191 research outputs found

    Antichain cutsets of strongly connected posets

    Full text link
    Rival and Zaguia showed that the antichain cutsets of a finite Boolean lattice are exactly the level sets. We show that a similar characterization of antichain cutsets holds for any strongly connected poset of locally finite height. As a corollary, we get such a characterization for semimodular lattices, supersolvable lattices, Bruhat orders, locally shellable lattices, and many more. We also consider a generalization to strongly connected hypergraphs having finite edges.Comment: 12 pages; v2 contains minor fixes for publicatio

    A unifying poset perspective on alternating sign matrices, plane partitions, Catalan objects, tournaments, and tableaux

    Full text link
    Alternating sign matrices (ASMs) are square matrices with entries 0, 1, or -1 whose rows and columns sum to 1 and whose nonzero entries alternate in sign. We present a unifying perspective on ASMs and other combinatorial objects by studying a certain tetrahedral poset and its subposets. We prove the order ideals of these subposets are in bijection with a variety of interesting combinatorial objects, including ASMs, totally symmetric self-complementary plane partitions (TSSCPPs), staircase shaped semistandard Young tableaux, Catalan objects, tournaments, and totally symmetric plane partitions. We prove product formulas counting these order ideals and give the rank generating function of some of the corresponding lattices of order ideals. We also prove an expansion of the tournament generating function as a sum over TSSCPPs. This result is analogous to a result of Robbins and Rumsey expanding the tournament generating function as a sum over alternating sign matrices.Comment: 24 pages, 23 figures, full published version of arXiv:0905.449

    Non-commutative Pieri operators on posets

    Get PDF
    We consider graded representations of the algebra NC of noncommutative symmetric functions on the Z-linear span of a graded poset P. The matrix coefficients of such a representation give a Hopf morphism from a Hopf algebra HP generated by the intervals of P to the Hopf algebra of quasi-symmetric functions. This provides a unified construction of quasi-symmetric generating functions from different branches of algebraic combinatorics, and this construction is useful for transferring techniques and ideas between these branches. In particular we show that the (Hopf) algebra of Billera and Liu related to Eulerian posets is dual to the peak (Hopf) algebra of Stembridge related to enriched P-partitions, and connect this to the combinatorics of the Schubert calculus for isotropic flag manifolds.Comment: LaTeX 2e, 22 pages Minor corrections, updated references. Complete and final version, to appear in issue of J. Combin. Th. Ser. A dedicated to G.-C. Rot

    Symmetric Decompositions and the Strong Sperner Property for Noncrossing Partition Lattices

    Full text link
    We prove that the noncrossing partition lattices associated with the complex reflection groups G(d,d,n)G(d,d,n) for d,n2d,n\geq 2 admit symmetric decompositions into Boolean subposets. As a result, these lattices have the strong Sperner property and their rank-generating polynomials are symmetric, unimodal, and γ\gamma-nonnegative. We use computer computations to complete the proof that every noncrossing partition lattice associated with a well-generated complex reflection group is strongly Sperner, thus answering affirmatively a question raised by D. Armstrong.Comment: 30 pages, 5 figures, 1 table. Final version. The results of the initial version were extended to symmetric Boolean decompositions of noncrossing partition lattice

    Some combinatorial identities appearing in the calculation of the cohomology of Siegel modular varieties

    Get PDF
    In the computation of the intersection cohomology of Shimura varieties, or of the L2L^2 cohomology of equal rank locally symmetric spaces, combinatorial identities involving averaged discrete series characters of real reductive groups play a large technical role. These identities can become very complicated and are not always well-understood (see for example the appendix of [8]). We propose a geometric approach to these identities in the case of Siegel modular varieties using the combinatorial properties of the Coxeter complex of the symmetric group. Apart from some introductory remarks about the origin of the identities, our paper is entirely combinatorial and does not require any knowledge of Shimura varieties or of representation theory.Comment: 17 pages, 1 figure; to appear in Algebraic Combinatoric

    Discrete Morse theory for totally non-negative flag varieties

    Get PDF
    In a seminal 1994 paper, Lusztig extended the theory of total positivity by introducing the totally non-negative part (G/P)_{\geq 0} of an arbitrary (generalized, partial) flag variety G/P. He referred to this space as a "remarkable polyhedral subspace", and conjectured a decomposition into cells, which was subsequently proven by the first author. Subsequently the second author made the concrete conjecture that this cell decomposed space is the next best thing to a polyhedron, by conjecturing it to be a regular CW complex that is homeomorphic to a closed ball. In this article we use discrete Morse theory to prove this conjecture up to homotopy-equivalence. Explicitly, we prove that the boundaries of the cells are homotopic to spheres, and the closures of cells are contractible. The latter part generalizes a result of Lusztig's that (G/P)_{\geq 0} -- the closure of the top-dimensional cell -- is contractible. Concerning our result on the boundaries of cells, even the special case that the boundary of the top-dimensional cell (G/P)_{> 0} is homotopic to a sphere, is new for all G/P other than projective space.Comment: 30 page
    corecore