6 research outputs found

    Capacity and Error Rate Analysis of MIMO Satellite Communication Systems in Fading Scenarios

    Get PDF
    In this paper, we investigated the capacity and bit error rate (BER) performance of Multiple Input Multiple Output (MIMO) satellite systems with single and multiple dual polarized satellites in geostationary orbit and a mobile ground receiving station with multiple antennas. We evaluated the effects of both system parameters such as number of satellites, number of receive antennas, and SNR and environmental factors including atmospheric signal attenuations and signal phase disturbances on the overall system performance using both analytical and spatial models for MIMO satellite systems.DOI:http://dx.doi.org/10.11591/ijece.v4i4.534

    Dual polarized modulation and reception for next generation mobile satellite communications

    Get PDF
    This paper presents the novel application of polarized modulation (PMod) for increasing the throughput in mobile satellite transmissions. One of the major drawbacks in mobile satellite communications is the fact that the power budget is often restrictive, making it unaffordable to improve the spectral efficiency without an increment of transmitted power. By using dual polarized antennas in the transmitter and receiver, the PMod technique achieves an improvement in throughput of up to 100% with respect to existing deployments, with an increase of less than 1 dB at low Eb/N0 regime. Additionally, the proposed scheme implies minimum hardware modifications with respect to the existing dual polarized systems and does not require additional channel state information at the transmitter; thus it can be used in current deployments. Demodulation (i.e., detection and decoding) alternatives, with different processing complexity and performance, are studied. The results are validated in a typical mobile interactive scenario, the newest version of TS 102 744 standard [Broadband Global Area Network (BGAN)], which aims to provide interactive mobile satellite communications.Peer ReviewedPostprint (author's final draft

    Packet scheduling in satellite LTE networks employing MIMO technology.

    Get PDF
    Doctor of Philosophy in Electronic Engineering. University of KwaZulu-Natal, Durban 2014.Rapid growth in the number of mobile users and ongoing demand for different types of telecommunication services from mobile networks, have driven the need for new technologies that provide high data rates and satisfy their respective Quality of Service (QoS) requirements, irrespective of their location. The satellite component will play a vital role in these new technologies, since the terrestrial component is not able to provide global coverage due to economic and technical limitations. This has led to the emergence of Satellite Long Term Evolution (LTE) networks which employ Multiple-In Multiple-Out (MIMO) technology. In order to achieve the set QoS targets, required data rates and fairness among various users with different traffic demands in the satellite LTE network, it is crucial to design an effective scheduling and a sub-channel allocation scheme that will provide an optimal balance of all these requirements. It is against this background that this study investigates packet scheduling in satellite LTE networks employing MIMO technology. One of the main foci of this study is to propose new cross-layer based packet scheduling schemes, tagged Queue Aware Fair (QAF) and Channel Based Queue Sensitive (CBQS) scheduling schemes. The proposed schemes are designed to improve both fairness and network throughput without compromising users’ QoS demands, as they provide a good trade-off between throughput, QoS demands and fairness. They also improve the performance of the network in comparison with other scheduling schemes. The comparison is determined through simulations. Due to the fact that recent schedulers provide a trade-off among major performance indices, a new performance index to evaluate the overall performance of each scheduler is derived. This index is tagged the Scheduling Performance Metric (SPM). The study also investigates the impact of the long propagation delay and different effective isotropic radiated powers on the performance of the satellite LTE network. The results show that both have a significant impact on network performance. In order to actualize an optimal scheduling scheme for the satellite LTE network, the scheduling problem is formulated as an optimization function and an optimal solution is obtained using Karush-Kuhn-Tucker multipliers. The obtained Near Optimal Scheduling Scheme (NOSS), whose aim is to maximize the network throughput without compromising users’ QoS demands and fairness, provides better throughput and spectral efficiency performance than other schedulers. The comparison is determined through simulations. Based on the new SPM, the proposed NOSS1 and NOSS2 outperform other schedulers. A stability analysis is also presented to determine whether or not the proposed scheduler will provide a stable network. A fluid limit technique is used for the stability analysis. Finally, a sub-channel allocation scheme is proposed, with the aim of providing a better sub-channel or Physical Resource Block (PRB) allocation method, tagged the Utility Auction Based (UAB) subchannel allocation scheme that will improve the system performance of the satellite LTE network. The results show that the proposed method performs better than the other scheme. The comparison is obtained through simulations

    Modelling and and measurement analysis of the satellite MIMO radio channel

    Get PDF
    The increasing demand for terrestrial and satellite delivered digital multimedia services has precipitated the problem of spectrum scarcity in recent years. This has resulted in deployment of spectral efficient technologies such as MIMO for terrestrial systems. However, MIMO cannot be easily deployed for the satellite channel using conventional spatial multiplexing as the channel conditions here are very different from the terrestrial case, and it is often dominated by line of sight fading. Orthogonal circular polarization, which has long been used for increasing both frequency reuse and the power spectral density available to earth-bound satellite terminals, has recently been recommended for directly increasing the throughput available to such devices. Following that theme, this thesis proposes a novel dual circular polarisation multiplexing (DCPM) technique, which is aimed at the burgeoning area of throughput-hungry digital video broadcasting via satellite to handheld devices (DVB-SH) and digital video broadcast to the next generation of hand held (DVB-NGH) systems. In determining the working limits of DCPM, a series of measurement campaigns have been performed, from which extensive dual circular polarised land mobile satellite (LMS) channel data has been derived. Using the newly available channel data and with the aid of statistical channel modelling tools found in literature, a new dual circular polarised LMS MIMO channel model has been developed. This model, in contrast with previously available LMS MIMO channel models, is simpler to implement since it uses a distinct state-based empirical-stochastic approach. The model has been found to be robust and it easily lends itself to rapid implementation for system level MIMO and DCPM analysis. Finally, by way of bit error rate (BER) analysis in different channel fading conditions, it has been determined when best to implement polarisation multiplexing or conventional . MIMO techniques for DVB-type land mobile receivers. It is recommended that DCPM be used when the channel in predominantly Ricean, with eo-polar channel Rice factors and sub-channel cross correlation values greater than 1dB and 0.40 respectively. The recommendations provided by this research are valuable contributions, which may help shape the evolving DVB-NGH standardisation process.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore