
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Advances in Mathematics 223 (2010) 1855–1884
www.elsevier.com/locate/aim

Discrete Morse theory for totally non-negative flag
varieties ✩

Konstanze Rietsch a,∗, Lauren Williams b

a Department of Mathematics, King’s College London, Strand, London WC2R 2LS, United Kingdom
b Department of Mathematics, Harvard University, Cambridge, MA 02138, United States

Received 1 July 2009; accepted 15 October 2009

Available online 30 October 2009

Communicated by Andrei Zelevinsky

Abstract

In a seminal 1994 paper Lusztig (1994) [26], Lusztig extended the theory of total positivity by introducing
the totally non-negative part (G/P )�0 of an arbitrary (generalized, partial) flag variety G/P . He referred
to this space as a “remarkable polyhedral subspace”, and conjectured a decomposition into cells, which
was subsequently proven by the first author Rietsch (1998) [33]. In Williams (2007) [40] the second author
made the concrete conjecture that this cell decomposed space is the next best thing to a polyhedron, by
conjecturing it to be a regular CW complex that is homeomorphic to a closed ball. In this article we use
discrete Morse theory to prove this conjecture up to homotopy-equivalence. Explicitly, we prove that the
boundaries of the cells are homotopic to spheres, and the closures of cells are contractible. The latter part
generalizes a result of Lusztig’s (1998) [28], that (G/P )�0 – the closure of the top-dimensional cell – is
contractible. Concerning our result on the boundaries of cells, even the special case that the boundary of the
top-dimensional cell (G/P )>0 is homotopic to a sphere, is new for all G/P other than projective space.
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1. Introduction

The classical theory of total positivity studies matrices whose minors are all positive. Lusztig
dramatically generalized this theory with a 1994 paper [26] in which he introduced the totally
positive part of a reductive group G (totally positive matrices are recovered when G is a gen-
eral linear group). Lusztig also defined the (totally) positive and (totally) non-negative parts
(G/P )>0 and (G/P )�0 of an arbitrary (generalized, partial) flag variety G/P . Lusztig referred
to (G/P )�0 as a “remarkable polyhedral subspace” [26], and conjectured a decomposition into
cells, which was subsequently validated by the first author [33]. This cell decomposition has
a unique top-dimensional cell, the totally positive part (G/P )>0; the totally non-negative part
(G/P )�0 is the closure of this cell.

Lusztig [28] has proved that the totally non-negative part of the (full) flag variety is con-
tractible, which implies the same result for any partial flag variety. More generally, in 1996
Lusztig asked whether the closure of each cell of (G/P )�0 is contractible [27], but this problem
has remained open until now. By analogy with toric varieties, one might wonder whether even
more is true – whether (G/P )�0 is homeomorphic to a ball, and in that case, whether there is a
homeomorphism to a polyhedron mapping cells to faces: indeed, there is a notion of total posi-
tivity for toric varieties, and the non-negative part of a toric variety is homeomorphic – via the
moment map – to its moment polytope [17]. It turns out that (G/P )�0 cannot be modeled by a
polyhedron in the above sense: for example, the totally non-negative part of the Grassmannian
Gr2,4(R) has one top-dimensional cell of dimension 4 and four 3-dimensional cells, but there is
no 4-dimensional polytope with four facets. Nevertheless, in [40] the second author conjectured
that (G/P )�0 together with its cell decomposition is the next best thing to a polyhedron, that is,
it is a regular CW complex – the closure of each cell is homeomorphic to a closed ball and the
boundary of each cell is homeomorphic to a sphere.

The goal of this paper is to apply combinatorial and topological methods in order to address
this conjecture. Indeed, the past thirty years have seen a wealth of literature designed to facili-
tate the interplay between combinatorics and geometry (see [12,2,5,6,3]). In particular, in a 1984
paper [3], Bjorner recognized that regular CW complexes are combinatorial objects in the fol-
lowing sense: if Q is the poset of closed cells in a regular CW decomposition of a space X, then
the order complex (or nerve) ‖Q‖ is homeomorphic to X. Furthermore, he gave criteria [3] for
recognizing when a poset is the face poset of a regular CW complex: for example, if a poset
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is thin and shellable then it is the face poset of some regular CW complex homeomorphic to a
ball.

In [34], the first author described the poset Q of closed cells of (G/P )�0, and in [40], the
second author applied techniques from poset topology to the poset of closed cells of (G/P )�0.
In particular, she showed that the poset is thin and shellable. It follows that the order complex
‖Q‖ is homeomorphic to a ball, and by Bjorner’s results, Q is the poset of cells of a regular
CW decomposition of a ball. These results were the motivation for her conjecture that the cell
decomposition of (G/P )�0 is a regular CW decomposition of a ball.

While the statement that Q is the poset of cells of a regular CW decomposition of a ball is an
extremely strong combinatorial result, one cannot use it to deduce any corresponding topological
consequences for the original space (G/P )�0. Even to deduce results about the Euler charac-
teristics of closures of cells requires further topological information about how cells are glued
together, i.e. knowing that the cell complex is a CW complex. This was proved some ten years
after the discovery of the cell decomposition, in [32,36].

To obtain new topological information about the CW complex (G/P )�0, we turn in this paper
to another technique, namely Forman’s discrete Morse theory [15]. The main theorem of discrete
Morse theory is set up to provide a sequence of collapses for cells in a CW complex, which pre-
serves the homotopy-type of the CW complex. To use it, one must input some combinatorial data
– a discrete Morse function, which specifies the sequence of collapses – and check a number of
topological hypotheses. Most notably, one must make sure that whenever one cell C1 is collapsed
into a cell C2 whose closure contains C1, C1 is a regular face of C2.

In this paper we use a blend of combinatorial and topological arguments to apply discrete
Morse theory to (G/P )�0. Our main result is the following.

Theorem 1.1. Let (G/P )�0 be an arbitrary (generalized, partial) flag variety. The closure of
each cell of (G/P )�0 is collapsible, hence contractible. Furthermore, the boundary of each cell
is homotopy-equivalent to a sphere. In particular, (G/P )�0 is contractible and its boundary is
homotopy-equivalent to a sphere.

While it was known already that (G/P )�0 is contractible by work of Lusztig, this theorem
also identifies the homotopy type of its boundary, and of the closures of the smaller cells and
their boundaries. Namely, we prove the conjecture that (G/P )�0 is a regular CW decomposition
of a ball up to homotopy-equivalence.

We note that much of the technical difficulty of proving our main results stems from the
fact that the attaching maps that we constructed for cells in [36] are defined in a non-explicit
way in terms of Lusztig’s canonical basis. Identifying enough pairs of cells (C1,C2) with C1 a
provably regular face of C2, and then demonstrating regularity, requires an intricate analysis of
parameterizations of cells and of what happens when parameters go to infinity. Our arguments
rely in a fundamental way on positivity properties of the canonical basis.

The combinatorial component of our arguments is also nontrivial. For every cell C in
(G/P )�0, we find a Morse matching on the poset of cells in the closure of C, with a unique
critical cell of dimension 0, such that matched pairs of cells are regular. This requires us to
identify appropriate Morse matchings of intervals in Bruhat order; the matchings we construct
generalize certain special matchings found by Brenti [10] in the context of Kazhdan–Lusztig
theory. An essential tool in our proofs is Dyer’s notion of reflection orders and his EL-labeling of
Bruhat order [14]. Along the way, we give a link between poset topology and discrete Morse the-
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ory, building on work of Chari to provide an algorithm for passing explicitly from an EL-labeling
of a CW poset to a Morse matching.

For the time being, there is no simple strategy for proving that closures of cells are home-
omorphic to balls. One might hope to use recent work of Hersh [19] on determining when an
attaching map for a CW complex is a homeomorphism on its entire domain. However, there is
only one known CW structure for (G/P )�0 (the one we gave in [36]), and its attaching maps are
not homeomorphisms.

It is worth noting that to our knowledge this paper represents one of the first instances of the
application of combinatorial tools (poset topology and discrete Morse theory) to a topological
space which is not a simplicial or regular cell complex, and which arose outside the context of
combinatorics. Indeed, most of the tools of poset topology are designed to analyze the order
complex of a poset (a simplicial complex), e.g. the order complex of Bruhat order, the parti-
tion lattice, the lattice of subgroups of a finite group [39]. Similarly, discrete Morse theory is
most readily applied to simplicial complexes and regular CW complexes (as opposed to gen-
eral CW complexes), because in these situations one does not have to check extra topological
hypotheses before collapsing cells. In light of this, it is not surprising that virtually all of the
many applications of discrete Morse theory to date have been to simplicial complexes, e.g. com-
plexes of t-colorable graphs, complexes of connected and biconnected graphs, complexes of not
i-connected graphs; see [16] for an interesting survey.

Therefore we hope that this paper will be valuable not only in shedding light on the topology
of (G/P )�0, but also in demonstrating the applicability of combinatorial tools to topological
spaces outside the world of combinatorics.

2. Preliminaries on algebraic groups and flag varieties

We start with some preliminaries.

2.1. Pinnings

Let G be a semisimple, simply connected linear algebraic group over C split over R, with
split torus T . We identify G (and related spaces) with their real points and consider them with
their real topology. Let X(T ) = Hom(T ,R∗) and Φ ⊂ X(T ) the set of roots. Choose a system
of positive roots Φ+. We denote by B+ the Borel subgroup corresponding to Φ+ and by U+ its
unipotent radical. We also have the opposite Borel subgroup B− such that B+ ∩B− = T , and its
unipotent radical U−.

Denote the set of simple roots by Π = {αi | i ∈ I } ⊂ Φ+. For each αi ∈ Π there is an as-
sociated homomorphism φi : SL2 → G. Consider the 1-parameter subgroups in G (landing in
U+,U−, and T , respectively) defined by

xi(m) = φi

(
1 m

0 1

)
, yi(m) = φi

(
1 0
m 1

)
, α∨

i (t) = φi

(
t 0
0 t−1

)
,

where m ∈ R, t ∈ R∗, i ∈ I . The datum (T , B+, B−, xi , yi ; i ∈ I ) for G is called a pinning.
The standard pinning for SLd consists of the diagonal, upper-triangular, and lower-triangular
matrices, along with the simple root subgroups xi(m) = Id +mEi,i+1 and yi(m) = Id +mEi+1,i

where Id is the identity matrix and Ei,j has a 1 in position (i, j) and zeroes elsewhere.
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2.2. Folding

If G is not simply laced, then one can construct a simply laced group Ġ and an automorphism
τ of Ġ defined over R, such that there is an isomorphism, also defined over R, between G and the
fixed point subset Ġτ of Ġ. Moreover the groups G and Ġ have compatible pinnings. Explicitly
we have the following.

Let Ġ be simply connected and simply laced. We apply the same notations as in Section 2.1
for G, but with a dot, to our simply laced group Ġ. So we have a pinning (Ṫ , Ḃ+, Ḃ−, ẋi , ẏi ,
i ∈ İ ) of Ġ, and İ may be identified with the vertex set of the Dynkin diagram of Ġ.

Let σ be a permutation of İ preserving connected components of the Dynkin diagram, such
that, if j and j ′ lie in the same orbit under σ then they are not connected by an edge. Then σ

determines an automorphism τ of Ġ such that

(1) τ(Ṫ ) = Ṫ ,
(2) τ(xi(m)) = xσ(i)(m) and τ(yi(m)) = yσ(i)(m) for all i ∈ İ and m ∈ R.

In particular τ also preserves Ḃ+, Ḃ−. Let Ī denote the set of σ -orbits in İ , and for ī ∈ Ī , let

xī(m) :=
∏
i∈ī

xi(m),

yī(m) :=
∏
i∈ī

yi(m).

The fixed point group Ġτ is a simply laced, simply connected algebraic group with pinning
(Ṫ τ , Ḃ+τ , Ḃ−τ , xī , yī , ī ∈ Ī ). There exists, and we choose, Ġ and τ such that Ġτ is isomorphic
to our group G via an isomorphism compatible with the pinnings.

2.3. Flag varieties

The Weyl group W = NG(T )/T acts on X(T ) permuting the roots Φ . We set si := ṡiT where
ṡi := φi

( 0 −1
1 0

)
. Then any w ∈ W can be expressed as a product w = si1si2 . . . sim with �(w)

factors. This gives W the structure of a Coxeter group; we will assume some basic knowledge
of Coxeter systems and Bruhat order as in [20]. We set ẇ = ṡi1 ṡi2 . . . ṡim . It is known that ẇ is
independent of the reduced expression chosen.

We can identify the flag variety G/B+ with the variety B of Borel subgroups, via

gB+ ⇔ g · B+ := gB+g−1.

We have the Bruhat decompositions

B =
⊔

w∈W

B+ẇ · B+ =
⊔

w∈W

B−ẇ · B+

of B into B+-orbits called Bruhat cells, and B−-orbits called opposite Bruhat cells.
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Definition 2.1. For v,w ∈ W define

Rv,w := B+ẇ · B+ ∩ B−v̇ · B+.

The intersection Rv,w is non-empty precisely if v � w in the Bruhat order, and in that case is
irreducible of dimension �(w) − �(v), see [22].

Let J ⊂ I . The parabolic subgroup WJ ⊂ W corresponds to a parabolic subgroup PJ in
G containing B+. Namely, PJ = ⊔

w∈WJ
B+ẇB+. Consider the variety P J of all parabolic

subgroups of G conjugate to PJ . This variety can be identified with the partial flag variety G/PJ

via

gPJ ⇔ gPJ g−1.

We have the usual projection from the full flag variety to a partial flag variety which takes the
form π = πJ : B → P J , where π(B) is the unique parabolic subgroup of type J containing B .

3. Total positivity for flag varieties

3.1. The totally non-negative part of G/PJ and its cell decomposition

Definition 3.1. (See [26].) The totally non-negative part U−
�0 of U− is defined to be the semi-

group in U− generated by the yi(t) for t ∈ R�0.
The totally non-negative part of B (denoted by B�0 or by (G/B+)�0) is defined by

B�0 := {
u · B+ ∣∣ u ∈ U−

�0

}
,

where the closure is taken inside B in its real topology.
The totally non-negative part of a partial flag variety P J (denoted by P J

�0 or by (G/PJ )�0)

is defined to be πJ (B�0).

Lusztig [26,29] introduced natural decompositions of B�0 and P J
�0.

Definition 3.2. (See [26].) For v,w ∈ W with v � w, let

Rv,w;>0 := Rv,w ∩ B�0.

We write WJ (respectively WJ
max) for the set of minimal (respectively maximal) length coset

representatives of W/WJ .

Definition 3.3. (See [29].) Let I J ⊂ WJ
max × WJ × WJ be the set of triples (x,u,w) with

the property that x � wu. Given (x,u,w) ∈ I J , we define P J
x,u,w;>0 := πJ (Rx,wu;>0) =

πJ (Rxu−1,w;>0).

The first author [33] proved that Rv,w;>0 and P J
x,u,w;>0 are semi-algebraic cells of dimension

�(w) − �(v) and �(wu) − �(x), respectively.
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3.2. Parameterizations of cells

In [30], Marsh and the first author gave parameterizations of the cells Rv,w;>0, which we now
explain.

Let v � w and let w = (i1, . . . , im) encode a reduced expression si1 . . . sim for w. Then there
exists a unique subexpression sij1

. . . sijk
for v in w with the property that, for l = 1, . . . , k,

sij1
. . . sijl

sir > sij1
. . . sijl

whenever jl < r � jl+1,

where jk+1 := m. This is the “rightmost reduced subexpression” for v in w, and is called the
“positive subexpression” in [30]. It was originally introduced by Deodhar [13]. We use the nota-
tion

v+ := {j1, . . . , jk},
vc+ := {1, . . . ,m} \ {j1, j2, . . . , jk},

for this special subexpression for v in w. Note that this notation only makes sense in the context
of a fixed w.

Now we can define the map

φv+,w : (C∗)vc+ → Rv,w,

(tr )r∈vc+ �→ g1 . . . gm · B+,

where

gr =
{

ṡir if r ∈ v+,

yir (tr ) if r ∈ vc+.

Theorem 3.4. (See [30, Theorem 11.3].) The restriction of φv+,w to (R>0)
vc+ defines an isomor-

phism of semi-algebraic sets,

φ>0
v+,w : (R>0)

vc+ → Rv,w;>0.

We note that this parameterization generalizes Lusztig’s parametrization of totally non-
negative cells in U−

�0 from [26]. Namely U−
�0 = ⊔

w∈W U−
>0(w), for

U−
>0(w) := {

yi1(t1)yi2(t2) . . . yim(tm)
∣∣ ti ∈ R>0

}
,

where w = (i1, . . . , im) is a/any reduced expression of w. Clearly, R>0 = U− (w) · B+.
1,w >0
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3.3. Change of coordinates under braid relations

In the simply laced case there is a simple change of coordinates [26,35] which describes how
two parameterizations of the same cell are related when considering two reduced expressions
which differ by a commuting relation or a braid relation.

If sisj = sj si then yi(a)yj (b) = yj (b)yi(a) and yi(a)ṡj = ṡj yi(a).
If sisj si = sj sisj then

(1) yi(a)yj (b)yi(c) = yj (
bc

a+c
)yi(a + c)yj (

ab
a+c

),

(2) yi(a)ṡj yi(b) = yj (
b
a
)yi(a)ṡj xj (

b
a
),

(3) ṡj ṡiyj (a) = yi(a)ṡj ṡi .

In case (2) Lemma 11.4 from [30] implies that the factor xj (
b
a
) disappears into B+ without

affecting the remaining parameters when this braid relation is applied in the parametrization of a
totally non-negative cell.

The changes of coordinates have also been computed for more general braid relations and have
been observed to be invertible, subtraction-free, homogeneous rational transformations [1,35].

3.4. Total positivity and canonical bases for simply laced G

Assume that G is simply laced. Let U be the enveloping algebra of the Lie algebra of G;
this can be defined by generators ei , hi , fi (i ∈ I ) and the Serre relations. For any dominant
weight λ ∈ X(T ) embedded into h∗, there is a finite-dimensional simple U-module V (λ) with
a non-zero vector η such that ei · η = 0 and hi · η = λ(hi)η for all i ∈ I . The pair (V (λ), η) is
determined up to unique isomorphism.

There is a unique G-module structure on V (λ) such that for any i ∈ I , a ∈ R we have

xi(a) = exp(aei) : V (λ) → V (λ), yi(a) = exp(afi) : V (λ) → V (λ).

Then xi(a) · η = η for all i ∈ I , a ∈ R, and t · η = λ(t)η for all t ∈ T . Let B(λ) be the canonical
basis of V (λ) that contains η [24]. We now collect some useful facts about the canonical basis.

Lemma 3.5. (See [29, 1.7(a)].) For any w ∈ W , the vector ẇ · η is the unique element of B(λ)

which lies in the extremal weight space V (λ)w(λ). In particular, ẇ · η ∈ B(λ).

We define f
(p)
i to be

f
p
i

p! .

Lemma 3.6. Let si1 . . . sin be a reduced expression for w ∈ W . Then there exists a ∈ N such that

f
(a)
i1

ṡi2 ṡi3 . . . ṡin · η = ṡi1 ṡi2 . . . ṡin · η. Moreover, f
(a+1)
i1

ṡi2 ṡi3 . . . ṡin · η = 0.

Proof. This follows from Lemma 3.5 and properties of the canonical basis, see e.g. the proof
of [25, Proposition 28.1.4]. �
4. (G/P )�0 as a CW complex: Attaching maps using toric varieties

Recall that a CW complex is a union X of cells with additional requirements on how cells are
glued: in particular, for each cell σ , one must define a (continuous) attaching map h : B → X
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where B is a closed ball, such that the restriction of h to the interior of B is a homeomorphism
with image σ .

Even given the parameterizations of cells, it is not obvious how to define attaching maps.
One needs to extend the domain of each map φ>0

v+,w from (R>0)
vc+ (an open ball) to a closed

ball. However, a priori it is not clear how to let the parameters approach 0 and infinity. In this
section we explain how, following earlier work for Grassmannians [32], the authors [36] de-
fined attaching maps for the cells and proved that the cell decomposition of (G/PJ )�0 is a CW
complex.

Lemma 4.1 below is the key to defining attaching maps. It says that one can compactify
(R>0)

vc+ inside a toric variety related to the parameterization, obtaining a closed ball (the non-
negative part of the toric variety). We refer to [17,37] for the basics on toric varieties and their
non-negative parts. Let S ∈ Zr be a finite set whose elements are ordered, m0, . . . ,mK, and
thought of as corresponding to monomials, tmj = t

mj,1
1 t

mj,2
2 . . . t

mj,r
r . We let XS denote the toric

subvariety of PK associated to S as in [37], and X>0
S and X

�0
S its positive and non-negative parts,

respectively. Explicitly, XS is the closure of the image of the associated map

χ = χS : t = (t1, . . . , tr ) �→ [
tm0 , tm1 , . . . , tmK

]
(4.1)

from (C∗)r to PK , while X>0
S , and X

�0
S are obtained as the image of Rr

>0 and its closure.

A fact which is crucial here is that X
�0
S is homeomorphic to a closed ball. More specifically,

XS has a moment map which gives a homeomorphism from X
�0
S to the convex hull BS of S.

Lemma 4.1. (See [32].) Suppose we have a map φ : (R>0)
r → PN given by

(t1, . . . , tr ) �→ [
p1(t1, . . . , tr ), . . . , pN+1(t1, . . . , tr )

]
,

where the pi ’s are Laurent polynomials with positive coefficients. Let S be the set of all expo-
nent vectors in Zr which occur among the (Laurent) monomials of the pi ’s, and let BS be the
convex hull of the points of S. Then the map φ factors through the totally positive part X>0

S of
the toric variety, giving a map Φ>0 : X>0

S → PN . Moreover Φ>0 extends continuously to the

closure to give a well-defined map Φ�0 : X
�0
S → Φ>0(X

>0
S ). Note that if we precompose with

the isomorphism BS
∼= X

�0
S given by the moment map, we can consider the domain of Φ�0 to be

the polytope BS , a closed ball.

The following result constructs attaching maps for cells of (G/PJ )�0 [36].

Theorem 4.2. (See [36].) For any G/B+ we can construct a positivity preserving embedding
i : G/B+ → PN , for some N , with the following property. For any totally non-negative cell
Rx,w;>0 and parameterization φ>0

x+,w as in Section 3.2, the composition

i ◦ φ>0
x+,w : (R>0)

xc+ ∼→ Rx,w;>0 ↪→ P
N

takes the form

i ◦ φ>0
x ,w : t = (tr )r∈xc �→ [

p1(t), . . . , pN+1(t)
]
,
+ +
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where the pj ’s are polynomials with positive coefficients. Applying Lemma 4.1 to i ◦ φ>0
x+,w, we

get an attaching map Φ
�0
x+,w : X

�0
x+,w → Rx,w;>0 where the non-negative toric variety X

�0
x+,w is

homeomorphic to its moment polytope Bx+,w.

In Theorem 4.2, the map i is defined as follows. When G is simply laced, we consider the
representation V = V (ρ) of G with a fixed highest weight vector η and corresponding canonical
basis B(ρ). We let i : B → P(V ) denote the embedding which takes g ·B+ ∈ B to the line 〈g ·η〉.
This is the unique g · B+-stable line in V . We specify points in the projective space P(V ) using
homogeneous coordinates corresponding to B(ρ). The theorem then follows using the positivity
properties of the canonical basis in simply laced type.

If G is not simply laced, we use a folding argument to deduce the result from the simply laced
case: the map i is given by i′ from Lemma 4.3 as we will now explain. Let Ġ be the simply laced
group with automorphism corresponding to G. We identify G with Ġτ and use all of the notation
from Section 2.2. For any ī ∈ Ī there is a simple reflection sī in W , which is represented in Ġ by

ṡī :=
∏
i∈ī

ṡi .

In this way any reduced expression w = (ī1, ī2, . . . , īm) in W gives rise to a reduced expression
ẇ in Ẇ of length

∑m
k=1 |īk|, which is determined uniquely up to commuting elements [38]. To

a subexpression v of w we can then associate a unique subexpression v̇ of ẇ in the obvious
way.

Lemma 4.3. (See [36].) Let v, w be in W with v � w.

(1) We have

Rv,w;>0 = Ṙv,w;>0 ∩ Bτ .

In particular the composition i′ : Rv,w ↪→ Ṙv,w → P(V (ρ̇)) is positivity preserving.
(2) Suppose w = (ī1, . . . , īm) is a reduced expression for w in W , and vc+ = (h1, . . . , hr ) is the

complement of the positive subexpression for v. Then we have a commutative diagram,

Rv,w;>0
ι−−−−→ Ṙv,w;>0

φ>0
v+,w

�⏐⏐ �⏐⏐φ>0
v̇+,ẇ

R
vc+
>0

ῑ−−−−→ R
v̇c+
>0,

where the top arrow is the usual inclusion, the vertical arrows are both isomorphisms, and
the map ῑ has the form

(t1, . . . , tr ) �→ (t1, . . . , t1, t2, . . . , t2, . . . , tr ),

where each tl is repeated |īhl
| times on the right-hand side.
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Remark 4.4. For partial flag varieties we can also use Theorem 4.2 to construct an attaching
map for each P J

x,u,w;>0. The projection πJ : Rxu−1,w;>0 → P J
x,u,w;>0 is a homeomorphism so

we take the composition Φ
�0

xu−1+ ,w
◦ πJ as our attaching map.

Theorem 4.5. (See [36].) (G/PJ )�0 is a CW complex.

5. The poset QJ of cells of (G/PJ )�0 and a regularity criterion

In this section we will review the description of the face poset of (G/PJ )�0 which was given
by the first author [34]. We will then prove Theorem 5.6, giving a condition which ensures that a
cell σ is a regular face of another cell τ with respect to the attaching map of τ .

Definition 5.1. Let K be a finite CW complex, and let Q denote its set of cells. The notation
σ (p) indicates that σ is a cell of dimension p. We write τ > σ if σ �= τ and σ ⊂ τ , where τ is
the closure of τ , and we say σ is a face of τ . This gives Q the structure of a partially ordered
set, which we refer to as the face poset of K . Sometimes we will augment Q by adding a least
element 0̂: in this case we will say that τ > 0̂ for all τ , and we will call this the augmented face
poset of K .

Remark 5.2. Our notion of face poset agrees with the notion used by Forman [15]. However,
Bjorner [3] defines the face poset of a cell complex to be the poset of cells augmented by a least
element 0̂ and a greatest element 1̂. In this paper we will never add a 1̂ to a poset because all
posets we consider already have a unique greatest element.

A description of the face poset of (G/PJ )�0 was given in [34]. See also the paper [18] of
Goodearl and Yakimov, who independently defined an isomorphic poset in their study of the
T -orbits of symplectic leaves for a Poisson structure on G/PJ .

Theorem 5.3. (See [34].) Fix W and WJ , the Weyl group and its parabolic subgroup correspond-
ing to G/PJ . Let QJ denote the augmented face poset of (G/PJ )�0 with its decomposition into
totally non-negative cells. The elements of QJ are indexed by I J ∪ 0̂, where I J is as in Defini-
tion 3.3.

The order relations in QJ are described in terms of Weyl group combinatorics by

P J
x,u,w;>0 � P J

x′,u′,w′;>0

if and only if there exist u1, u2 ∈ WJ with u1u2 = u and �(u) = �(u1)+�(u2), such that x′u′−1 �
xu−1

2 � wu1 � w′. Moreover 0̂ < P J
x,u,w;>0 for all (x,u,w) ∈ I J .

Remark 5.4. When G/PJ is a (type A) Grassmannian, QJ is the poset of cells of the totally
non-negative Grassmannian, first studied by Postnikov [31].

When P J
x,u,w;>0 < P J

x′,u′,w′;>0 and dimP J
x′,u′,w′;>0 = dimP J

x,u,w;>0 + 1, we will write

P J
� P J′ ′ ′ .
x,u,w;>0 x ,u ,w ;>0
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Suppose a cell σ (p) is a face of τ (p+1). Let B be a closed ball of dimension p + 1, and let
h : B → K be the attaching map for τ , i.e. h is a continuous map that maps Int(B) homeomor-
phically onto τ . The following definition is essential to discrete Morse theory for general CW
complexes, as collapses of cells must take place along regular edges.

Definition 5.5. (See [15, Definition 1.1].) We say that σ (p) is a regular face of τ (p+1) (with
respect to the attaching map h for τ ) and that (σ, τ ) is a regular edge, if

(1) h : h−1(σ ) → σ is a homeomorphism,
(2) h−1(σ ) is a closed p-ball.

To use discrete Morse theory in our situation we must find enough regular edges. However,
the toric varieties and attaching maps in Theorem 4.2 are constructed using the canonical basis,
and hence are not at all explicit. Thus at first glance it might seem hopeless to deduce whether a
cell σ is a regular face of τ with respect to an attaching map h for τ . Fortunately, by the following
result we do have a situation in which we can prove regularity of a pair of faces. We will first
prove Theorem 5.6 in the case of complete flag varieties, and then generalize it to partial flag
varieties.

Theorem 5.6. Consider P J
x,u,w;>0 � P J

x′,u′,w;>0 in (G/PJ )�0 and let w = (i1, . . . , im) be a
reduced expression for w. We call this pair of cells good with respect to w if the positive subex-
pression x′u′−1+ is equal to xu−1+ ∪ {k} and moreover xu−1+ contains {k + 1, . . . ,m}. In this case

P J
x′,u′,w;>0 is a regular face of P J

x,u,w;>0 with respect to the attaching map Φ
�0

xu−1+ ,w
◦ πJ .

When the choice of reduced expression w and the attaching map are clear from context, we
will sometimes omit the phrase with respect to w or with respect to the attaching map.

Proposition 5.7. Choose a reduced expression w = (i1, . . . , im) for w, and suppose that the
pair Rv,w;>0 � Rv′,w;>0 is good with respect to w. Suppose that v+ and v′+ are related by
v′+ = v+ ∪ {k}. Then Xv′+,w can be identified with a sub-toric variety of Xv+,w, and its moment
polytope Bv′+,w is a facet of the moment polytope Bv+,w of Xv+,w. Moreover, the attaching map

Φ
�0
v+,w : X�0

v+,w → Rv,w;>0 restricts to X
�0
v′+,w to give the attaching map Φ

�0
v′+,w for Rv′,w;>0.

Proof. Let us first consider the case that G is simply-laced. By our assumptions the parameteri-
zations of the two cells take the form

φ>0
v+,w = g1 . . . gk−1yik (tk)ṡik+1 . . . ṡim · B+,

φ>0
v′+,w = g1 . . . gk−1ṡik ṡik+1 . . . ṡim · B+.

If we compose the parameterization φ>0
v+,w with the inclusion i : Rv,w ↪→ PN from Theorem 4.2

we get a map

t = (th1 , . . . , thr , tk) �→ [
p1(t), . . . , pN+1(t)

]
,

where the pj ’s are polynomials with positive coefficients. We note that by the definition of the
map i, which we recalled just after Theorem 4.2,
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[
p1(t), . . . , pN+1(t)

] = 〈
g1 . . . gk−1yik (tk)ṡik+1 . . . ṡim · η〉

.

Here we have identified PN with P(V (ρ)) using the canonical basis.
If we take the limit as tk → ∞ we obtain a new map

t′ = (th1 , . . . , thr ) �→ [
p′

1

(
t′
)
, . . . , p′

N+1

(
t′
)]

= lim
tk→∞

〈
g1 . . . gk−1yik (tk)ṡik+1 . . . ṡim · η〉 = 〈g1 . . . gk−1ṡik ṡik+1 . . . ṡim · η〉. (5.1)

Here the last equality follows by applying g1 . . . gk−1 to the identity

lim
tk→∞

〈
yik (tk)ṡik+1 . . . ṡim · η〉 = 〈ṡik ṡik+1 . . . ṡim · η〉,

which comes from expanding the action of yik (tk) = exp(tkfik ), using that

f
(a)
ik

ṡik+1 . . . ṡim · η = ṡik ṡik+1 . . . ṡim · η,

f
(a+1)
ik

ṡik+1 . . . ṡim · η = 0,

for a positive integer a, by Lemma 3.6.
By the same argument, a as above is the highest power of tk appearing in any pj . Therefore to

obtain homogeneous coordinates p′
j (t

′) for the limit point we may divide each pj (t) by tak and
take

p′
j

(
t′
) = lim

tk→∞
1

tak
pj (t).

The monomials of pj (t) which don’t vanish in this limit are precisely those which are multiples
of this maximal power, tak .

It follows that the toric variety Xv′+,w is the sub-toric variety of Xv+,w which is given precisely
by those monomials which are multiples of tak (and other coordinates set to zero). Its moment
polytope can be identified with the face of Bv+,w cut out by the hyperplane xk = a. Moreover

from (5.1) it follows that the attaching map Φ
�0
v′+,w : X�0

v′+,w → Rv′,w;>0 is the restriction of Φ
�0
v+,w.

This also implies that Bv′+,w, which is isomorphic to X
�0
v′+,w, has codimension 1 in Bv+,w, making

it a facet.
In the non-simply-laced case the proof is analogous. However now the attaching map for

Rv,w;>0 is obtained from φ>0
v̇+,ẇ ◦ ῑ as in Lemma 4.3, where φ>0

v̇+,ẇ is the corresponding parame-

terization in the related simply laced group Ġ. So we are looking at parameterizations of Rv,w;>0
and Rv′,w;>0 embedded into Ṙv,w and Ṙv′,w , respectively, which take the form

t �→ ḡ1 . . . ḡk−1yik,1(tk)yik,2(tk) . . . yik,l
(tk)ṡīk+1

. . . ṡīm · B+,

t′ �→ ḡ1 . . . ḡk−1ṡīk ṡīk+1
. . . ṡīm · B+,

where ṡ¯ = ṡi ṡi . . . ṡi .
ik k,1 k,2 k,l
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As before, there are unique positive integers a1, . . . , al such that

f
(a1)
ik,1

. . . f
(al)
ik,l

ṡīk+1
. . . ṡīm · η = ṡik,1 ṡik,2 . . . ṡik,l

ṡīk+1
. . . ṡīm · η,

and for each 1 � h � l, if we increase the corresponding exponent by 1, we have

f
(ah+1)
ik,h

. . . f
(al)
ik,l

ṡīk+1
. . . ṡīm · η = 0.

Now the composition i′ ◦ φ>0
v+,w for i′ as in Lemma 4.3 takes the form

t �→ [
p1(t), . . . , pN+1(t)

]
,

for polynomials pj with positive coefficients. And by the observation about the fik,h
’s, the max-

imal power of tk in any of the pj ’s is t
a1+···+al

k .
Finally we look at what happens if tk tends to infinity and repeat the arguments from the

simply-laced case. In this case Xv′+,w is the sub-toric variety of Xv+,w, which is given by those

monomials which are multiples of t
a1+···+al

k (and other coordinates set to zero), and its moment
polytope can be identified with the face of Bv+,w cut out by the equations x1 = a1, . . . , xl = al .

Moreover from the analogue of (5.1) it follows that the attaching map Φ
�0
v′+,w : X

�0
v′+,w → R>0

v′,w

is the restriction of Φ
�0
v+,w. This also implies that Bv′+,w, which is isomorphic to X

�0
v′+,w, has

codimension 1 in Bv+,w, making it a facet. �
Remark 5.8. We note that in the situation of Proposition 5.7 we have also shown that for any
point χ(t1, . . . , tr ) in X>0

v+,w, with χ as in Section 4 (4.1), and any positive integer c, the limit

limz→∞ χ(t1, . . . , tr−1, z
ctr ), lies in X>0

v′+,w.

Remark 5.9. Proposition 5.7 is a big step towards proving Theorem 5.6 for (G/B)�0. To relate

our notation to Definition 5.5, let τ = Rv,w;>0, σ = Rv′,w;>0, h = Φ
�0
v+,w, and h′ = Φ

�0
v′+,w. By

Proposition 5.7, h−1(σ ) contains X>0
v′+,w. If we could show that this is an equality, then because

h|
X

�0
v′+,w

is the attaching map h′, the restriction h|h−1(σ ) = h|X>0
v′+,w

would be a homeomorphism,

proving that Definition 5.5(1) is satisfied. Furthermore, h−1(σ ) = X>0
v′+,w

is a closed ball of ap-

propriate dimension, verifying (2).

Proposition 5.10. Suppose that w > v′ � v and we have a reduced expression w = (i1, . . . , ij ,

. . . , im) such that v′ = sij+1sij+2 . . . sim , and v is obtained from v′ by removing a unique factor

sik for j + 1 � k � m. Suppose furthermore that we have a sequence (c1, c2, . . . , cj , ck) ∈ Zj+1

such that for z > 0 and some/any fixed t1, t2, . . . , tj , tk ∈ R>0 the 1-parameter family

gz · B+ := yi1

(
zc1 t1

)
. . . yij

(
zcj tj

)
ṡij+1 . . . ṡik−1yik

(
zck tk

)
ṡik+1 . . . ṡim · B+

in Rv,w;>0 tends as z → ∞ to an element of Rv′,w;>0. Then we must have c1 = · · · = cj = 0
and ck > 0.



K. Rietsch, L. Williams / Advances in Mathematics 223 (2010) 1855–1884 1869
Proof. Recall that since w ends in v′ (that is, �(wv′−1
) = �(w) − �(v′)) we have a continuous

map

π = πw
wv′−1 : B+ẇ · B+ → B+ẇv̇′−1 · B+.

See for example Section 4.3 of [30]. In terms of our parameterizations, if x < w and we consider
an element

φx+,w(t) = g1 . . . gm · B+ ∈ Rx,w

then π(g1 . . . gm · B+) is just given by deleting the last m − j factors spelling out the v′:

π
(
g1 . . . gm · B+) = g1 . . . gj · B+.

Note that in particular π preserves total non-negativity and takes both Rv′,w;>0 and Rv,w;>0 to
the same cell, namely Re,wv′−1;>0.

Now since the limit of gz · B+ is assumed to lie in Rv′,w;>0 everything is taking place in
B+ẇ · B+, the domain of π , and we can apply π to gz · B+ before and after taking the limit
z → ∞:

lim
(
π

(
gz · B+)) = π

(
lim

(
gz · B+)) ∈ Re,wv′−1;>0.

So we see that

π
(
gz · B+) = yi1

(
zc1 t1

)
. . . yij

(
zcj tj

) · B+

is a 1-parameter family in Re,wv′−1;>0 whose limit point as z → ∞ again lies in Re,wv′−1;>0.
However, suppose that one of the c1, . . . , cj is non-zero. Then taking the limit would certainly
give something that left the cell Re,wv′−1;>0 and went to a smaller one. So all of these ci must
be zero.

Given that the ci are zero for i � j , it is clear that ck must be positive for the limit of the
original family to lie in Rv′,w;>0. �
Remark 5.11. Let C = (c1, . . . , cj , ck) ∈ Zj+1 be the sequence from above. Then the 1-
parameter family in Proposition 5.10 may also be written as

gz · B+ = φ>0
v+,w

(
zC · t

)
,

where z > 0 and zC · t = (zc1 t1, . . . , z
cj tj , z

ck tk), and where φ>0
v+,w is the parameterization from

Section 3.2.

Proposition 5.12. Suppose that w0 > v′ � v, and choose any reduced expression w0 =
(i1, . . . , in). Let φ>0

v+,w0
and vc+ be as defined in Section 3.2, and write vc+ = {h1, . . . , hr}

for h1 < · · · < hr . There is a unique (up to positive scalar multiple) choice of sequence
C = (ch1 , . . . , chr ) ∈ Zr such that, for z > 0 and for some/any fixed th1 , . . . , thr ∈ R>0 the 1-
parameter family in Rv,w ;>0,
0
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gz · B+ = φ>0
v+,w0

(
zC · t

)
,

tends as z → ∞ to an element of Rv′,w0;>0. Here zC · t = (zch1 th1 , . . . , z
chr thr ).

Proof. Let us first assume that w0 = (i1, . . . , in) ends with a reduced expression for v′. Then we
are in the situation of Proposition 5.10, and so in terms of the coordinates of the parameterization
φ>0

v+,w′
0
, there is a unique vector C ∈ Zr , up to positive scalar multiple, giving a 1-parameter

family gz · B+ = φ>0
v+,w0

(zC · t), whose limit point lies in Rv′,w0;>0.
Recall that any two reduced expressions for w0 can be related by braid and commuting rela-

tions, and suppose now that w0 is an arbitrary reduced expression for w0. It suffices to prove that
if the statement of the proposition holds for w0 then it also holds for any w′

0 obtained from w0
by a braid relation or commuting relation.

This is obvious in the case of a commuting relation. Now suppose w0 and w′
0 are related

by a more general braid relation, and C is the vector associated (up to positive scalar mul-
tiple) to w0. The braid relation gives us a change of coordinates κ(t) = t′ which is rational,
homogeneous and subtraction-free, see Section 3.3. We let t′z := κ(zC · t). For example, if w0
is the longest element of the symmetric group S3, then applying formula (1) of Section 3.3 to
y1(z

c1 t1)y2(z
c2 t2)y3(z

c3 t3) · B+, gives

y2

(
zc2+c3 t2t3

zc1 t1 + zc3 t3

)
y1

(
zc1 t1 + zc3 t3

)
y2

(
zc1+c2 t1t2

zc1 t1 + zc3 t3

)
· B+,

and the entries are the components of t′z. Because the components of t′z are subtraction-free,
the maximal power of z in each one dominates the limit as z → ∞. In this example, we have
therefore

lim
z→∞

(
φ>0

1,s2s1s2

(
t′z

))

= lim
z→∞

(
φ>0

1,s2s1s2

(
zc2+c3−max(c1,c3)q1(t), zmax(c1,c3)q2(t), zc1+c2−max(c1,c3)q3(t)

))
,

where the qi(t) are new rational, subtraction-free functions in the tj ’s. We define C′ :=
(c2 + c3 − max(c1, c3),max(c1, c3), c1 + c2 − max(c1, c3)).

The same procedure can be applied in the general case to define a C′ out of the original C as
well as new rational, subtraction-free functions qi defining q(t) = (q1(t), . . . , qr (t)) such that

lim
z→∞

(
φ>0

v+,w′
0

(
t′z

)) = lim
z→∞

(
φ>0

v+,w′
0

(
zC′ · q(t)

))
.

We note that C′ is also in general related to the original C by a piecewise linear transformation,

which one may compare to the zones and the map R
j ′
j from Sections 9.1 and 9.2 of [26].

We now see by testing out on a point φ>0
v+,w′

0
(t′) ∈ Rv,w0;>0, where t′ = q(t), that

lim
z→∞

(
φ>0

v+,w′
0

(
zC′ · t′

)) = lim
z→∞

(
φ>0

v+,w′
0

(
t′z

)) = lim
z→∞

(
φ>0

v+,w0

(
zC · t

))
,

and lies in Rv′,w0;>0. Therefore we have found a C′ ∈ Zr with the required property for our new
reduced expression w′ .
0
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To prove uniqueness, suppose D′ ∈ Zr is a different element such that

lim
z→∞

(
φ>0

v+,w′
0

(
zD′ · t′

)) ∈ Rv′,w0;>0

for some t′ ∈ Rr
>0. Then we may apply the coordinate transformation back from the reduced

expression w′
0 to w0. Thus D′ is transformed by a piecewise-linear transformation to a D ∈ Zr

such that

lim
z→∞

(
φ>0

v+,w0

(
zD · t

)) ∈ Rv′,w0;>0.

However this implies that D is a positive multiple of C, and by applying the original transforma-
tion again, that D′ was a positive multiple of C′. �
Proposition 5.13. Choose w > v′ � v and a reduced expression w = (i1, . . . , im). Let φ>0

v+,w
and vc+ be as defined in Section 3.2, and write vc+ = {h1, . . . , hr } for h1 < · · · < hr . Suppose in
addition that v′+ is equal to v+ ∪ {hr}. For C = (ch1 , . . . , chr ) ∈ Zr and z > 0 we consider the
1-parameter family

gz · B+ = φ>0
v+,w

(
zC · t

)

in R>0
v,w , where zC · t = (zch1 th1, . . . , z

chr thr ). Then if gz · B+ in Rv,w;>0 tends as z → ∞ to an
element of Rv′,w;>0, we must have ch1 = · · · = chr−1 = 0 and chr > 0.

Remark 5.14. Note that the condition on v′+ in Proposition 5.13 is equivalent to the pair of cells
Rv,w;>0 � Rv′,w;>0 being good with respect to w in the sense of Theorem 5.6.

Proof. Suppose C = (ch1 , . . . , chr ) ∈ Zr has the property,

gz · B+ has limit in Rv′,w;>0 as z → ∞. (5.2)

Choose a reduced expression w0 = (j1, . . . , jn−m, i1, . . . , im) for w0 ending with w, and let us
fix u1, . . . , un−m ∈ R>0. Then we obtain a new one-parameter family,

yj1(u1) . . . yjn−m(un−m)gz · B+,

which lies in Rv,w0;>0 for z > 0 and tends to an element in Rv′,w0;>0 as z → ∞. Now Propo-
sition 5.12 is applicable and we have that C̃ = (0, . . . ,0, ch1 , ch2, . . . , chr ) is the unique (up to
positive scalar multiple) choice of C̃ ∈ Zn−m+r such that the corresponding 1-parameter fam-
ily in Rv,w0;>0 tends to a point in Rv′,w0;>0. It follows that the original r-tuple (ch1 , . . . , chr )

satisfying (5.2) is also uniquely determined up to positive scalar multiple.
Now it only remains to prove that (5.2) holds for (ch1 , . . . , chr−1 , chr ) = (0, . . . ,0,1). But this

is clear, by the same argument we used for (5.1) in the proof of Proposition 5.7. �
We now turn to the proof of Theorem 5.6.

Proof of Theorem 5.6. We begin with the full flag variety case. Recall the natural inclu-
sion X>0′ ↪→ X

�0
v+,w, given by Proposition 5.7, for which Φ

�0
v+,w(X>0′ ) = Rv′,w;>0. By Re-
v+,w v+,w
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mark 5.9, it suffices to prove the claim that

(
Φ

�0
v+,w

)−1
(Rv′,w;>0) = X>0

v′+,w. (5.3)

Suppose we have x′ ∈ X
�0
v+,w such that Φ

�0
v+,w(x′) ∈ Rv′,w;>0. We can approach x′ from a

point in the interior, X>0
v+,w, by a 1-parameter family. Namely,

x′ = lim
z→∞χ

(
zC · t

) = lim
z→∞χ

(
zc1 t1, . . . , z

cr tr
)
,

for some t ∈ Rr
>0, C ∈ Zr and χ the map from (4.1) associated to Xv+,w. Therefore

Φ
�0
v+,w

(
x′) = lim

z→∞Φ>0
v+,w

(
χ

(
zC · t

)) = lim
z→∞φ>0

v+,w
(
zC · t

)
,

where the 1-parameter subgroup on the right-hand side is as in Proposition 5.13. Since by our
assumption Φ

�0
v+,w(x′) ∈ Rv′,w;>0, and we are in the ‘good’ situation, Proposition 5.13 tells us

that C = (0, . . . ,0, c), for positive c. But this implies that

x′ = lim
z→∞χ

(
zC · t

) ∈ X>0
v′+,w,

see Remark 5.8. Therefore the claim (5.3) holds and the theorem is true for the full flag vari-
ety.

Now consider the case of G/PJ . We have that πJ gives an isomorphism from Rxu−1,w;>0

to P J
x,u,w;>0 and from R

x′u′−1,w;>0 to P J
x′,u′,w;>0. We’ve already proved that R

x′u′−1,w;>0 is a

regular face of Rxu−1,w;>0 with respect to the attaching map Φ
�0

xu−1+ ,w
. Recall that the attaching

map for Px,u,w;>0 is simply πJ ◦ Φ
�0

xu−1+ ,w
.

When we restrict πJ to Rxu−1,w;>0, it is straightforward to check that the preimage
of P J

x′,u′,w;>0 is R
x′u′−1,w;>0. By Theorem 5.6 in the full flag variety case, we know that

(Φ
�0

xu−1+ ,w
)−1(R

x′u′−1,w;>0) = X>0
x′u′−1+ ,w

and Φ
�0

xu−1+ ,w
is a homeomorphism from X>0

x′u′−1+ ,w
to

R
x′u′−1,w;>0. Therefore (πJ ◦ Φ

�0

xu−1+ ,w
)−1(R

x′u′−1,w;>0) = X>0
x′u′−1+ ,w

and πJ ◦ Φ
�0

xu−1+ ,w
is a

homeomorphism from X>0
x′u′−1+ ,w

to R
x′u′−1,w;>0. It follows that P J

x′,u′,w;>0 is a regular face of

P J
x,u,w;>0 with respect to the attaching map πJ ◦ Φ

�0

xu−1+ ,w
. �

6. Preliminaries on poset topology

6.1. Preliminaries

Poset topology is the study of combinatorial properties of a partially ordered set, or poset,
which reflect the topology of an associated simplicial or cell complex. In this section we will
review some of the basic definitions and results of poset topology.



K. Rietsch, L. Williams / Advances in Mathematics 223 (2010) 1855–1884 1873
Let P be a poset with order relation <. We will use the symbol � to denote a covering relation
in the poset: x � y means that x < y and there is no z such that x < z < y. Additionally, if x < y

then [x, y] denotes the closed interval from x to y; that is, the set {z ∈ P | x � z � y}.
We will often identify a poset P with its Hasse diagram, which is the graph whose vertices

represent elements of P and whose edges depict covering relations.
The natural geometric object associated to a poset P is the realization of its order complex (or

nerve). The order complex �(P ) is the simplicial complex whose vertices are the elements of P

and whose simplices are the chains x0 < x1 < · · · < xk in P .
A poset is called bounded if it has a least element 0̂ and a greatest element 1̂. The atoms of a

bounded poset are the elements which cover 0̂. Dually, the coatoms are the elements which are
covered by 1̂. A finite poset is said to be pure if all maximal chains have the same length, and
graded, if in addition, it is bounded. An element x of a graded poset P has a well-defined rank
ρ(x) equal to the length of an unrefinable chain from 0̂ to x in P . A poset P is called thin if
every interval of length 2 is a diamond, i.e. if for any p < q such that rank(q) − rank(p) = 2,
there are exactly two elements in the open interval (p, q).

6.2. Shellability and edge-labelings

A pure finite simplicial complex � is said to be shellable if its maximal faces can be ordered
F1,F2, . . . ,Fn in such a way that Fk ∩ (

⋃k−1
i=1 Fi) is a non-empty union of maximal proper

faces of Fk for k = 2,3, . . . , n. Certain edge-labelings of posets can be used to prove that the
corresponding order complexes are shellable. These techniques were pioneered by Bjorner [2],
and Bjorner and Wachs [5].

One technique that can be used to prove that an order complex �(P ) is shellable is the notion
of lexicographic shellability, or EL-shellability, which was first introduced by Bjorner [2]. Let
P be a graded poset, and let E (P ) be the set of edges of the Hasse diagram of P , i.e. E (P ) =
{(x, y) ∈ P × P | x � y}. An edge labeling of P is a map λ : E (P ) → Λ where Λ is some poset
(usually the integers). Given an edge labeling λ, each maximal chain c = (x0 � x1 � · · · � xk) of
length k can be associated with a k-tuple σ(c) = (λ(x0, x1), λ(x1, x2), . . . , λ(xk−1, xk)). We say
that c is an increasing chain if the k-tuple σ(c) is increasing; that is, if λ(x0, x1) � λ(x1, x2) �
· · · � λ(xk−1, xk). The edge labeling allows us to order the maximal chains of any interval of
P by ordering the corresponding k-tuples lexicographically. If σ(c1) lexicographically precedes
σ(c2) then we say that c1 lexicographically precedes c2 and we denote this by c1 <L c2.

Definition 6.1. An edge labeling is called an EL-labeling (edge lexicographical labeling) if for
every interval [x, y] in P ,

(1) there is a unique increasing maximal chain c in [x, y], and
(2) c <L c′ for all other maximal chains c′ in [x, y].

If one has an EL-labeling of P , it is not hard to see that the corresponding order on maximal
chains gives a shelling of the order complex [2]. Therefore a graded poset that admits an EL-
labeling is said to be EL-shellable.

Given an EL-labeling λ of P and x ∈ P , we define Lastλ(x) to be the set of elements z � x

such that λ(z � x) is maximal among the set {λ(y � x) | y � x}.



1874 K. Rietsch, L. Williams / Advances in Mathematics 223 (2010) 1855–1884
6.3. Face posets of cell complexes

When analyzing a CW complex K, it is sometimes useful to study its face poset F (K), as in
Definition 5.1. The face poset is a natural poset to study particularly if the CW complex has the
subcomplex property, i.e. if the closure of a cell is a union of cells.

The class of regular CW complexes is particularly nice. Recall that a CW complex is regular
if the closure of each cell is homeomorphic to a closed ball and if additionally the closure minus
the interior of a cell is homeomorphic to a sphere. In general, the order complex ‖F (K)‖ does
not reveal the topology of K. However, the following result shows that regular CW complexes are
combinatorial objects in the sense that the incidence relation of cells determines their topology.

Proposition 6.2. (See [4, Proposition 4.7.8].) Let K be a regular CW complex. Then K is home-
omorphic to ‖F (K)‖.

We will call a poset P a CW poset if it is the face poset of a regular CW complex.
There is a notion of shelling for regular cell complexes (which is distinct from the notion of

shelling of the order complex), due to Bjorner and Wachs. Such a shelling is a certain ordering
on the coatoms of the face poset. We don’t need the precise definition, only the following result
that an EL-labeling of the augmented face poset of a regular cell complex gives rise to a shelling.

Theorem 6.3. (See [7, Theorem 5.11], [8, Theorem 13.2].) If P is the augmented face poset of
a finite-dimensional regular CW complex K , then any EL-labeling of P gives rise to a shelling
of K . To go from the EL-labeling to the shelling one chooses the ordering on coatoms which is
specified by the order on edges between the unique greatest element and the coatoms.

7. Discrete Morse theory for general CW complexes

In this section we review Forman’s powerful discrete Morse theory [15]. The theory comes in
three “flavors”: for simplicial complexes, regular CW complexes, and general CW complexes. In
each setting, one needs to find a certain discrete Morse function, and then the main theorem says
that the space in question is homotopy equivalent to another simpler space obtained by collapsing
non-critical cells.

The first two flavors of the theory are the simplest and most widely used, because in these two
settings a result of Chari [11] implies that a discrete Morse function is equivalent to a matching
on the face poset of the CW complex. To work with the third flavor of the theory, one must
check some additional technical conditions: the discrete Morse hypothesis, as well as an extra
topological condition included in the definition of discrete Morse function. However, as we will
see in Theorem 7.6, it is enough to find a matching on the face poset of a CW complex with
the subcomplex property such that matched edges are regular. Although this result will not be
surprising to the experts, we could not find it in the literature and so we give an exposition here.
The proof follows from an argument of Kozlov [23, Proof of Theorem 3.2].1

1 Although Theorem 3.2 of [23] was in the more restricted setting of regular CW complexes, the proof still holds in
our situation.
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7.1. Forman’s discrete Morse theorem for general CW complexes

Let K be a finite CW complex and let Q be its poset of cells. Recall the definition of regular
face from Definition 5.5.

Definition 7.1. (See [15, p. 102].) A function f : Q → R is a discrete Morse function if for every
σ (p) of dimension p, the following conditions hold:

(1) #{τ (p+1) | τ (p+1) > σ and f (τ) � f (σ )} � 1.
(2) #{v(p−1) | v(p−1) < σ and f (v) � f (σ )} � 1.
(3) If σ is an irregular face of τ (p+1) then f (τ) > f (σ).
(4) If v(p−1) is an irregular face of σ then f (v) < f (σ).

Note that a Morse function is a function which is “almost increasing”. Indeed, one should
think of a Morse function as a function which specifies the order in which to attach the cells of a
homotopy-equivalent CW complex [23].

Definition 7.2. We say that a cell σ (p) is critical if

(1) #{τ (p+1) > σ | f (τ) � f (σ )} = 0, and
(2) #{v(p−1) < σ | f (v) � f (σ )} = 0.

Let mp(f ) denote the number of critical cells of dimension p.
For each cell σ of a CW complex K , let Carrier(σ ) denote the smallest subcomplex of K

containing σ . If K has the subcomplex property (see Section 6.3), then for any σ , Carrier(σ ) is
its closure, and hence condition (1) of Definition 7.3 below is satisfied.

Definition 7.3. (See [15, p. 136].) Given a CW complex K and a discrete Morse function f , we
say that (K,f ) satisfies the Discrete Morse Hypothesis if:

(1) For every pair of cells σ and τ , if τ ⊂ Carrier(σ ) and τ is not a face of σ , then f (τ) � f (σ ).
(2) Whenever there is a τ > σ (p) with f (τ) < f (σ) then there is a τ̃ (p+1) with τ̃ > σ and

f (τ̃ ) � f (τ).

The following is Forman’s main theorem for general CW complexes.

Theorem 7.4. (See [15, Theorem 10.2].) Let K be a CW complex satisfying the Discrete Morse
Hypothesis, and f a discrete Morse function. Then K is homotopy equivalent to a CW complex
with mp(f ) cells of dimension p.

7.2. Discrete Morse functions as matchings

Chari [11] pointed out that when the CW complex is regular, one can depict a Morse function
f as a certain kind of matching on the Hasse diagram of the poset of cells. Given such an f , we
define a matching M(f ) on the Hasse diagram of Q whose edges correspond to the pairs of cells
in which we get equality in (1) or (2) of Definition 7.1.
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Recall that a matching of a graph G = (V ,E) is a subset M of edges of G such that each
vertex in V is incident to at most one edge of M . We define a Morse matching M on a poset Q

to be a matching on the Hasse diagram such that if edges in M are directed from lower to higher-
dimension elements and all other edges are directed from higher to lower-dimension elements,
then the resulting directed graph G(M) is acyclic. We refer to any elements of Q which are not
matched by M as critical elements (or critical cells).

In the situation of arbitrary CW complexes, a Morse matching such that matched edges are
regular gives rise to a discrete Morse function satisfying property (2) of the Discrete Morse
Hypothesis, as the following lemma shows. The proof of this lemma follows an argument of
Kozlov [23, Proof of Theorem 3.2].

Lemma 7.5. Let M be a Morse matching on the face poset Q of a CW complex, such that each
edge in M corresponds to a regular pair of faces in the CW complex. Then there exists a discrete
Morse function fM , satisfying property (2) of the Discrete Morse Hypothesis, whose critical cells
are exactly the critical cells of M .

Proof. We will inductively assign positive integer labels to each of the elements of Q, producing
a function fM . Moreover, fM will have the property that if x < y, fM(x) � fM(y), with fM(x) =
fM(y) if and only if (x, y) ∈ M ; in the case that (x, y) ∈ M , we will label x and y at the same
time.

At each step, let x be one of the elements of Q of minimal rank (dimension) among those not
yet labeled, and let i be the smallest positive integer not yet appearing as a label in Q. If x is
not in M and hence critical, label x with i. If x is not critical, then we must have (x, y) ∈ M ,
where x �y. If each z < y in Q is labeled, then label both x and y with i. Otherwise, there exists
x1 < y in Q where x1 is not labeled; repeat the argument with x1 taking the place of x. Either
we will label x1 or a pair (x1, y1) ∈ M , or, since G(M) is acyclic, we will find x2 �= x, x2 �= x1,
y1 > x2, etc.

Since there are finitely many elements of Q, the process will terminate. Since we never label
an element y ∈ Q until we have labeled each x < y, fM has the property that for x < y, fM(x) �
fM(y). Therefore condition (2) of the Discrete Morse Hypothesis is satisfied. The only case
in which fM(x) = fM(y) is when (x, y) ∈ M , i.e. (x � y) is a regular pair of faces – and so
conditions (3) and (4) of Definition 7.1 are satisfied. Conditions (1) and (2) of Definition 7.1 are
satisfied because M is a matching. Finally, it is clear that the cells which are critical with respect
to M are exactly those which are critical with respect to Definition 7.2. �

We now restate Forman’s Morse Theorem for general CW complexes in terms of Morse
matchings.

Theorem 7.6. Let K be a CW complex with the subcomplex property. Suppose its face poset Q

has a Morse matching M , such that whenever (σ (p), τ (p+1)) ∈ M , σ is a regular face of τ . Let
mp(M) denote the number of critical cells of dimension p. Then K is homotopy equivalent to a
CW complex with mp(M) cells of dimension p.

Proof. By Lemma 7.5, we have a discrete Morse function f for K satisfying condition (2) of
Definition 7.3. Since K has the subcomplex property, condition (1) of Definition 7.3 is satisfied.
The result now follows from Theorem 7.4. �
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7.3. From edge-labelings to Morse matchings

Both lexicographic shellability and discrete Morse theory are combinatorial tools which can
be used to investigate the topology of a CW complex. In this section we will recall a result of
Chari [11], which proves the existence of a certain Morse matching given a shelling of a regular
CW complex. We will translate this into a statement about constructing a Morse matching from
an EL-labeling, and note that one can gain some fairly explicit information about the Morse
matching from the EL-labeling.

Recall the notion of pseudomanifold, e.g. from [11]. Note that by a result of Bing [4, Chap-
ter 4], a shellable pseudomanifold is in particular a regular CW complex which is either a ball or
a sphere.

Proposition 7.7. (See [11, Proposition 4.1].) Let σ1, σ2, . . . , σm be a shelling of a d-pseudo-
manifold Σ and let v be any vertex in σ1. Then the face poset of Σ admits a Morse matching M

such that:

• If Σ is the d-sphere then v and σm are the only critical cells, while if Σ is a d-ball, then v

is the only critical cell.

By Theorem 6.3, an EL-labeling of the augmented face poset of a pseudomanifold gives rise
to a shelling. Chari used induction to construct the Morse matching of Proposition 7.7. Chari’s
proof of Proposition 7.7, applied to a shelling which comes from an EL-labeling, implies the
following.

Corollary 7.8. Suppose that λ is an EL-labeling of the augmented face poset Q of a pseudoman-
ifold Σ . Let Mλ be the Morse matching given by Proposition 7.7. Every (σ � τ) ∈ M has the
following property: σ ∈ Lastλ(τ ).

In fact, when the edge labels in λ come from a totally ordered set, Chari’s proof of Proposi-
tion 7.7 gives the following algorithm for obtaining the Morse matching.

Corollary 7.9. Suppose that λ is an EL-labeling of the augmented face poset Q of a pseudoman-
ifold Σ . Then the Morse matching Mλ given by Proposition 7.7 can be constructed as follows.
Set n equal to the rank of the poset Q and set M = ∅.

(1) Consider all unmatched elements σ of rank n, and for each, add Lastλ(σ ) � σ to M .
(2) Decrease n by 1 and go to step 1.

Remark 7.10. Chari also extends Proposition 7.7 to regular CW complexes [11, Theorem 4.2].
Corollaries 7.8 and 7.9 also hold in this situation.

Remark 7.11. Proposition 7.7 and Corollary 7.8 can be useful even when K is a CW complex
not known to be regular. In particular, if the face poset Q of K is a CW poset, then there exists
a regular CW complex Kreg whose face poset is Q. Therefore one can still use these results to
construct a Morse matching of K .
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8. The Bruhat order, shellability, and reduced expressions

Fix a Coxeter system (W, I) and let T be the set of reflections. In this section we will re-
view some properties of the Bruhat order � and prove a result (Proposition 8.8) about reduced
expressions which will be needed for the proof of Proposition 9.5.

The first part of Theorem 8.1 below is due to Bjorner and Wachs [5]. The second part follows
from the first together with Bjorner’s result [3] characterizing CW posets.

Theorem 8.1. (See [5,3].) The Bruhat order of a Coxeter group is thin and (CL)-shellable. Fur-
thermore, an interval with at least two elements is the augmented face poset of a regular CW
complex homeomorphic to a ball.2

Theorem 8.1 together with Proposition 7.7 imply the following.

Corollary 8.2. Let v < w in the Bruhat order of a Coxeter group. Then if we remove v from the
interval [v,w] (which plays the role of 0̂), there is a Morse matching M on the resulting poset
with one critical element u of minimal rank. Adding v back to the poset and adding the edge
(v,u) to M , we get a Morse matching on [v,w] with no critical elements.

Dyer [14] subsequently strengthened the Bjorner–Wachs result by giving an EL-labeling of
Bruhat order. Dyer’s primary tool was his notion of “reflection orders”, certain total orderings of
T which can be characterized as follows.

Definition 8.3. (See [14, Proposition 2.13].) Let (W, I) be a finite Coxeter system with longest
element w0, and let T = {t1, . . . , tn} (n = �(w0)). Then the total order t1 ≺ t2 ≺ · · · ≺ tn on
T is a reflection order if and only if there is a reduced expression w0 = si1 . . . sin such that
tj = si1 . . . sij−1sij sij−1 . . . si1 , for 1 � j � n.

Remark 8.4. (See [14, Remark 2.4].) The reverse of a reflection order is a reflection order.

Proposition 8.5. (See [14].) Fix a reflection order � on T . Label each edge x � y of the Bruhat
order by the reflection x−1y. Then this edge labeling together with � is an EL-labeling; therefore
the Bruhat order is EL-shellable.

In what follows, the notation ŝk indicates the omission of the factor sk .

Definition 8.6. (See [19].) Consider a Coxeter system (W, I). Define a deletion pair in an ex-
pression si1 . . . sid to be a pair sir , sit (where r < t) such that the subexpression sir . . . sit is not
reduced but ŝir . . . sit and sir . . . ŝit are each reduced.

E.g. in type A the first s1 and the last s2 in s1s2s1s2 comprise a deletion pair.

2 Recall from Remark 5.2 that [5] augments the poset of cells with a 0̂ and also a greatest element 1̂. Using this
convention, [5] considers intervals in Bruhat order to be posets associated to regular CW complexes homeomorphic to
spheres.
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Lemma 8.7. (See [19, Lemma 3.31].) If sir . . . ŝiu . . . sit is reduced but sir . . . sit is not, then siu
belongs to a deletion pair within sir . . . sit .

Proposition 8.8. Consider x � w in a Coxeter group W , and fix a reduced expression w =
(i1, . . . , it ) for w. Let x+ = {j1, . . . , jk}. For any p � t , consider the product γ1 . . . γt , where

γr =
{

sir , if r ∈ x+ or r � p,

1, otherwise.

Then γ1 . . . γt is reduced.

Proof. We will prove this by induction. First consider p = t . If it ∈ x+ there is nothing to prove,
since sij1

. . . sijk
is reduced. If it /∈ x+ then assume that γ1 . . . γt is not reduced. This means that

xsit < x, which contradicts the fact that x+ is the positive subexpression for x.
Now by induction assume the proposition holds for any p between some p′ and t , where

p′ � t . We want to prove it for p := p′ − 1. First suppose that p′ − 1 ∈ x+. In this case the
product γ1 . . . γt is the same for both p = p′ and p = p′ − 1: in both cases, γp′−1 = sip′−1

.
Therefore by induction it follows that γ1 . . . γt is reduced.

Now suppose that p′ − 1 /∈ x+. In this case the induction hypothesis tells us only that
γ1 . . . γp′−2γp′ . . . γt is reduced; we need to prove that γ1 . . . γp′−2γp′−1γp′ . . . γt = γ1 . . .

γp′−2sip′−1
sip′ . . . sit is reduced. Assume it is not: then by Lemma 8.7, sip′−1

belongs to a deletion
pair within γ1 . . . γp′−2sip′−1

sip′ . . . sit . Note that sip′−1
sip′ . . . sit comprises a consecutive string of

generators in a reduced expression and so must be reduced. Also note that by our argument in
the first paragraph, γ1 . . . γp′−2sip′−1

must be reduced: otherwise γ1 . . . γp′−2sip′−1
< γ1 . . . γp′−2,

which contradicts the fact that x+ is a positive subexpression and does not contain sip′−1
. But

we’ve now shown that sip′−1
cannot belong to a deletion pair within γ1 . . . γp′−2sip′−1

sip′ . . . sit ,
a contradiction. �
9. Morse matchings and the proof of contractibility

In this section we will construct a Morse matching on the face poset of the closure of an
arbitrary cell of (G/P )�0, such that matched edges are provably regular. We will then use this
to prove our main result: that the closure of each cell is contractible, and the boundary of each
cell is homotopy equivalent to a sphere.

Recall the definition of the augmented face poset QJ of (G/PJ )�0 from Section 5. Besides
having a unique least element 0̂, QJ also has a unique greatest element: This is 1̂ := P J

u0,u0,w0;>0,

where u0 and wJ
0 are the longest elements in WJ and WJ , respectively.

The following was proved in [40].

Theorem 9.1. (See [40].) QJ is graded, thin, and EL-shellable. It follows that the face poset of
(G/PJ )�0 is the face poset of a regular CW complex homeomorphic to a ball.

It will be useful for us to classify the cover relations in QJ . The following classification is
analogous to the one used in [40], with the roles of x and w reversed.

Lemma 9.2. The cover relations in QJ fall into the following three categories.
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Type 1: P J
x′,v,w;>0 � P J

x,u,w;>0 such that x < x′. It follows that xu−1 � x′v−1.

Type 2: P J
x,v,w′;>0 � P J

x,u,w;>0 such that w′ � w. It follows that w′v � wu.

Type 3: 0̂ � P J
x,u,w;>0 where P J

x,u,w;>0 is a 0-cell. It follows that x = wu.

Remark 9.3. If Q is a poset, then the interval poset Int(Q) is defined to be the poset of intervals
[x, y] of Q, ordered by containment. When G/PJ is the complete flag variety, i.e. when J = ∅,
QJ is simply the interval poset of the Bruhat order.

Theorem 9.4. Choose any cell P J
x,u,w;>0 of (G/PJ )�0. Then there is a Morse matching on the

face poset of P J
x,u,w;>0 with a single critical cell of dimension 0, which restricts to a Morse

matching on the face poset of the boundary bd(P J
x,u,w;>0) with one additional critical cell of

top dimension. Furthermore, all matched edges are good: that is, if P J
x′,u′,w′;>0 � P J

x,u,w;>0 are
matched, then w′ = w and there is a reduced expression (i1, . . . , im) of w such that the positive
subexpression x′u′−1+ is equal to xu−1+ ∪ {k} and moreover xu−1+ contains {k + 1, . . . ,m}.

We will prove Theorem 9.4 in a series of steps. Define Sx(w) := {Rv,w;>0 | x � v � w}, and
give this the poset structure inherited from QJ (for J = ∅). This poset is isomorphic to the (dual
of the) Bruhat interval between x and w.

Proposition 9.5. Sx(w) has a Morse matching Mx(w) in which all matched edges are good. If
x < w, then Mx(w) has no critical cells. If x = w, Mx(w) has one critical cell.

Proof. We will construct Mx(w) by using Dyer’s EL-labeling of the Bruhat interval (Proposi-
tion 8.5) and Chari’s observation that one can go from a shelling to a Morse matching (Proposi-
tion 7.7). To deduce that matched edges are good, we will choose our reflection order carefully
and use Corollary 7.8.

Fix a reduced expression w = (i1, . . . , im) for w, and choose a reduced expression for w0
which begins with w−1. By Definition 8.3, this gives a reflection order. Let ≺ be the reverse of
this order; by Remark 8.4, ≺ is also a reflection order.

Label the edge Rv′,w;>0 � Rv,w;>0 (where v′ � v) in Sx(w) with the reflection τ such that
v = v′τ . By Proposition 8.5, this gives an EL-labeling of Sx(w). If Sx(w) has at least two ele-
ments then by Corollary 8.2, there is a Morse matching Mx(w) on Sx(w) with no critical cells.
Otherwise, if Sx(w) has one element, i.e. if x = w, then we take Mx(w) to be the empty matching
with one critical cell.

We now need to show that all edges in Mx(w) are good. By Corollary 7.8, if τ labels the
edge Rv,w;>0 � Rv′,w;>0 (for v′ � v) and this edge is in Mx(w), then among all edge labels
going from Rv,w;>0 to lower-dimensional cells, τ is maximal in ≺. So we need to analyze cover
relations corresponding to maximal labels.

Let v+ = {j1, . . . , jr}. Let k be maximal (1 � k � m) such that k /∈ {j1, . . . , jr}. We first claim
that u = {j1, . . . , jr} ∪ {k} is a reduced subexpression of w, hence Ru,w;>0 � Rv,w;>0, and that
u is positive. Second, we claim that the label on the edge from Rv,w;>0 to Ru,w;>0 is maximal
among all edge labels from Rv,w;>0 down to a lower-dimensional cell.

Proposition 8.8 implies the first claim that {j1, . . . , jr} ∪ {k} is a reduced subexpression of w.
Knowing that it is reduced, it is clear that it is positive.

To see that the second claim is true, note that by the choice of k, the label on the edge
Rv,w;>0 � Ru,w;>0 is u−1v = simsi . . . si . . . si sim . Furthermore, in our reflection or-
m−1 k m−1
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der, sim � simsim−1sim � · · · � simsim−1 . . . sik . . . sim−1sim � · · · . Since k is maximal such that
k /∈ {j1, . . . , jr}, if we define v′′ = vsimsim−1 . . . si� . . . sim−1sim for � > k, then � ∈ {j1, . . . , jr}
so an expression for v′′ is given by {j1, . . . , jr} \ {�}. In particular, v′′ < v and so Rv,w;>0 does
not cover Rv′′,w;>0. On the other hand, we know that Rv,w;>0 covers Ru,w;>0, and that the label
on this edge is simsim−1 . . . sik . . . sim−1sim . By our choice of reflection order, this label is maximal
among all edges from Rv,w down to lower-dimensional cells.

Finally, by the choice of k, and since {j1, . . . , jr} ∪ {k} = u is positive, this cover relation is
good. Therefore every matched edge in Mx(w) is good. �
Remark 9.6. Recently Brant Jones has constructed explicit matchings of the Hasse diagram of an
interval in Bruhat order; he also proved that his matchings coincide with the matchings Mx(w)

that we constructed in Proposition 9.5 [21].

Remark 9.7. If x is the identity element in W , then the Morse matching constructed in Propo-
sition 9.5 will actually be a multiplication matching by a Coxeter generator. This is a so-called
special matching, and is relevant to Kazhdan–Lusztig theory [10]. Anders Bjorner suggested us-
ing special matchings to construct acyclic matchings, and realized that one could use them to
obtain an acyclic matching for the face poset of the entire space (G/B)�0 [9]. We are grateful
for his insights.

We now turn to the proof of Theorem 9.4.

Proof of Theorem 9.4. We partition the elements of the face poset of the closure of P J
x,u,w;>0

into subsets SJ
xu−1(y) = {P J

x′,u′,y;>0 | xu−1 � x′u′−1 � y}, for each y ∈ WJ such that xu−1 �
y � w. By Lemma 9.2, the restriction of the face poset QJ to SJ

xu−1(y) is isomorphic to the (dual

of the) Bruhat interval between xu−1 and y, so SJ
xu−1(y) and Sxu−1(y) are isomorphic as posets:

we simply identify P J
a,b,y;>0 with Rab−1,y;>0.

We can now apply Proposition 9.5, which gives us a Morse matching MJ
xu−1(y) on SJ

xu−1(y)

such that all matched edges are good. This matching has either zero or one critical cell, based on
whether xu−1 < y or xu−1 = y.

We now define

MJ
x,u,w =

⋃
y∈WJ ,xu−1�y�w

MJ
xu−1(y).

Since each MJ
xu−1(y) is a matching, and any two matched elements P J

a,b,y;>0 and P J
a′,b′,y;>0 in

MJ
x,u,w have the same third factor y, MJ

x,u,w is also a matching.
Let us assume for the sake of contradiction that there is a cycle in G(MJ

x,u,w). Since each
G(MJ

xu−1(y)) is acyclic, there must be some edges in the cycle which pass between two different

SJ
xu−1(y)’s. Each such edge must be directed from the higher-dimensional cell P J

a,b,y;>0 to the

lower-dimensional cell P J
a′,b′,y′;>0 for y �= y′, so by Lemma 9.2, y′ < y. So if we traverse the

cycle and look at the sequence of poset elements P J
∗,∗,y;>0 that we encounter, the third factor can

only decrease. Therefore it is impossible to return to the element of the cycle at which we started,
which is a contradiction.
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As y varies over elements of WJ between xu−1 and w, we have that MJ
xu−1(y) has no critical

cells for xu−1 < y and it has one critical cell P J
x,u,xu−1;>0

for xu−1 = y. Therefore MJ
x,u,w has

a unique critical cell, the 0-dimensional cell P J
x,u,xu−1;>0

.

Since the face poset of P J
x,u,w;>0 has a unique cell of top dimension �(w)− �(xu−1) which is

matched in MJ
x,u,w , when we restrict MJ

x,u,w to the boundary bd(P J
x,u,w;>0), we will get a Morse

matching with one additional critical cell of top dimension �(w) − �(xu−1) − 1. This completes
the proof of the theorem. �
Corollary 9.8. Choose any cell P J

x,u,w;>0 of (G/PJ )�0. Then there is a Morse matching on the

face poset of P J
x,u,w;>0 with a single critical cell of dimension 0 in which all matched edges are

regular; it restricts to a Morse matching on the face poset of the boundary bd(P J
x,u,w;>0) with

one additional critical cell of top dimension.

Proof. This follows from Theorems 5.6 and 9.4. �
We now prove our main result.

Theorem 9.9. The closure of each cell of (G/PJ )�0 is contractible, and the boundary of each
cell of (G/PJ )�0 is homotopy equivalent to a sphere.

Proof. Choose an arbitrary cell of (G/PJ )�0 and let K be its closure. Note that K is a CW
complex with the subcomplex property because Theorems 4.5 and 5.3 imply that (G/PJ )�0 is.
Let Q be the face poset of K . By Corollary 9.8, Q has a Morse matching with a unique critical
cell of dimension 0, in which all matched edges are regular. Therefore Theorem 7.6 implies K is
contractible.

Now let K ′ be the boundary of an arbitrary cell and let Q′ be its face poset. By Corollary 9.8,
Q′ has a Morse matching with two critical cells, one of dimension 0 and one of top dimension,
say p, in which all matched edges are regular. Therefore Theorem 7.6 implies that K ′ is ho-
motopy equivalent to a CW complex with one 0-dimensional cell σ and one p-dimensional cell
whose boundary is glued to σ . This is precisely a p-sphere. �
Remark 9.10. Since a Morse function actually gives rise to a concrete collapsing [15] of a CW
complex, in fact we have shown that the closure of a cell is collapsible.

Remark 9.11. One can give a simpler proof that the closure of each cell in the totally non-
negative part of the type A Grassmannian (Grkn)�0 is contractible. In that case, one can prove
directly that whenever a cell σ has codimension 1 in the closure of τ , then σ is a regular face
of τ . This follows from the technology of [31]: in particular, Theorem 18.3, Lemma 18.9, and
Corollary 18.10. Then by Theorem 9.1, the poset of cells of (Grkn)�0 is a CW poset with an
EL-labeling (hence a shelling), so by Proposition 7.7, we have the requisite Morse matching.

Using Corollary 7.9, we see that there is a more concrete way to describe the matchings
Mx(w) of Sx(w).

Remark 9.12. Fix a reduced expression w = (i1, . . . , im) for w. Start with the maximal element
Rx,w;>0. Let k be maximal such that 1 � k � m and k /∈ x+. Then x+ ∪ {k} is the positive
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subexpression for an element v > x. We match Rx,w;>0 to Rv,w;>0. Now apply the same pro-
cedure to every element of dimension dim Rx,w;>0 − 1 which has not been matched (the order
in which we consider these elements does not matter). Continue in this fashion, from higher to
lower-dimensional cells.
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