32,635 research outputs found

    Overview of metal contacts technology on semiconductor

    Get PDF
    Over the past decades, researcher confronts new difficulties and breakthrough due to semiconductor innovation and these chances are evident in the endeavours that have been laid by semiconductor and optoelectronic devices. Semiconductor defined as a material which conducts electricity conditionally, hence making it useful in controlling for optoelectronic devices. It possesses intermediate conductivity, ranging between a conductor and an insulator. The superiority of metal-semiconductor plays a significant role in the performances of semiconductor devices and it is a powerful tool for improving performance in many areas of modern life

    Application of Graphene within Optoelectronic Devices and Transistors

    Full text link
    Scientists are always yearning for new and exciting ways to unlock graphene's true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to 'trap' light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene's nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures

    Subassembly for optoelectronic devices

    Full text link
    A subassembly for use in packaging an optoelectronic device (e.g., LED or photodiode) includes a semiconductor (e.g., silicon) base and lid having a variety of etched features (e.g., grooves, cavities, alignment detents) and metalization patterns (e.g., contacts, reflectors) which enable the device to be reliably and inexpensively mounted on the base and coupled to the fiber.Published versio

    A versatile scanning photocurrent mapping system to characterize optoelectronic devices based on 2D materials

    Full text link
    The investigation of optoelectronic devices based on two-dimensional materials and their heterostructures is a very active area of investigation with both fundamental and applied aspects involved. We present a description of a home-built scanning photocurrent microscope that we have designed and developed to perform electronic transport and optical measurements of two-dimensional materials based devices. The complete system is rather inexpensive (<10000 EUR) and it can be easily replicated in any laboratory. To illustrate the setup we measure current-voltage characteristics, in dark and under global illumination, of an ultra-thin PN junction formed by the stacking of an n-doped few-layer MoS2 flake onto a p-type MoS2 flake. We then acquire scanning photocurrent maps and by mapping the short circuit current generated in the device under local illumination we find that at zero bias the photocurrent is generated mostly in the region of overlap between the n-type and p-type flakes.Comment: 9 pages, 3 figures, 1 table, supporting informatio

    High-Temperature Optoelectronic Device Characterization and Integration Towards Optical Isolation for High-Density Power Modules

    Get PDF
    Power modules based on wide bandgap (WBG) materials enhance reliability and considerably reduce cooling requirements that lead to a significant reduction in total system cost and weight. Although these innovative properties lead power modules to higher power density, some concerns still need to be addressed to take full advantage of WBG-based modules. For example, the use of bulky transformers as a galvanic isolation system to float the high voltage gate driver limits further size reduction of the high-temperature power modules. Bulky transformers can be replaced by integrating high-temperature optocouplers to scale down power modules further and achieve disrupting performance in terms of thermal management, power efficiency, power density, operating environments, and reliability. However, regular semiconductor optoelectronic materials and devices have significant difficulty functioning in high-temperature environments. Modular integration of optoelectronic devices into high-temperature power modules is restricted due to the significant optical efficiency drop at elevated temperatures. The quantum efficiency and long-term reliability of optoelectronic devices decrease at elevated temperatures. The motivation for this study is to develop optoelectronic devices, specifically optocouplers, that can be integrated into high-density power modules. A detailed study on optoelectronic devices at high temperature enables us to explore the possibility of scaling high-density power modules by integrating high-temperature optoelectronic devices into the power module. The primary goal of this study is to characterize and verify the high-temperature operation of optoelectronic devices, including light-emitting diodes and photodiodes based on WBG materials. The secondary goal is to identify and integrate optoelectronic devices to achieve galvanic isolation in high-density power modules working at elevated temperatures. As part of the study, a high-temperature packaging, based on low temperature co-fired ceramic (LTCC), suitable to accommodate optoelectronic devices, will also be designed and developed
    • …
    corecore