3,040 research outputs found

    Microgrid optimization, modelling and control

    Get PDF
    2014 Fall.To view the abstract, please see the full text of the document

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107

    Smart Grid Technologies for Efficiency Improvement of Integrated Industrial Electric System

    Get PDF
    The purpose of this research is to identify the need of Smart Grid Technologies in communication between industrial plants with co-generation capability and the electric utilities in providing the most optimum scheme for buying and selling of electricity in such a way that the fuel consumption is minimized, reliability is increased, and time to restore the system is reduced. A typical industrial plant load profile based on statistical mean and variance of industrial plants\u27 load requirement is developed, and used in determining the minimum cost of producing the next megawatt-hours by a typical electric utility. The 24-hour load profile and optimal power flow program are used to simulate the IEEE 39 Bus Test System. The methodology for the use of smart grid technology in fuel saving is documented in the thesis. The results obtained from this research shall be extended to include several industrial plants served by electric utilities in future work by the UNO research team

    An emissions-constrained dispatch algorithm

    Get PDF

    Optimized scheduling of diesel - renewable systems with pumped hydro storage

    Get PDF
    Published Conference ProceedingsThe present paper develops a model to optimize the daily operation of a hybrid energy system consisting of a photovoltaic unit, a wind unit, a pumped hydro storage system and a diesel generator. The main purpose of the developed model is to minimize the hybrid system’s operation cost while optimizing the system’s power flow considering the different component’s operational constraints. The simulations have been performed using “fmincon” implemented in Matlab. The model has been applied to two test examples; the simulation results are analyzed and compared to the case where the diesel generator is used alone to supply the given load demand. The results show that using the developed control model, fuel saving can be achieved compared to the case where the diesel is used alone to supply the same load patters
    corecore