13,745 research outputs found

    SDDs are Exponentially More Succinct than OBDDs

    Full text link
    Introduced by Darwiche (2011), sentential decision diagrams (SDDs) are essentially as tractable as ordered binary decision diagrams (OBDDs), but tend to be more succinct in practice. This makes SDDs a prominent representation language, with many applications in artificial intelligence and knowledge compilation. We prove that SDDs are more succinct than OBDDs also in theory, by constructing a family of boolean functions where each member has polynomial SDD size but exponential OBDD size. This exponential separation improves a quasipolynomial separation recently established by Razgon (2013), and settles an open problem in knowledge compilation

    Decision diagrams in machine learning: an empirical study on real-life credit-risk data.

    Get PDF
    Decision trees are a widely used knowledge representation in machine learning. However, one of their main drawbacks is the inherent replication of isomorphic subtrees, as a result of which the produced classifiers might become too large to be comprehensible by the human experts that have to validate them. Alternatively, decision diagrams, a generalization of decision trees taking on the form of a rooted, acyclic digraph instead of a tree, have occasionally been suggested as a potentially more compact representation. Their application in machine learning has nonetheless been criticized, because the theoretical size advantages of subgraph sharing did not always directly materialize in the relatively scarce reported experiments on real-world data. Therefore, in this paper, starting from a series of rule sets extracted from three real-life credit-scoring data sets, we will empirically assess to what extent decision diagrams are able to provide a compact visual description. Furthermore, we will investigate the practical impact of finding a good attribute ordering on the achieved size savings.Advantages; Classifiers; Credit scoring; Data; Decision; Decision diagrams; Decision trees; Empirical study; Knowledge; Learning; Real life; Representation; Size; Studies;

    New developments in the theory of Groebner bases and applications to formal verification

    Get PDF
    We present foundational work on standard bases over rings and on Boolean Groebner bases in the framework of Boolean functions. The research was motivated by our collaboration with electrical engineers and computer scientists on problems arising from formal verification of digital circuits. In fact, algebraic modelling of formal verification problems is developed on the word-level as well as on the bit-level. The word-level model leads to Groebner basis in the polynomial ring over Z/2n while the bit-level model leads to Boolean Groebner bases. In addition to the theoretical foundations of both approaches, the algorithms have been implemented. Using these implementations we show that special data structures and the exploitation of symmetries make Groebner bases competitive to state-of-the-art tools from formal verification but having the advantage of being systematic and more flexible.Comment: 44 pages, 8 figures, submitted to the Special Issue of the Journal of Pure and Applied Algebr
    • …
    corecore