7 research outputs found

    EMISAR single pass topographic SAR interferometer modes

    Get PDF

    Parametric estimation of time varying baselines in airborne interferometric SAR

    Get PDF

    Calibration of a High Resolution Airborne 3-D SAR

    Get PDF

    Monitoring land subsidence of airport using InSAR time-series techniques with atmospheric and orbital error corrections

    Get PDF
    Land subsidence is one of the common geological hazards worldwide and mostly caused by human activities including the construction of massive infrastructures. Large infrastructure such as airport is susceptible to land subsidence due to several factors. Therefore, monitoring of the land subsidence at airport is crucial in order to prevent undesirable loss of property and life. Remote sensing technique, especially Interferometric Synthetic Aperture Radar (InSAR) has been successfully applied to measure the surface deformation over the past few decades although atmospheric artefact and orbital errors are still a concerning issue in this measurement technique. Multi-temporal InSAR, an extension of InSAR technique, uses large sets of SAR scenes to investigate the temporal evolution of surface deformation and mitigate errors found in a single interferogram. This study investigates the long-term land subsidence of the Kuala Lumpur International Airport (KLIA), Malaysia and Singapore Changi Airport (SCA), Singapore by using two multi-temporal InSAR techniques like Small Baseline Subset (SBAS) and Multiscale InSAR Time Series (MInTS). General InSAR processing was conducted to generate interferogram using ALOS PALSAR data from 2007 until 2011. Atmospheric and orbital corrections were carried out for all interferograms using weather model, namely European Centre for Medium Range Weather Forecasting (ECMWF) and Network De-Ramping technique respectively before estimating the time series land subsidence. The results show variation of subsidence with respect to corrections (atmospheric and orbital) as well as difference between multi-temporal InSAR techniques (SBAS and MInTS) used. After applying both corrections, a subsidence ranging from 2 to 17 mm/yr was found at all the selected areas at the KLIA. Meanwhile, for SCA, a subsidence of about less than 10 mm/yr was found. Furthermore, a comparison between two techniques (SBAS and MInTS) show a difference rate of subsidence of about less than 1 mm/yr for both study area. SBAS technique shows more linear result as compared to the MInTS technique which shows slightly scattering pattern but both techniques show a similar trend of surface deformation in both study sites. No drastic deformation was observed in these two study sites and slight deformation was detected which about less than 20mm/yr for both study areas probably occurred due to several reasons including conversion of the land use from agricultural land, land reclamation process and also poor construction. This study proved that InSAR time series surface deformation measurement techniques are useful as well as capable to monitor deformation of large infrastructure such as airport and as an alternative to costly conventional ground measurement for infrastructure monitoring

    Summaries of the Sixth Annual JPL Airborne Earth Science Workshop

    Get PDF
    The Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996, was divided into two smaller workshops:(1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, and The Airborne Synthetic Aperture Radar (AIRSAR) workshop. This current paper, Volume 2 of the Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, presents the summaries for The Airborne Synthetic Aperture Radar (AIRSAR) workshop

    Manejo Integral de Agua y Suelo en Centroamérica. Bases científicas para el desarrollo rural comunitario.

    Full text link
    Este libro recoge los frutos de la colaboración y trabajo conjunto de un grupo de Universidades Iberoamericanas entre 2007 y 2012 el marco de las actividades del Programa de Cooperación Comunidad, Agua y Bosque en Centroamérica (CAB Centroamérica, http://www2.caminos.upm.es/Departamentos/imt/Topografia/Cab/cab.html ). Las actividades se han realizado con el apoyo del Programa de Cooperación Universitaria PCI-AECID IBEROAMÉRICA, de la Dirección de Cooperación para el Desarrollo de la Universidad Politécnica de Madrid y de los fondos propios de las Universidades latinoamericanas, con especial mención a la Universidad de Costa Rica, coordinadora de los trabajos en Centroamérica. El inicio de esta colaboración se produjo en 2007 a partir de la identificación de un objetivo común: profundizar la investigación sobre la dinámica agua-suelo-planta para mejorar la producción y la calidad del agua de los sistemas de abastecimiento comunitarios en Centroamérica

    Options for airborne interferometric SAR motion compensation

    No full text
    corecore