380 research outputs found

    Planar graphs : a historical perspective.

    Get PDF
    The field of graph theory has been indubitably influenced by the study of planar graphs. This thesis, consisting of five chapters, is a historical account of the origins and development of concepts pertaining to planar graphs and their applications. The first chapter serves as an introduction to the history of graph theory, including early studies of graph theory tools such as paths, circuits, and trees. The second chapter pertains to the relationship between polyhedra and planar graphs, specifically the result of Euler concerning the number of vertices, edges, and faces of a polyhedron. Counterexamples and generalizations of Euler\u27s formula are also discussed. Chapter III describes the background in recreational mathematics of the graphs of K5 and K3,3 and their importance to the first characterization of planar graphs by Kuratowski. Further characterizations of planar graphs by Whitney, Wagner, and MacLane are also addressed. The focus of Chapter IV is the history and eventual proof of the four-color theorem, although it also includes a discussion of generalizations involving coloring maps on surfaces of higher genus. The final chapter gives a number of measurements of a graph\u27s closeness to planarity, including the concepts of crossing number, thickness, splitting number, and coarseness. The chapter conclused with a discussion of two other coloring problems - Heawood\u27s empire problem and Ringel\u27s earth-moon problem

    The Erd\H{o}s-Szekeres problem for non-crossing convex sets

    Full text link
    We show an equivalence between a conjecture of Bisztriczky and Fejes T{\'o}th about arrangements of planar convex bodies and a conjecture of Goodman and Pollack about point sets in topological affine planes. As a corollary of this equivalence we improve the upper bound of Pach and T\'{o}th on the Erd\H{o}s-Szekeres theorem for disjoint convex bodies, as well as the recent upper bound obtained by Fox, Pach, Sudakov and Suk, on the Erd\H{o}s-Szekeres theorem for non-crossing convex bodies. Our methods also imply improvements on the positive fraction Erd\H{os}-Szekeres theorem for disjoint (and non-crossing) convex bodies, as well as a generalization of the partitioned Erd\H{o}s-Szekeres theorem of P\'{o}r and Valtr to arrangements of non-crossing convex bodies

    Proof of GrĂĽnbaum's conjecture on the stretchability of certain arrangements of pseudolines

    Get PDF
    AbstractWe prove GrĂĽnbaum's conjecture that every arrangement of eight pseudolines in the projective plane is stretchable, i.e., determines a cell complex isomorphic to one determined by an arrangement of lines. The proof uses our previous results on ordered duality in the projective plane and on periodic sequences of permutations of [1,n] associated to arrangements of n lines in the euclidean plane

    On the Maximum Crossing Number

    Full text link
    Research about crossings is typically about minimization. In this paper, we consider \emph{maximizing} the number of crossings over all possible ways to draw a given graph in the plane. Alpert et al. [Electron. J. Combin., 2009] conjectured that any graph has a \emph{convex} straight-line drawing, e.g., a drawing with vertices in convex position, that maximizes the number of edge crossings. We disprove this conjecture by constructing a planar graph on twelve vertices that allows a non-convex drawing with more crossings than any convex one. Bald et al. [Proc. COCOON, 2016] showed that it is NP-hard to compute the maximum number of crossings of a geometric graph and that the weighted geometric case is NP-hard to approximate. We strengthen these results by showing hardness of approximation even for the unweighted geometric case and prove that the unweighted topological case is NP-hard.Comment: 16 pages, 5 figure

    On the pseudolinear crossing number

    Full text link
    A drawing of a graph is {\em pseudolinear} if there is a pseudoline arrangement such that each pseudoline contains exactly one edge of the drawing. The {\em pseudolinear crossing number} of a graph GG is the minimum number of pairwise crossings of edges in a pseudolinear drawing of GG. We establish several facts on the pseudolinear crossing number, including its computational complexity and its relationship to the usual crossing number and to the rectilinear crossing number. This investigation was motivated by open questions and issues raised by Marcus Schaefer in his comprehensive survey of the many variants of the crossing number of a graph.Comment: 12 page
    • …
    corecore