89 research outputs found

    Efficient Algorithms for Mixed Creative Telescoping

    Full text link
    Creative telescoping is a powerful computer algebra paradigm -initiated by Doron Zeilberger in the 90's- for dealing with definite integrals and sums with parameters. We address the mixed continuous-discrete case, and focus on the integration of bivariate hypergeometric-hyperexponential terms. We design a new creative telescoping algorithm operating on this class of inputs, based on a Hermite-like reduction procedure. The new algorithm has two nice features: it is efficient and it delivers, for a suitable representation of the input, a minimal-order telescoper. Its analysis reveals tight bounds on the sizes of the telescoper it produces.Comment: To be published in the proceedings of ISSAC'1

    Explicit formula for the generating series of diagonal 3D rook paths

    Get PDF
    Let ana_n denote the number of ways in which a chess rook can move from a corner cell to the opposite corner cell of an n×n×nn \times n \times n three-dimensional chessboard, assuming that the piece moves closer to the goal cell at each step. We describe the computer-driven \emph{discovery and proof} of the fact that the generating series G(x)=n0anxnG(x)= \sum_{n \geq 0} a_n x^n admits the following explicit expression in terms of a Gaussian hypergeometric function: G(x) = 1 + 6 \cdot \int_0^x \frac{\,\pFq21{1/3}{2/3}{2} {\frac{27 w(2-3w)}{(1-4w)^3}}}{(1-4w)(1-64w)} \, dw.Comment: To appear in "S\'eminaire Lotharingien de Combinatoire

    The C-polynomial of a knot

    Full text link
    In an earlier paper the first author defined a non-commutative A-polynomial for knots in 3-space, using the colored Jones function. The idea is that the colored Jones function of a knot satisfies a non-trivial linear q-difference equation. Said differently, the colored Jones function of a knot is annihilated by a non-zero ideal of the Weyl algebra which is generalted (after localization) by the non-commutative A-polynomial of a knot. In that paper, it was conjectured that this polynomial (which has to do with representations of the quantum group U_q(SL_2)) specializes at q=1 to the better known A-polynomial of a knot, which has to do with genuine SL_2(C) representations of the knot complement. Computing the non-commutative A-polynomial of a knot is a difficult task which so far has been achieved for the two simplest knots. In the present paper, we introduce the C-polynomial of a knot, along with its non-commutative version, and give an explicit computation for all twist knots. In a forthcoming paper, we will use this information to compute the non-commutative A-polynomial of twist knots. Finally, we formulate a number of conjectures relating the A, the C-polynomial and the Alexander polynomial, all confirmed for the class of twist knots.Comment: This is the version published by Algebraic & Geometric Topology on 11 October 200

    Bounds for D-finite closure properties

    Full text link
    We provide bounds on the size of operators obtained by algorithms for executing D-finite closure properties. For operators of small order, we give bounds on the degree and on the height (bit-size). For higher order operators, we give degree bounds that are parameterized with respect to the order and reflect the phenomenon that higher order operators may have lower degrees (order-degree curves)
    corecore