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We prove Griinbaum’s conjecture that every arrangement of eight pseudolines in 
the projective plane is stretchable, i.e., determines a cell complex isomorphic to one 
determined by an arrangement of lines. The proof uses our previous results OR 
ordered duality in the projective plane and on periodic sequences of permutations of 
[ 1, n] associated to arrangements of n lines in the euclidean plane. 

Any finite set of lines in the real projective plane determines a cell 
complex; these complexes and their combinatorial properties have been a 
subject of study at least since 1826 [9]. More recently, Levi [6] considered a 
topological generalization of this notion, defined as follows: Consider a 
simple closed curve in RP2 which does not separate RP2; this is called a 
pseudoline. (It is clear that any two pseudolines must meet, and it is easy to 
see that if they meet at precisely one point, they must cross there.) If a finite 
set of pseudolines has the property that any two meet at precisely one point, 
but that not all pass through a common point, we speak of an urra~~eme~~ 
of pseudolines; the arrangement is simple if distinct pairs meet at distinct 
points. An arrangement of pseudolines also determines a cell complex, and 
Levi and others showed that a number of properties of linear complexes 
carry over to pseudolinear ones [6,4]. Two arrangements are c&led 
isomorphic if there is an isomorphism of their associated cell.complexes; it 
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then follows easily from the Schoenflies theorem [7 ] that some 
homeomorphism of RP’ to itself maps the pseudolines of one arrangement 
onto those of the other. Finally, an arrangement is called stretchable if it is 
isomorphic to an arrangement of lines. 

If all but one of the pseudolines of an arrangement pass through a 
common point (a “near pencil”), it is clear that the arrangement is 
stretchable. For more general arrangements, howevef, this is false: Levi [6] 
showed, in fact, that there is an arrangement of nine pseudolines in RP* 
which is not stretchable, and in 1956 Ringel [8] gave an example of a simple 
nonstretchable arrangement, also involving nine pseudolines. In 1971 
Canham [l] and Halsey [5] independently gave a computer enumeration of 
all arrangements of seven pseudolines and found that they were all 
stretchable. (Griinbaum, in a verbal communication, has reported that when 
this enumeration was subsequently extended to a computer enumeration of 
all simple arrangements of eight pseudolines, these were also found to be 
stretchable.) On the basis of this evidence, Griinbaum conjectured [4, 
Conjecture 3.1 J that every arrangement of eight pseudolines, simple or not, it 
stretchable. 

Our result, stated in Theorem 1 below, is that Griinbaum’s conjecture is 
correct. It therefore closes the one gap that still remained after Canham and 
Halsey’s enumeration, and in fact provides a proof of their results as well, 
which does not resort to any computer enumertion. 

The methods used in the proof of Theorem 1 are both geometric and 
combinatorial in nature, and rely on the ideas and results of [2,3]. Recall 
that to an arrangement SZY of 12 lines in the euclidean plane, of which none is 
vertical and no two parallel, we associate a sequence of permutations of 
{I,..., n} as follows: An ordered vertical line in general position meets M’ in 
IZ points, determining a permutation of [ 1, n]. As the line sweeps across the 
arrangement (from left to right, say), this gives rise to a sequence of 
permutations in which the move from each to the next consists of reversing 
one or more nonoverlapping substrings. For example, the arrangement shown 
in Fig. 1 gives rise to the sequence 

... 12345 23 13245 245 13542 135 53142 14 53412 - 
34,12 

5432125423154224531=24135 221435 
21,43 (1) 
- 12345 ... 

in which we have indicated the various moves, and also extended the 
sequence to a periodic sequence by repeating the moves in the same order, 
with each move reversed, to get back to the original permutation, and then 
continuing as before. Such a periodic sequence is called the “circular 
sequence of permutations associated to the arrangement d,” and any 



ARRANGEMENTS OFPSEUDOLINES 387 

FIGURE 1 

periodic sequence of permutations of [I, n] with the properties that (I) each 
move consists of the reversal of one or more nonoverlapping subrings, and 
(2) in each half-period, every pair of indices gets reversed exactly once, is 
called an “allowable sequence of permutations,” or simply an “n-sequence” 
(see [3] for further details). Tf the n-sequence arises from an arrangement of 
n lines, we say it is realizable by lines; one of the main results coming out of 
[2,3 ]-see [3, Corollary l.S]---was what we shall call the 

REALIZABILITY THEOREM FOR ~-SEQUENCES. Every 5-sequence is 
realizable by lines except for the sequence 

... 12345 1221345 35 21453 a $21435 b $24153 

42513 ‘342531 2s 
d 

z45231 e %4231$54321 ‘. 

and any sequence obtained from it by (1) renumbering, (2) reversing it, (3) 
having any proper subset of the pairs of switches {{a, al), (b, b’}, {c, c’), 
{d, d’], {e, e’}} occur simultaneously, or some combination of (I), (21, wd 
(3). 

Another tool we shall need in the proof of Theorem 1 is the fohowin 
result of Levi (see 14, Theorem 3.41 for a proof): 

LEVI ENLARGEMENT LEMMA. Given an arrangement q ,...,A$ of 
pseudolines and points P, Q not both in any L& there is an arrangemkt 
L& >.‘.) Yn such that P, Q E YO ~ 

It is clear that if R 1 ,..., Rk are any points distinct from P and Q, S$ can be 
chosen to avoid R 1 ,..., R, as well. 
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THEOREM 1. Any arrangement of eight pseudolines is stretchable. 

Prooj We shall show first that any nonsimple arrangement of eight 
pseudolines is stretchable, and then reduce the simple case to the nonsimple 
case. Thus, let & = (Yi ,..., YB) be a nonsimple arrangement of eight 
pseudolines and let .L&+ i ,..,, Ys (1 < k < 5) pass through P, while q ,..., 4p, 
do not. Let the pseudolines Pi ,..., .L$ intersect in points P, ,..., PN (N< (i)) 
and let PI,..., P, be all of these which do not lie on Yk+i,..., gs. It follows 
from the Levi enlargement lemma that we can enlarge the arrangement &’ to 
a new arrangement .M’* by adjoining pseudolines @r ,..., .?$+ I, in such a way 
that each @k passes through P and P,, and through no other points of inter- 
section of pseudolines of &‘. (Here, P,, 1 is a point lying on no pseudoline of 
&.) Using the Schoenflies theorem we can now find a self-homeomorphism 
of RP’ which maps the pseudolines of &* passing through P (namely, 
44 k+l ,..., G$, @r ,..., L$+,) onto straight lines Lk+i ,..., L,, e, ,..., E”+r; let the 
images of Y1 ,..., Pk be the pseudolines L,,..., L,. Clearly the arrangements 
A = {L1,..., L,} and A* = {L, ,..., L,; f;, ,..., E,,,} are isomorphic to d and 
.A@‘*, respectively. If we now take the model of the projective plane in which 
2 n+l is the line at infinity and P the “vertical point at infinity,” the 
arrangement A* can be seen rather simply in the euclidean plane: the lines 
L k+l,.“,LB, L...J, are vertical, and all points of intersection of 
pseudolines L, ,..., L, lie on them. If we replace each arc joining two points 
of intersection of L1,..., L, by a line segment (we can do this, proceeding 
from left to right (say), by sliding the intersection points up or down as 
necessary), the cell complex does not change, Therefore we may assume, 
without loss of generality, that the pseudolines of the subarrangement 
B = (L, ,..., Lk} are piecewise linear, with corners only at their points of 
intersection. Hence we may associate to B a sequence 5’ of permutations in 
exactly the same way that a sequence is associated with an arrangement of 
lines in [3], namely, by having a directed vertical line L sweep across B 
from left to right and noting the order in which the pseudolines L, ,..., L, 
cross L as a permutation of [ 1, k]. (The arrangement in Fig. 2, for example, 
determines the sequence 

123,45 
12345 - 32154~32514~32541%5241 - 

35,24 
5342134 54321 9 

which we can then extend to a full 5-sequence as above.) 
If the sequence S can be realized by lines, i.e., is the sequence determined 

by an arrangement of lines zi,..., L,, take k lines that realize S and insert 
8-k additional vertical lines, z,,, ,..., L,, in the locations prescribed by the 
arrangement A. Since the cyclic order in which each Lj meets the other 
pseudolines L, is now the same as the cyclic order in which Lj meets the 
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corresponding lines Zi, the resulting arrangement x of lines El,..., E, is 
isomorphic to A, and we are done. 

We are left with the situation in which S is not realizable by lines. By the 
realizability theorem, then, it follows-after renumbering and reversing if 
necessary---that the arrangement 3 must be as in Fig. 3, or else that the 
vertical lines L,, L,, L, force several pairs of switches to take place 
simultaneously, as L, and L, did in Fig. 2. 

If we could interchange the switches in any one of the pairs 
{a, a’),..., {e, e’}, we would obtain a sequence which is realizable: But clearly 
one of these five pairs, say {c, c’}, does not have any of the three vertical 
lines L, , L,, L, passing either between the locations of the switches c and c”, 
or through both. Hence, interchanging the order in which these switches 
occur by modifying the pseudolines of B (see Fig. 4), we obtain a realizable 
sequence S’ without affecting the isomorphism class of A, and the argument 
concludes as before. Thus we see that every nonsimple g-arrangement is 
stretchable. 

Finally, if S’ is a simple arrangement, then an easy induction tigument 
shows that one of the ‘L-cells of the arrangement must be a triangle. (There 
are at least FZ triangles, in fact, in an arrangement of n pseudolines, by a. 
theorem of Levi [4, Theorem 3.41.) Defor;m the edges slight& so that tlx 
triangle is reduced to a point P, giving a new arrangement ..w”’ ‘which is not 
simple. By the above, JS?’ is isomorphic to an arrangement of lines A in 
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which the point P corresponds to the vertical point at infinity; and since A is 
simple except for the point P, we can tilt one of the three vertical lines 
slightly to reconstruct the missing triangle. Hence every arrangment of eight 
pseudolines is stretchable. 

Remark. The preceding argument shows that any arrangement of nine 
pseudolines which has a point common to four of them is also stretchable. In 
fact, if the arrangement contains a “complete quadrilateral” (a 
subarrangement of four lines whose vertices can be brought together without 
crossing any other lines of the arrangement, as was true for the triangle in 
the last paragraph), the arrangement is stretchable. 
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