166,452 research outputs found

    Order-of-Magnitude Influence Diagrams

    Get PDF
    In this paper, we develop a qualitative theory of influence diagrams that can be used to model and solve sequential decision making tasks when only qualitative (or imprecise) information is available. Our approach is based on an order-of-magnitude approximation of both probabilities and utilities and allows for specifying partially ordered preferences via sets of utility values. We also propose a dedicated variable elimination algorithm that can be applied for solving order-of-magnitude influence diagrams

    Nanoferroics: state of art, gradient driven couplings and advanced applications (Authors' review)

    Full text link
    Ferroics and multiferroics are unique objects for fundamental physical research of complex nonlinear processes and phenomena, which occur in them in micro and nanoscale. Due to the possibility of their physical properties control by size effects, nanostructured and nanosized ferroics are among the most promising for advanced applications in nanoelectronics, nanoelectromechanics, optoelectronics, nonlinear optics and information technologies. The review discuss and analyze that the thickness of the strained films, the size and shape of the ferroic and multiferroic nanoparticles are unique tools for controlling their phase diagrams, long range order parameters, magnitude of susceptibility, magnetoelectric coupling and domain structure characteristics at fixed temperature. Significant influence of the flexochemical effect on the phase transition temperature, polar and dielectric properties is revealed for thin films and nanoparticles. Obtained results are important for understanding of the nonlinear physical processes in nanoferroics as well as for the advanced applications in nanoelectronics.Comment: 23 pages, 15 figure

    Subsurface Flows in and Around Active Regions with Rotating and Non-rotating Sunspots

    Full text link
    The temporal variation of the horizontal velocity in subsurface layers beneath three different types of active regions is studied using the technique of ring diagrams. In this study, we select active regions (ARs) 10923, 10930, 10935 from three consecutive Carrington rotations: AR 10930 contains a fast-rotating sunspot in a strong emerging active region while other two have non-rotating sunspots with emerging flux in AR 10923 and decaying flux in AR 10935. The depth range covered is from the surface to about 12 Mm. In order to minimize the influence of systematic effects, the selection of active and quiet regions is made so that these were observed at the same heliographic locations on the solar disk. We find a significant variation in both components of the horizontal velocity in active regions as compared to quiet regions. The magnitude is higher in emerging-flux regions than in the decaying-flux region, in agreement with earlier findings. Further, we clearly see a significant temporal variation in depth profiles of both zonal and meridional flow components in AR 10930, with the variation in the zonal component being more pronounced. We also notice a significant influence of the plasma motion in areas closest to the rotating sunspot in AR 10930 while areas surrounding the non-rotating sunspots in all three cases are least affected by the presence of the active region in their neighborhood.Comment: Solar Physics (in press), includes 11 figure

    Effect of bars on the galaxy properties

    Full text link
    Aims: With the aim of assessing the effects of bars on disc galaxy properties, we present an analysis of different characteristics of spiral galaxies with strong, weak and without bars. Method: We identified barred galaxies from the Sloan Digital Sky Survey. By visual inspection, we classified the face-on spiral galaxies brighter than g<16.5 mag into strong-bar, weak-bar and unbarred. In order to provide an appropiate quantification of the influence of bars on galaxy properties, we also constructed a suitable control sample of unbarred galaxies with similar redshift, magnitude, morphology, bulge sizes, and local density environment distributions to that of barred galaxies. Results: We found 522 strong-barred and 770 weak-barred galaxies, representing a 25.82% of the full sample of spiral galaxies, in good agreement with previous studies. We also found that strong-barred galaxies show less efficient star formation activity and older stellar populations compared to weak-barred and unbarred spirals from the control sample. In addition, there is a significant excess of strong barred galaxies with red colors. The color-color and color-magnitude diagrams show that unbarred and weak-barred galaxies are more extended towards the blue zone, while strong-barred objects are mostly grouped in the red region. Strong-barred galaxies present an important excess of high metallicity values, compared to the other types, showing similar 12+log(O/H) distributions. Regarding the mass-metallicity relation, we found that weak-barred and unbarred galaxies are fitted by similar curves, while strong-barred ones show a curve which falls abruptly, with more significance in the range of low stellar masses (log[Mstar/Msun] < 10.0). These results would indicate that prominent bars produced an accelerating effect on the gas processing, reflected in the significant changes in the physical properties of their host

    Effect of optical purity on phase sequence in antiferroelectric liquid crystals

    Full text link
    We use the discrete phenomenological model to study theoretically the phase diagrams in antiferroelectric liquid crystals (AFLCs) as a function of optical purity and temperature. Recent experiments have shown that in some systems the number of phases is reduced if the optical purity is extremely high. In some materials the SmCA_{A}^{\star} phase is the only stable tilted smectic phase in the pure sample. In the scope of the presented model this high sensitivity of the phase sequence in the AFLCs to optical purity is attributed to the piezoelectric coupling which is reduced if optical purity is reduced. We limit our study to three topologically equal phases - SmC^{*}, SmCα_{\alpha}^{*} and SmCA_{A}^{*} and show that the reduction of optical purity forces the system from the antiferroelectric to the ferroelectric phase with a possible SmCα_{\alpha}^{\star} between them. The effect of the flexoelectric and quadrupolar coupling is considered as well. If the phase diagram includes only two phases, SmC^{\star} and SmC%_{A}^{\star}, the flexoelectric coupling is very small. The materials which exhibit the SmCα_{\alpha}^{\star} in a certain range of optical purity and temperature, can be expected to have a significant flexoelectric coupling that is comparable with the piezoelectric coupling. And finally, when temperature is lowered the phase sequence SmA \to SmC%_{\alpha}^{\star} \to SmC^{\star} \to SmC%_{A}^{\star} is possible only in materials in which quadrupolar coupling is very strong.Comment: 17 pages including 6 figures, submitted to PR

    End-to-end distance vector distribution with fixed end orientations for the wormlike chain model

    Get PDF
    We find exact expressions for the end-to-end distance vector distribution function with fixed end orientations for the wormlike chain model. This function in Fourier-Laplace space adopts the form of infinite continued fractions, which emerges upon exploiting the hierarchical structure of the moment-based expansion. Our results are used to calculate the root-mean-square end displacement in a given direction for a chain with both end orientations fixed. We find that the crossover from rigid to flexible chains is marked by the root-mean-square end displacement slowly losing its angular dependence as the coupling between chain conformation and end orientation wanes. However, the coupling remains strong even for relatively flexible chains, suggesting that the end orientation strongly influences chain conformation for chains that are several persistence lengths long. We then show the behavior of the distribution function by a density plot of the probability as a function of the end-to-end distance vector for a wormlike chain in two dimensions with one end pointed in a fixed direction and the other end free (in its orientation). As we progress from high to low rigidity, the distribution function shifts from being peaked at a location near the full contour length of the chain in the forward direction, corresponding to a straight configuration, to being peaked near zero end separation, as in the Gaussian limit. The function exhibits double peaks in the crossover between these limiting behaviors

    Short-range correlations in quark matter

    Full text link
    We investigate the role of short-range correlations in quark matter within the framework of the SU(2) NJL model. Employing a next-to-leading order expansion in 1/N_c for the quark self energy we construct a fully self-consistent model that is based on the relations between spectral functions and self energies. In contrast to the usual quasiparticle approximations we take the collisional broadening of the quark spectral function consequently into account. Mesons are dynamically generated in the fashion of a random phase approximation, using full in-medium propagators in the quark loops. The results are self-consistently fed back into the quark self energy. Calculations have been performed for finite chemical potentials at zero temperature. The short-range correlations do not only generate finite widths in the spectral functions but also have influence on the chiral phase transition.Comment: 40 pages, 23 figures; revised and extended paper, accepted for publication in Phys. Rev.
    corecore