithm 1. Ordinal Optimization for Workflow
Scheduling
Input:

Θ = {θ1, θ2, . . . , θ|Θ|}: scheduling policy space
g: cardinality of G
k: alignment level
α: alignment probability

Output: The measured best one
Procedure:
1. for all i = 1 : |Θ|
2. Simulate each policy θi ten times
3. Output time of θi as t (θi)

4. endfor
5. Order the policies by a performance metric in ascending
order {θ[1], θ[2], . . . , θ[|Θ|]}
6. Calculate ω and noise level
7. Look up the coefficient table to get (Z0, ρ, β, η)
8. Generate the selection set S using Eq. (5),
S = {θ[1], θ[2], . . . , θ[s]}
9. Simulate each policy in the selection set N times
10. Apply the best policy from the simulation results in step 9

In Theorem 1, we give a lower bound of the probability α,
which is called alignment probability. In practice, this probability
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Fig. 3. An example to illustrate how ordinal optimization works. The search space
consists of 10 scheduling policies or schedules in ascending order. Good-enough set
G is shown by the left (best) 3 (set g = 3) policies. We have to select two policies
(s = 2) to get at least one good-enough policy (k = 1) in this example. Selecting
four policies (s = 4) would include two (k = 2) good-enough policies.

is set by users who apply the ordinal optimization based method.
The larger this probability value is, the larger the selection set S
should be. This is because the chance that a large selection set S
contains at least k good-enough policies is larger than a small set S.
Suppose S equals to thewhole candidate setΘ , then the alignment
probability α can be as much as 100%.

Theorem 1 (Lower Bound of the Alignment Probability of Single
Objective Problem). Suppose the size of the selection set is s, and
the size of the good enough set is g. The lower bound of alignment
probability is:

P[|G ∩ S| ≥ k] ≥
min(g,s)

i=k


g
i


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s− i


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
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denotes the number of selections that there are i good enough
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
. The value k is constrained by

k ≤ min(g, s). Summarizing all the possible values of i gives Eq. (6).

4.2. Multi-objective scheduling (MOS)

The multiple objective extension of OO leads to the vectorized
ordinal optimization (VOO)method [35]. Suppose the optimization
problem is defined in Eq. (7) below:
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= Eξ
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In general, there arem optimization metrics. τ is the inverse of
a vector. First, we introduce the key concepts, e.g., layers, Pareto
front, etc., in multi-objective programming. Then, we continue
with the vectorized extension. The VOO differs from the OO in six
technical aspects as briefly characterized below.

(1) Dominance (≻): We say θx dominates θy (θx ≻ θy) in Eq. (7), if
∀l ∈ [1, . . . ,m], Jl(θx) ≤ Jl(θy), and ∃l ∈ [1, . . . ,m], Jl(θx) <
Jl(θy).

(2) Pareto front: In Fig. 4(a), each white dot policy is dominated
by at least one of the red dot policies, thus the red dot policies
form the non-dominated layer, which is called the Pareto front
{ℓ1}.

(3) Good enough set: The front g layers {{ℓ1}, . . . , {ℓg}}of the ideal
performance are defined as the good enough set, denoted by G,
as shown in Fig. 4(a).

(4) Selected set: The front s layers {{ℓ′1}, . . . , {ℓ
′
s}} of themeasured

performance are defined as the selected set, denoted by S, as
shown in Fig. 4(b).

(5) Ω type: It is also called a vector ordered performance curve in
VOO-based optimization. This concept is used to describe how
the policies generated by the rough model are scattered in the
search space as shown in Fig. 5. If the policies scattered in steep
mode (the third Figure in both Fig. 5(a) and (b)), it would be
easier to locate the good enough policies for a minimization
(a) Ideal performance. (b) Measured performance.

Fig. 4. Illustration of layers and Pareto fronts in both ideal performance and measured performance of a dual-objective optimization problem. Red dots in (a) are policies in
the Pareto front. We set g = 1 (all the policies in the Pareto front are good-enough solutions), at least 1 in the first layer (s = 1) of the measured performance should be
selected to align 2 good policies (k = 2). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
(a) Policies scattered in the solution space. (b) Corresponding Ω type.

Fig. 5. In (a), three kinds of Ω types are shown, by which 12 policies are scattered to generate 4 layers. In (b), the corresponding Ω types for (a) are shown. The x identifies
the layer index, and F(x) denotes how many policies are in the front x layers.
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problem. This is because most of them are located in the front
g layers. For example, if we set g = 2, the number of good
enough policies in steep type is 9 compared with 3 in flat type.
In this example,we can see that theΩ type is also an important
factor that the size of the selection set s depends on.

(6) Noise level: Noise level (NL) is used to define the similarity
between the measured performance (rough model) and the
ideal performance (real model). Mathematically, the noise
level of the lth performance metric Jl(θ

(k)
i ) is calculated as

follows:

NL(Jl(θ
(k)
i )) = max

l
{σ(Jl(θ

(k)
i ))} ≈ max

l
{σ(Ĵl(θ

(k)
i ))}. (8)

In Eq. (8), we first calculate the maximum performance stan-
dard deviation (σ ) of all the policies, and then get the largest one
along all the performancemetrics (l).NL indicates the impact of the
noise on performance using the roughmodel. However, we cannot
get all Jl(θ

(k)
i ) throughN times experiments in theMOSmethod. In-

stead, we approximate its value using the measured performance
value Ĵl(θ

(k)
i ).

In the OO method, three levels of noise are classified. If 0 <
NL ≤ 0.5, it is a small noise level problem. If 0.5 < NL ≤ 1, it is
a neutral noise level problem. If 1 < NL ≤ 2.5, it is a large noise
level problem.

Theorem 2 (Lower Bound of the Alignment Probability of Multi-
Objective Problem). Given the multiple objective optimization prob-
lem defined in Eq. (6), suppose the size of the jth layer {ℓj} is denoted
by |ℓj|, j = 1, 2, . . . , ipl, and the size of {ℓ′j} is |ℓ

′

j|, j = 1, 2, . . . ,
mpl, the alignment probability is:

P[|G ∩ S| ≥ k] ≥

min
g

j=1 |ℓj|,
s

j=1 |ℓ
′
j |


i=k


g

j=1

|ℓj|

i



×


|Θ| −

g
j=1

|ℓj|

s
j=1

|ℓ′j| − i


 |Θ|s

j=1

|ℓ′j|

 . (9)

Values ipl and mpl denote the total number of the ideal perfor-
mance layers and measured performance layers.

Proof. The size of the new good enough set is
g

j=1 |ℓj| and the
size of the new selection set is

s
j=1 |ℓ

′

j|. We replace the g and s
in Theorem 1 with

g
j=1 |ℓj| and

s
j=1 |ℓ

′

j|, then the conclusion of
Eq. (9) is proven.

MOS guarantees that if we select the front s observed layers,
S =


ℓ′1

,

ℓ′2

, . . . ,


ℓ′s


, we can get at least k good enough
policies in G =


{ℓ1} , . . . ,


ℓg


with a probability not less than
α, namely P[|G ∩ S| ≥ k] ≥ α. The number k, g and α are preset
by users. k ≤ min

g
j=1

ℓj
 ,s

j=1 |ℓ
′

j|

.

The size of the selection set s is also determined by Eq. (5). In
Chapter IV of [16], the authors did regressed analysis to derive
the coefficient table based on 10,000 policies with 100 layers in
total. The analytical results should be revised accordingly since
our solution space |Θ| and measured performance layers mpl are
different.

Based on the number of measured performance layers, we
adjust the values of g ′ and k′ as follows:

g ′ = max {1, ⌊(100/mpl)× g⌋} (10a)

k′ = max {1, (10, 000/|Θ|)× k} . (10b)
Then, we look up the table given in Ho’s book [16] to obtain the
coefficients (Z0, ρ, β, η) of a regression function to calculate s′ as
follows:

s′

k′, g ′


= eZ0


k′
ρ g ′β + η. (11)

Finally, the s is calculated by

s = ⌈(mpl/100)× s′⌉. (12)

All of the above procedures are summarized in Algorithm 2,
which specifies the steps of the multi-objective scheduling of
many task workflows, systematically based on vectorized ordinal
optimization.

Algorithm 2.MOS of Workflow Scheduling
Input:

Θ = {θ1, θ2, . . . , θ|Θ|}: policy space
g: number of good enough sets
k: alignment level
α: alignment probability
n: experiment time

Output: A set of good-enough scheduling policies for
allocating resources
Procedure:
1. for all i = 1 : |Θ|
2. Test each policy θi ten times
3. Output time and cost of θi as {Ĵ1(θi), Ĵ2(θi)}
4. endfor
5. Plot {Ĵ1(θi), Ĵ2(θi)} (i ∈ [1 : |Θ|]) in x-y axis
6. Plot the measured performance as Fig. 4(b)
7. Calculate the Ω and the noise level
8. Adjust g and k to get g ′ and k′ using Eqs. (10a) and (10b)
9. Look up the coefficient table to get (Z0, ρ, β, η)
10. Calculate the initial s′ using Eq. (11)
11. Adjust s′ to get the related s using Eq. (12)
12. Test the policies at the front s layers {θ[1], θ[2], . . . , θ[s]}
to select the policies we need

5. LIGO workflow analysis

We first introduce our LIGO application background andmany-
task workload characterizations. Thereafter we design the details
of the implementation steps to further describe the procedure of
MOS.

5.1. Backgrounds and workloads characterization

Gravitationalwaves are producedby themovement of energy in
amass of densematerial in the earth. The LIGO (Laser Interferometer
Gravitational wave Observatory) [14] embodies three of the most
sensitive detectors (L1,H1,H2) in the world. The detection of the
Gravitational Wave is very meaningful for physical scientists to
explore the origin of the Universe. Fig. 6 shows a typical detection
workflow.

Real execution of the detection workflow requires a pre-
verification phase. This phase can be utilized to understand poten-
tial run-time failures before the real data-analysis runs, which is
normally very costly. The verification process contains several par-
allel and independent logics. Each verification logic is character-
ized by a class of tasks, which requires many resource sites (CPU
and memory resources) as also being shown in Fig. 7. Different
tasks require different but unknown computing resources before-
hand. Thus, a profiling or simulation is applied to understand the
task properties for the follow-up scheduling stage.
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Fig. 6. An example of resource allocation in a many-task workflow for the LIGO workload, where the tasks are the 7 classes of verification programs running in parallel
through the whole workflow.
(a) Measured performance. (b) Ideal performance.

Fig. 7. In a dual-objective scheduling example: the execution time in ms vs. total cost in memory byte. The measured performance is shown with ten experiments for each
scheduling policy in Part (a). The Ideal performance results are plotted in Part (b), with 1000 experiments for each scheduling policy. In total, there are 27,132 resource
allocation policies to be tested and selected from for the workflow scheduling of the LIGO workload in a virtualized cloud platform. Each dot represents one scheduling
policy. The circled dots form the Pareto front, which is used for the vectorized ordinal optimization process.
In this benchmark application, we allocate a fixed amount of
virtual nodes for the seven verification logics. There are thousands
of loosely coupled tasks in each verification logic. Thus, this is a
typical many-task computing application.

The LIGO workloads are parallel programs to verify the follow-
ing 7 task classes as illustrated in Fig. 6. The seven verification log-
ics or task classes are executed in parallel. Below, we present a
synopsis of the workload characteristics and the detailed descrip-
tions can be found in [18].

Class-1 task is used to guarantee that once a temple bank
(TmpltBank) has been created, two steps (Inspiral and TrigBank)
should immediately follow.

Class-2 task ruled that process of matching with the expected
wave of H2 (Inspiral_H2) should be suspended, until both data in
H1 and H2 pass the contingency test s (Inca_L1H1, thInca_L1H1).

Class-3 task denotes the data collected by three interferometers
have to pass all contingency tests (sInca, thInca and thIncall) to
minimize the noise signal ratio.

Class-4 task checks contingency tests (thInca_L1H1) should
follow the process of matching with expected waves is done or
template banks are created.

Class-5 and Class-6 task ensure all the services can be reached
and properly terminated.

Class-7 task is used to check if all the garbage or temporary
variables generated in runtime can be collected.

As aforesaid mentioned, the runtime conditions of the above
seven task classes are unknown a priori. The expected execution
time of each task in Table 1 is profiled beforehand. A stochastic
Table 1
Notations used in our workflow system.

Notation Definition and description

δ
(k)
i Number of tasks in class k

p(k)
i Expected execution time of tasks in class k

θ
(k)
i Virtual nodes allocated to execute task class k

β
(k)
i = θ

(k)
i /p(k)

i Job processing rate of task class k

t(k)i = δ
(k)
i /β

(k)
i Remaining execution time of task class k

tk max

t(k)1 , t(k)2 , . . . , t(k)s


, remaining execution time of task

class k
c(k)
i Cost of using one resource site for task class k

C (k)
i = c(k)

i θ
(k)
i Total cost of task class k

distribution of execution time corresponding to each task class
is therefore generated. In the simulation phase, the execution
time of each task is sampled from its own distribution region.
Randomexecution time for each task class as it is,multiple samples
should be collected to offer more simulation runs. More details are
introduced in Section 3.2 (see Table 2).

5.2. Implementation considerations

We want to find a range of solutions to use θ
(k)
i for parallel

workflows tominimize both execution time J1 and total cost J2. The
12 steps in Algorithm 2 of the MOS method over the LIGO datasets
are described below.
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Table 2
Seven task classes tested in virtual clusters.

Task class Functional characteristics # of parallel
tasks

# of subtasks

Class-1 Operations after templating 3576 947
Class-2 Restraints of interferometers 2755 6961
Class-3 Integrity contingency 5114 185
Class-4 Inevitability of contingency 1026 1225
Class-5 Service reachability 4962 1225
Class-6 Service terminatability 792 1315
Class-7 Variable garbage collection 226 4645

Step 1 (Find measured performance of θ
(k)
i ): If δ

(k)
i = 0, then

θ
(k)
i = 0; otherwise θ

(k)
i > 0. This ensures each task class k has

at least one virtual cluster subject to
K

k=1 θ
(k)
i = θi. On virtual

cluster i, there are S(θi − 1)!/((θi − K)!(K − 1)!) feasible policies.
For each policy we calculate θ

(k)
i = {(Ĵ1(θ1), Ĵ2(θ1)), . . . , (Ĵ1(θ|Θ|),

Ĵ2(θ|Θ|))} for 10 times as a rough estimation.
Step 2 (Lay the measured performance policies): This step is to

find out the dominance relationship of all of the measured perfor-
mance as shown in Fig. 4(b). This step is composed of two sub-
steps, i.e., first, giving all of the policies an order; second, putting
the policies in different layers. They are shown in Algorithms 3 and
4, respectively.

Algorithm 3. Order Measured Performance Policies
Input:

PolicyList = {θ1, θ2, . . . , θ|Θ|}
PerformanceList = {(Ĵ1(θ1), Ĵ2(θ1)), . . . , (Ĵ1(θ|Θ|), Ĵ2(θ|Θ|))}

Output:
Ordered Policy List: {PolicyList}
Equal performance list: EqualPerfList_i {i = 1, 2, . . . , |Θ|}
//All the policies in EqualPerfList_i have the same

performance as the policy in PolicyList(i)
Procedure:
1. for all i = 1 to |Θ|
2. for all j = 1 to |Θ|, j ≠ i
3. Order PolicyList based on Ĵ1
4. if Ĵ1(θi) = Ĵ1(θj)
5. Order θi and θj based on Ĵ2 in PolicyList
6. if Ĵ2(θi) = Ĵ2(θj)
7. DeList(PolicyList, θj)
8. Enlist(EqualPerfList_i, θj)
9. endfor
10. endfor
Output(PolicyList)
Output(EqualPerfList_i)

Step 3 (Calculate the Ω type): We use |ℓ′i|, i = 1, 2, . . . ,mpl,
to represent the number of policies in layer ℓ′i . Then there are mpl
pairs, (1, |ℓ′1|), (2, |ℓ

′

1|+ |ℓ
′

2|), . . . (mpl,
mpl

i=1 |ℓ
′

i|). In this way, we
derive our Ω type.

Step 4 (Calculate the noise level): We normalize the observed
performance Ĵ1(θi), Ĵ2(θi), i = 1, 2, . . . , |Θ| into [−1, 1], respec-
tively, and find themaximumstandarddeviation in both Ĵ1()(σmax

1 )

and Ĵ2()(σmax
2 ). Then we select the larger of the two (σ = max

(σmax
1 , σmax

2 )), (1 < σ ≤ 2.5) as the noise level NL.
Step 5: We follow the steps in lines 8–12 in Algorithm 2 to get

the selected set S. The MOS ensures that S contains at least k good
enough policies, which are in the front g layers with a probability
larger than α.
Algorithm 4. Lay Measured Performance Policies
Input:

Ordered PolicyList
EqualPerfList_i {i = 1, 2, . . . , |Θ|}

Output:{ℓ′1}, {ℓ
′

2}, . . . , {ℓ
′

mpl}

Procedure:
1.mpl← 1
2.while PolicyList!= Null
3. {ℓ′mpl} ← PolicyList(1)
4. for all i = 1 to |ℓ′mpl|

5. for all j = 1 to | PolicyList |, j ≠ i
6. if θi does not dominate θj
7. {ℓ′mpl} ← θj

8. DeList(PolicyList, θj)
9. endfor
10. endfor
11. mpl← mpl+ 1
12. endwhile
13. for all i = 1 to |Θ|
14. if EqualPerfList_i! = Null
15. if θi belongs to {ℓ′j}
16. Insert EqualPerfList_i into {ℓ′j}
17. endfor
18. Output {ℓ′1}, {ℓ

′

2}, . . . , {ℓ
′

mpl}

6. Experimental performance results

In this section, we report and interpret the performance
data based on resource allocation experiments in LIGO workflow
scheduling applications.

6.1. Design of the LIGO experiments

Our experiments are carried out using seven servers at the
Tsinghua University. Each server is equipped with an Intel T5870
dual-core CPU, 4 GB DRAM, and 320 GB hard disk, respectively.
We deploy at most 20 virtual machines on each physical server
with VMWare workstation 6.0.0. Each virtual machine runs with
windows XP sp3.

Our many task verification programs are written in Java. There
are K = 7 task classes in the LIGO workload. We have to evaluate
27,132 scheduling policies. Each task class requires allocating with
up to 20 virtual machines. We experiment 1000 times per policy
to generate the ideal performance. The average time and average
cost out of 1000 results are reported.

6.2. Experimental results

We plot the experimental results of each allocation policy in
Fig. 7. The black dots are (J1, J2) pair for each policy. The circles
are the Pareto front of the policy space.

Fig. 7 describes the execution time and total cost of the mea-
sured performance policies. The total cost is defined as the mem-
ory used. There are 152 layers. The Pareto front layer is denoted
with the blue circles in the first layer.

In Fig. 7(b), we plot the ideal performance policies and their
Pareto front. There are 192 policies in the Pareto front layer with a
total of 147 layers,which is very close to 152 layers in themeasured
performance.

In real experiments, it is not possible to generate all these ideal
performances because of the very long experiment time; instead
we use the measured performance only. Later on, we will find out
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Fig. 8. The Ω type of measured performance. It is a steep type corresponding to
the good-enough policies (Pareto front of Fig. 7(b) is easy to search from by using
the MOS scheme).

the discrepancy between them and discuss how to bridge the gap
gracefully by analyzing the properties of this problem, such as the
Ω type, and the noise level.

Our following MOS experiments reveal how many ideal
scheduling policies (blue dots in Fig. 7(b)) are included in our
selected good policies S.

We aggregate the number of policies in each front x layer as
step 3 in Section 6.1 and get the Ω type in Fig. 8. The Ω type
is a little bit steep in the front 60 layers and then becomes even
steeper afterwards. This means the good enough policies are easy
to search comparedwith theneutral and flat type. The steepΩ type
is chosen for this type of application.

To calculate the noise level, we first normalize the 27,132 mea-
sured execution times into [0, 1] and find the standard deviation
of the measured performance is 0.4831. The same is done on total
cost and we get 0.3772 of that value. A small noise level is there-
fore chosen. Based on the Ω type and the noise level, we look up
the table [15] and get the coefficients of the regressed function as
(Z0, ρ, β, η) = (−0.7564, 0.9156,−0.8748, 0.6250).

Because we have so many good-enough policies, we choose
g = 1, namely, the Pareto front as our good enough set. Also, we
choose alignment probability α = 98%. Based on Eqs. (10a) and
(10b), we have the following,

g ′ = max{1, ⌊(100/152)× 1⌋} = 1

and

k′ = max{1, (10, 000/27, 132)× k}

= 1 (1 ≤ k < 4)
≈ 0.369k (k ≥ 4).
Given an alignment level k, we can derive the size of the initial
selection layer based on Eq. (11) as:

s′

k′, g ′


= eZ0


k′
ρ g ′β + η.

We adjust s′ to s based on Eq. (12) using s = ⌈152/100 × s′⌉.
Policies of the front s layers in measured performance are our
selection set S. To avoid confusion, we use s in the front sections to
represent the number of the selected layers, while we use z here
to represent how many policies are included in the front s layers.
The MOS works fine mainly attributed to the good Ω type in Fig. 8
with the small noise level.

We plot different sizes of k and its corresponding number of
the selected layer s in Fig. 9(a). Also, we plot in Fig. 9(b) differ-
ent sizes of k and its corresponding number of set z. This figure
shows the results that if we want to find k policies in the first
one layer (Pareto front, g = 1) with a probability larger than 98%,
how many policies should we evaluate. Typical (k, z) pairs are
(10, 995), (30, 2291), (50, 3668), . . . , (190, 12 164).

When k is small, the selection set z is also very small. This is
why MOS reduces at least one magnitude (from 27,132 to 995) of
computation. We can also see that if we want to find all the 192
policies in the Pareto front layer, we should test almost half of the
policy space (22, 12 164).

Fig. 10 shows that our MOS can generate many good-enough
policies. This is seen by the overlap of the Pareto front of the ideal
performance policies (denoted by the blue circles in the first layer)
and the selected policies (denoted by the red circles) based on
MOS in the Pareto front. Also, we see that the MOS finds many
satisfactory results, which are those policies quite close to the
Pareto front, though they are not good enough policies.

6.3. Comparison with Monte Carlo and blink pick methods

Monte Carlo [47] is a typical cardinal optimization method.
For one resource allocation policy θ

(k)
i , we implement the K task

classes on the S virtual clusters. In view of the fact that there are
as many as 2KS number of uncertainties (execution time t(k)i and
operational cost c(k)

i ), the Monte Carlo method is firstly used to
randomly sample the execution time and operational cost.We take
the average value to estimate the scheduling search time over a
1000 repeated runs.

Blind Pick (BP), though it is named blind searching, is still a
competitive method. We use different percentages of alignment
probability (AP) to use this method in different scenarios. The AP is
defined as the ratio of the search space that BP samples. The larger
the APwe use, themore policies we need to sample. If AP equals to
one, it is the same as the Monte Carlo simulation.
(a) Case of s select layer s. (b) Case of z selected set s.

Fig. 9. The number of selected policies in using the MOS method varies with the alignment level in the LIGO experiments.
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Fig. 10. Bi-objective performance results of theMOSmethod in LIGO experiments.
In total, there are 27,132 resource allocation policies to be selected from for the
workflow scheduling of LIGO workload in a virtualized cloud platform. Each dot
represents one scheduling policy. The circled dots form the Pareto front of the short
list of good-enough policies.

Fig. 11. Comparison of MOSwith the Blind Pick method under different alignment
probabilities and with the Monte Carlo method. The MOS results in the least
selected set. The Monte Carlo method requires the highest selected policy set.

The performancemetric is the number of the selection set size z
given a fixed number of good-enough policies required to be found
over different methods. A good method shows its advantage by
producing a small selection set which still includes the required
good-enough policies. In Ho’s book [16], various selection rules are
compared and they concluded that there is no best selection rule
for sure in all circumstances. In this paper, we prove a steepΩ type
with a small noise level in our benchmark application and justify
the use of the MOS method.

We compare those methods in Fig. 11 to reveal how much
search time reduction could be achieved. In order to find 10 good
enough policies in the Pareto front, the Monte Carlo method has to
go through the whole search space with 27,132 policies. However,
the BPmethodwith 50%, 95%, and 98% alignment probability needs
to assess 1364, 2178, and 2416 policies respectively.

MOS has to assess only 995 policies, which is more than one
order of magnitude search time reduction than the Monte Carlo
and less than half comparedwith the BPmethod.We scale the good
enough set to the whole Pareto front and the experiments reveal
that the search time of both blind pick and Monte Carlo is almost
the same. MOS has to assess only 12,164 policies, which is also half
of the search time of other methods. MOS shows its excellence in
scalability in view of the increase of alignment level k.

We carried out the above experiments on different numbers
of virtual nodes in our virtualized cloud platform. Seven task
classes in Section 5.1 are also used in our four typical experimental
environments with 16, 32, 64, and 128 virtual nodes respectively.
For each environment, we have 5005, 736281, 67945521, and
5169379425policies,which could be used to justify the scalability
of those methods.

The Pareto front (g = 1) is used as an indication of the good
enough set. Let us take Fig. 11 as an example. There are 858 policies
in the Pareto front. Thus, we set the x-axis every 85 policies a step
and in all we select 10 experiment results every method. Wemake
a similar comparison with this twenty-virtual-nodes experiment.

In Fig. 12(b), our MOS achieves one order of magnitude search
time reduction than blind pick and nearly two orders of magnitude
than Monte Carlo when k is small. As the increase of alignment
level k, MOS can maintain at least one order of magnitude search
time advantage than other methods.

We scale to 128 virtual nodes to make the comparison in
Fig. 12(d). The results reveal that MOS can maintain two orders of
magnitude search time reduction given a small k. We can achieve
nearly a thousand times reduction in search time, if we scale k to
cover the entire Pareto front.

It is not occasional that the selection set does not vary as the
increase of alignment level in 128 virtual nodes. Since there are so
many policies in the search space, the Pareto front covers only a
much smaller portion. In this way, the effectiveness of ‘‘ordinal’’
takes more effects than traditional ‘‘cardinal’’ methods. If we con-
tinue to increase the number of k, such as taking (g = 2), the se-
lection set of MOS will increase while maintaining the search time
reduction advantage.

7. Conclusions

In this paper, we have extended the ordinal optimization
method from a single objective to multiple objectives using a
vectorized ordinal optimization (VOO) approach. We are the very
first research group proposing this VOO approach to achievemulti-
objective scheduling (MOS) in many-task workflow applications.
Many-task scheduling is often hindered by the existence of a large
amount of uncertainties. Our original technical contributions are
summarized below.

(1) We proposed the VOO approach to achieving multi-objective
scheduling (MOS) for optimal resource allocation in cloud com-
puting. The OO is specified in Algorithm1. The extension of OO,
MOS scheme, is specified in Algorithm 2.

(2) We achieved problem scalability on any virtualized cloud plat-
form. On a 16-node virtual cluster, the MOS method reduced
half of searching time, compared with using the Monte Carlo
and Blind Pickmethods. This advantage can be scaled to a thou-
sand times reduction in scheduling overhead as we increase
the cloud cluster to 128 virtual machines.

(3) We have demonstrated the effectiveness of the MOS method
on real-life LIGOworkloads for earth gravitational wave analy-
sis.Weused the LIGOdata analysis to prove the effectiveness of
the MOS method in real-life virtualized cloud platforms from
16 to 128 nodes.
For further research, we suggest to extend the work in the fol-

lowing two directions.

(1) Migrating MOS to a larger platform—We plan to migrate our
MOS to an even larger cloud platform with thousands or more
virtual nodes to execute millions of tasks.

(2) Building useful tools to serve a larger virtualized cloud
platform—Cloud computing allocates virtual cluster resources
in software as a service (SaaS), platform as a service (PaaS), and
infrastructure as a service (IaaS) applications. Our experimental
software can be tailored and prototyped towards this end.
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(a) 16 virtual nodes. (b) 32 virtual nodes.

(c) 64 virtual nodes. (d) 128 virtual nodes.

Fig. 12. Experimental results on the size of the selected policy sets on cloud platforms running on 7 virtual clusters consisting of 16, 32, 64, and 128 virtual nodes (VMs).
Again, the MOS method outperforms the Monte Carlo and all Blink-Pick scheduling methods.
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