4 research outputs found

    A Survey on Topologies and Controls of Z-Source Matrix Converter

    Get PDF
    This paper describes the Z-source matrix converter (ZS-MC) topology which specifically discusses topology and control on the ZS-MC. There are two topologies on the ZS-MC, namely Z-source direct-MC (ZS-DMC) and indirect-MC (ZS-IMC). The difference of each of these topologies is in the number of switching mosfets, where ZS-DMC put on nine switches, while ZS-IMC eighteen switches. ZS-IMC topology overcomes the limitations of traditional MC voltage reinforcement and accommodates the operation of buck and boost converter by reducing the number of switches and providing high efficiency

    Matrix Converter Based on Trapezoidal Current Injection

    Get PDF
    The Matrix Converter (MC) is a direct AC-AC power converter featuring high power density and high efficiency. However, the conventional MC (CMC) topologies require high control complexity and high transistor capacity, hindering the wide applications. An emerging MC topology (3CI-MC) based on the third-harmonic current injection (3CI) reduces the control complexity, but require more transistors and complex clamping circuit. This paper proposes the trapezoidal current injection (TCI) technique to form a novel MC topology (TCI-MC), which consists of a line-commutated converter (LCC), a TCI circuit and a voltage source converter (VSC). Compared with the 3CI-MC, the proposed TCI-MC not only maintains the advantages of simple modulation and independent voltage control, but also achieves lower current stress on the LCC part of the circuit. The total transistor capacity of the proposed TCI-MC is the lowest among all the considered MC topologies. The clamping circuit is also simplified and the bidirectional switches are eliminated, reducing the implementation cost. Simulation and experimental results have verified the validity of the proposed topology

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words
    corecore