1,831 research outputs found

    Time-Optimal Tree Computations on Sparse Meshes

    Get PDF
    The main goal of this work is to fathom the suitability of the mesh with multiple broadcasting architecture (MMB) for some tree-related computations. We view our contribution at two levels: on the one hand, we exhibit time lower bounds for a number of tree-related problems on the MMB. On the other hand, we show that these lower bounds are tight by exhibiting time-optimal tree algorithms on the MMB. Specifically, we show that the task of encoding and/or decoding n-node binary and ordered trees cannot be solved faster than Ω(log n) time even if the MMB has an infinite number of processors. We then go on to show that this lower bound is tight. We also show that the task of reconstructing n-node binary trees and ordered trees from their traversais can be performed in O(1) time on the same architecture. Our algorithms rely on novel time-optimal algorithms on sequences of parentheses that we also develop

    Bounding Cache Miss Costs of Multithreaded Computations Under General Schedulers

    Full text link
    We analyze the caching overhead incurred by a class of multithreaded algorithms when scheduled by an arbitrary scheduler. We obtain bounds that match or improve upon the well-known O(Q+Sâ‹…(M/B))O(Q+S \cdot (M/B)) caching cost for the randomized work stealing (RWS) scheduler, where SS is the number of steals, QQ is the sequential caching cost, and MM and BB are the cache size and block (or cache line) size respectively.Comment: Extended abstract in Proceedings of ACM Symp. on Parallel Alg. and Architectures (SPAA) 2017, pp. 339-350. This revision has a few small updates including a missing citation and the replacement of some big Oh terms with precise constant

    Transformation of XML Data Sources for Sequential Path Mining

    Get PDF
    • …
    corecore