12 research outputs found

    Interactive avatar control: Case studies on physics and performance based character animation

    Get PDF
    Master'sMASTER OF SCIENC

    ์‚ฌ๋žŒ์˜ ์ž์—ฐ์Šค๋Ÿฌ์šด ๋ณดํ–‰ ๋™์ž‘ ์ƒ์„ฑ์„ ์œ„ํ•œ ๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋ฐ˜ ํœด๋จธ๋…ธ์ด๋“œ ์ œ์–ด ๋ฐฉ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2014. 8. ์ด์ œํฌ.ํœด๋จธ๋…ธ์ด๋“œ๋ฅผ ์ œ์–ดํ•˜์—ฌ ์‚ฌ๋žŒ์˜ ์ž์—ฐ์Šค๋Ÿฌ์šด ์ด๋™ ๋™์ž‘์„ ๋งŒ๋“ค์–ด๋‚ด๋Š” ๊ฒƒ์€ ์ปดํ“จํ„ฐ๊ทธ๋ž˜ํ”ฝ์Šค ๋ฐ ๋กœ๋ด‡๊ณตํ•™ ๋ถ„์•ผ์—์„œ ์ค‘์š”ํ•œ ๋ฌธ์ œ๋กœ ์ƒ๊ฐ๋˜์–ด ์™”๋‹ค. ํ•˜์ง€๋งŒ, ์ด๋Š” ์‚ฌ๋žŒ์˜ ์ด๋™์—์„œ ๊ตฌ๋™๊ธฐ๊ฐ€ ๋ถ€์กฑํ•œ (underactuated) ํŠน์„ฑ๊ณผ ์‚ฌ๋žŒ์˜ ๋ชธ์˜ ๋ณต์žกํ•œ ๊ตฌ์กฐ๋ฅผ ๋ชจ๋ฐฉํ•˜๊ณ  ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•ด์•ผ ํ•œ๋‹ค๋Š” ์  ๋•Œ๋ฌธ์— ๋งค์šฐ ์–ด๋ ค์šด ๋ฌธ์ œ๋กœ ์•Œ๋ ค์ ธ์™”๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์€ ๋ฌผ๋ฆฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ธฐ๋ฐ˜ ํœด๋จธ๋…ธ์ด๋“œ๊ฐ€ ์™ธ๋ถ€์˜ ๋ณ€ํ™”์— ์•ˆ์ •์ ์œผ๋กœ ๋Œ€์‘ํ•˜๊ณ  ์‹ค์ œ ์‚ฌ๋žŒ์ฒ˜๋Ÿผ ์ž์—ฐ์Šค๋Ÿฝ๊ณ  ๋‹ค์–‘ํ•œ ์ด๋™ ๋™์ž‘์„ ๋งŒ๋“ค์–ด๋‚ด๋„๋ก ํ•˜๋Š” ์ œ์–ด ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ์‹ค์ œ ์‚ฌ๋žŒ์œผ๋กœ๋ถ€ํ„ฐ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ๊ด€์ฐฐ ๊ฐ€๋Šฅํ•˜๊ณ  ์ธก์ • ๊ฐ€๋Šฅํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์ตœ๋Œ€ํ•œ์œผ๋กœ ํ™œ์šฉํ•˜์—ฌ ๋ฌธ์ œ์˜ ์–ด๋ ค์›€์„ ๊ทน๋ณตํ–ˆ๋‹ค. ์šฐ๋ฆฌ์˜ ์ ‘๊ทผ ๋ฐฉ๋ฒ•์€ ๋ชจ์…˜ ์บก์ฒ˜ ์‹œ์Šคํ…œ์œผ๋กœ๋ถ€ํ„ฐ ํš๋“ํ•œ ์‚ฌ๋žŒ์˜ ๋ชจ์…˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜๋ฉฐ, ์‹ค์ œ ์‚ฌ๋žŒ์˜ ์ธก์ • ๊ฐ€๋Šฅํ•œ ๋ฌผ๋ฆฌ์ , ์ƒ๋ฆฌํ•™์  ํŠน์„ฑ์„ ๋ณต์›ํ•˜์—ฌ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์šฐ๋ฆฌ๋Š” ํ† ํฌ๋กœ ๊ตฌ๋™๋˜๋Š” ์ด์กฑ ๋ณดํ–‰ ๋ชจ๋ธ์ด ๋‹ค์–‘ํ•œ ์Šคํƒ€์ผ๋กœ ๊ฑธ์„ ์ˆ˜ ์žˆ๋„๋ก ์ œ์–ดํ•˜๋Š” ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์šฐ๋ฆฌ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋ชจ์…˜ ์บก์ฒ˜ ๋ฐ์ดํ„ฐ์— ๋‚ด์žฌ๋œ ์ด๋™ ๋™์ž‘ ์ž์ฒด์˜ ๊ฐ•๊ฑด์„ฑ์„ ํ™œ์šฉํ•˜์—ฌ ์‹ค์ œ ์‚ฌ๋žŒ๊ณผ ๊ฐ™์€ ์‚ฌ์‹ค์ ์ธ ์ด๋™ ์ œ์–ด๋ฅผ ๊ตฌํ˜„ํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ๋Š”, ์ฐธ์กฐ ๋ชจ์…˜ ๋ฐ์ดํ„ฐ๋ฅผ ์žฌํ˜„ํ•˜๋Š” ์ž์—ฐ์Šค๋Ÿฌ์šด ๋ณดํ–‰ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์œ„ํ•œ ๊ด€์ ˆ ํ† ํฌ๋ฅผ ๊ณ„์‚ฐํ•˜๊ฒŒ ๋œ๋‹ค. ์•Œ๊ณ ๋ฆฌ์ฆ˜์—์„œ ๊ฐ€์žฅ ํ•ต์‹ฌ์ ์ธ ์•„์ด๋””์–ด๋Š” ๊ฐ„๋‹จํ•œ ์ถ”์ข… ์ œ์–ด๊ธฐ๋งŒ์œผ๋กœ๋„ ์ฐธ์กฐ ๋ชจ์…˜์„ ์žฌํ˜„ํ•  ์ˆ˜ ์žˆ๋„๋ก ์ฐธ์กฐ ๋ชจ์…˜์„ ์—ฐ์†์ ์œผ๋กœ ์กฐ์ ˆํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์šฐ๋ฆฌ์˜ ๋ฐฉ๋ฒ•์€ ๋ชจ์…˜ ๋ธ”๋ Œ๋”ฉ, ๋ชจ์…˜ ์™€ํ•‘, ๋ชจ์…˜ ๊ทธ๋ž˜ํ”„์™€ ๊ฐ™์€ ๊ธฐ์กด์— ์กด์žฌํ•˜๋Š” ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ•๋“ค์„ ์ด์กฑ ๋ณดํ–‰ ์ œ์–ด์— ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ๋ณด๋‹ค ์‚ฌ์‹ค์ ์ธ ์ด๋™ ๋™์ž‘์„ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ๋žŒ์˜ ๋ชธ์„ ์„ธ๋ถ€์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•œ, ๊ทผ์œก์— ์˜ํ•ด ๊ด€์ ˆ์ด ๊ตฌ๋™๋˜๋Š” ์ธ์ฒด ๋ชจ๋ธ์„ ์ œ์–ดํ•˜๋Š” ์ด๋™ ์ œ์–ด ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•œ๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜์— ์‚ฌ์šฉ๋˜๋Š” ํœด๋จธ๋…ธ์ด๋“œ๋Š” ์‹ค์ œ ์‚ฌ๋žŒ์˜ ๋ชธ์—์„œ ์ธก์ •๋œ ์ˆ˜์น˜๋“ค์— ๊ธฐ๋ฐ˜ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ ์ตœ๋Œ€ 120๊ฐœ์˜ ๊ทผ์œก์„ ๊ฐ€์ง„๋‹ค. ์šฐ๋ฆฌ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ตœ์ ์˜ ๊ทผ์œก ํ™œ์„ฑํ™” ์ •๋„๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜๋ฉฐ, ์ฐธ์กฐ ๋ชจ์…˜์„ ์ถฉ์‹คํžˆ ์žฌํ˜„ํ•˜๊ฑฐ๋‚˜ ํ˜น์€ ์ƒˆ๋กœ์šด ์ƒํ™ฉ์— ๋งž๊ฒŒ ๋ชจ์…˜์„ ์ ์‘์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์ฃผ์–ด์ง„ ์ฐธ์กฐ ๋ชจ์…˜์„ ์ˆ˜์ •ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ๋™์ž‘ํ•œ๋‹ค. ์šฐ๋ฆฌ์˜ ํ™•์žฅ๊ฐ€๋Šฅํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ๊ทผ๊ณจ๊ฒฉ ์ธ์ฒด ๋ชจ๋ธ์„ ์ตœ์ ์˜ ๊ทผ์œก ์กฐํ•ฉ์„ ์‚ฌ์šฉํ•˜๋ฉฐ ๊ท ํ˜•์„ ์œ ์ง€ํ•˜๋„๋ก ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ๋‹ค์–‘ํ•œ ์Šคํƒ€์ผ๋กœ ๊ฑท๊ธฐ ๋ฐ ๋‹ฌ๋ฆฌ๊ธฐ, ๋ชจ๋ธ์˜ ๋ณ€ํ™” (๊ทผ์œก์˜ ์•ฝํ™”, ๊ฒฝ์ง, ๊ด€์ ˆ์˜ ํƒˆ๊ตฌ), ํ™˜๊ฒฝ์˜ ๋ณ€ํ™” (์™ธ๋ ฅ), ๋ชฉ์ ์˜ ๋ณ€ํ™” (ํ†ต์ฆ์˜ ๊ฐ์†Œ, ํšจ์œจ์„ฑ์˜ ์ตœ๋Œ€ํ™”)์— ๋Œ€ํ•œ ๋Œ€์‘, ๋ฐฉํ–ฅ ์ „ํ™˜, ํšŒ์ „, ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒํ•˜๊ฒŒ ๋ฐฉํ–ฅ์„ ๋ฐ”๊พธ๋ฉฐ ๊ฑท๊ธฐ ๋“ฑ๊ณผ ๊ฐ™์€ ๋ณด๋‹ค ๋‚œ์ด๋„ ๋†’์€ ๋™์ž‘๋“ค๋กœ ์ด๋ฃจ์–ด์ง„ ์˜ˆ์ œ๋ฅผ ํ†ตํ•ด ์šฐ๋ฆฌ์˜ ์ ‘๊ทผ ๋ฐฉ๋ฒ•์ด ํšจ์œจ์ ์ž„์„ ๋ณด์˜€๋‹ค.Controlling artificial humanoids to generate realistic human locomotion has been considered as an important problem in computer graphics and robotics. However, it has been known to be very difficult because of the underactuated characteristics of the locomotion dynamics and the complex human body structure to be imitated and simulated. In this thesis, we presents controllers for physically simulated humanoids that exhibit a rich set of human-like and resilient simulated locomotion. Our approach exploits observable and measurable data of a human to effectively overcome difficulties of the problem. More specifically, our approach utilizes observed human motion data collected by motion capture systems and reconstructs measured physical and physiological properties of a human body. We propose a data-driven algorithm to control torque-actuated biped models to walk in a wide range of locomotion skills. Our algorithm uses human motion capture data and realizes an human-like locomotion control facilitated by inherent robustness of the locomotion motion. Concretely, it takes reference motion and generates a set of joint torques to generate human-like walking simulation. The idea is continuously modulating the reference motion such that even a simple tracking controller can reproduce the reference motion. A number of existing data-driven techniques such as motion blending, motion warping, and motion graph can facilitate the biped control with this framework. We present a locomotion control system that controls detailed models of a human body with the musculotendon actuating process to create more human-like simulated locomotion. The simulated humanoids are based on measured properties of a human body and contain maximum 120 muscles. Our algorithm computes the optimal coordination of muscle activations and actively modulates the reference motion to fathifully reproduce the reference motion or adapt the motion to meet new conditions. Our scalable algorithm can control various types of musculoskeletal humanoids while seeking harmonious coordination of many muscles and maintaining balance. We demonstrate the strength of our approach with examples that allow simulated humanoids to walk and run in various styles, adapt to change of models (e.g., muscle weakness, tightness, joint dislocation), environments (e.g., external pushes), goals (e.g., pain reduction and efficiency maximization), and perform more challenging locomotion tasks such as turn, spin, and walking while steering its direction interactively.Contents Abstract i Contents iii List of Figures v 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Computer Graphics Perspective . . . . . . . . . . . . . . . . . 3 1.1.2 Robotics Perspective . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.3 Biomechanics Perspective . . . . . . . . . . . . . . . . . . . . 7 1.2 Aim of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Previous Work 16 2.1 Biped Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.1 Controllers with Optimization . . . . . . . . . . . . . . . . . . 18 2.1.2 Controllers with Motion Capture Data . . . . . . . . . . . . . 20 2.2 Simulation of Musculoskeletal Humanoids . . . . . . . . . . . . . . . 21 2.2.1 Simulation of Specic Body Parts . . . . . . . . . . . . . . . . 21 2.2.2 Simulation of Full-Body Models . . . . . . . . . . . . . . . . . 22 2.2.3 Controllers for Musculoskeletal Humanoids . . . . . . . . . . . 23 3 Data-Driven Biped Control 24 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Data-Driven Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.1 Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.2 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4 Locomotion Control for Many-Muscle Humanoids 56 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 Humanoid Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.1 Muscle Force Generation . . . . . . . . . . . . . . . . . . . . . 61 4.2.2 Muscle Force Transfer . . . . . . . . . . . . . . . . . . . . . . 64 4.2.3 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3 Muscle Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.3.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3.3 Quadratic Programming Formulation . . . . . . . . . . . . . . 70 4.4 Trajectory Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5 Conclusion 84 A Mathematical Definitions 88 A.1 Definitions of Transition Function . . . . . . . . . . . . . . . . . . . . 88 B Humanoid Models 89 B.1 Torque-Actuated Biped Models . . . . . . . . . . . . . . . . . . . . . 89 B.2 Many-Muscle Humanoid Models . . . . . . . . . . . . . . . . . . . . . 91 C Dynamics of Musculotendon Actuators 94 C.1 Contraction Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 94 C.2 Initial Muscle States . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Glossary for Medical Terms 99 Bibliography 102 ์ดˆ๋ก 113Docto

    ์ปดํ“จํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ์—ฌ๋Ÿฌ ์‚ฌ๋žŒ์˜ ๋™์ž‘ ์—ฐ์ถœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2017. 8. ์ด์ œํฌ.Choreographing motion is the process of converting written stories or messages into the real movement of actors. In performances or movie, directors spend a consid-erable time and e๏ฌ€ort because it is the primary factor that audiences concentrate. If multiple actors exist in the scene, choreography becomes more challenging. The fundamental di๏ฌƒculty is that the coordination between actors should precisely be ad-justed. Spatio-temporal coordination is the ๏ฌrst requirement that must be satis๏ฌed, and causality/mood are also another important coordinations. Directors use several assistant tools such as storyboards or roughly crafted 3D animations, which can visu-alize the ๏ฌ‚ow of movements, to organize ideas or to explain them to actors. However, it is di๏ฌƒcult to use the tools because artistry and considerable training e๏ฌ€ort are required. It also doesnt have ability to give any suggestions or feedbacks. Finally, the amount of manual labor increases exponentially as the number of actor increases. In this thesis, we propose computational approaches on choreographing multiple actor motion. The ultimate goal is to enable novice users easily to generate motions of multiple actors without substantial e๏ฌ€ort. We ๏ฌrst show an approach to generate motions for shadow theatre, where actors should carefully collaborate to achieve the same goal. The results are comparable to ones that are made by professional ac-tors. In the next, we present an interactive animation system for pre-visualization, where users exploits an intuitive graphical interface for scene description. Given a de-scription, the system can generate motions for the characters in the scene that match the description. Finally, we propose two controller designs (combining regression with trajectory optimization, evolutionary deep reinforcement learning) for physically sim-ulated actors, which guarantee physical validity of the resultant motions.Chapter 1 Introduction 1 Chapter 2 Background 8 2.1 Motion Generation Technique 9 2.1.1 Motion Editing and Synthesis for Single-Character 9 2.1.2 Motion Editing and Synthesis for Multi-Character 9 2.1.3 Motion Planning 10 2.1.4 Motion Control by Reinforcement Learning 11 2.1.5 Pose/Motion Estimation from Incomplete Information 11 2.1.6 Diversity on Resultant Motions 12 2.2 Authoring System 12 2.2.1 System using High-level Input 12 2.2.2 User-interactive System 13 2.3 Shadow Theatre 14 2.3.1 Shadow Generation 14 2.3.2 Shadow for Artistic Purpose 14 2.3.3 Viewing Shadow Theatre as Collages/Mosaics of People 15 2.4 Physics-based Controller Design 15 2.4.1 Controllers for Various Characters 15 2.4.2 Trajectory Optimization 15 2.4.3 Sampling-based Optimization 16 2.4.4 Model-Based Controller Design 16 2.4.5 Direct Policy Learning 17 2.4.6 Deep Reinforcement Learning for Control 17 Chapter 3 Motion Generation for Shadow Theatre 19 3.1 Overview 19 3.2 Shadow Theatre Problem 21 3.2.1 Problem Definition 21 3.2.2 Approaches of Professional Actors 22 3.3 Discovery of Principal Poses 24 3.3.1 Optimization Formulation 24 3.3.2 Optimization Algorithm 27 3.4 Animating Principal Poses 29 3.4.1 Initial Configuration 29 3.4.2 Optimization for Motion Generation 30 3.5 Experimental Results 32 3.5.1 Implementation Details 33 3.5.2 Animation 34 3.5.3 3D Fabrication 34 3.6 Discussion 37 Chapter 4 Interactive Animation System for Pre-visualization 40 4.1 Overview 40 4.2 Graphical Scene Description 42 4.3 Candidate Scene Generation 45 4.3.1 Connecting Paths 47 4.3.2 Motion Cascade 47 4.3.3 Motion Selection For Each Cycle 49 4.3.4 Cycle Ordering 51 4.3.5 Generalized Paths and Cycles 52 4.3.6 Motion Editing 54 4.4 Scene Ranking 54 4.4.1 Ranking Criteria 54 4.4.2 Scene Ranking Measures 57 4.5 Scene Refinement 58 4.6 Experimental Results 62 4.7 Discussion 65 Chapter 5 Physics-based Design and Control 69 5.1 Overview 69 5.2 Combining Regression with Trajectory Optimization 70 5.2.1 Simulation and Motor Skills 71 5.2.2 Control Adaptation 75 5.2.3 Control Parameterization 79 5.2.4 Efficient Construction 81 5.2.5 Experimental Results 84 5.2.6 Discussion 89 5.3 Example-Guided Control by Deep Reinforcement Learning 91 5.3.1 System Overview 92 5.3.2 Initial Policy Construction 95 5.3.3 Evolutionary Deep Q-Learning 100 5.3.4 Experimental Results 107 5.3.5 Discussion 114 Chapter 6 Conclusion 119 6.1 Contribution 119 6.2 Future Work 120 ์š”์•ฝ 135Docto

    Optimizing Walking Controllers for Uncertain Inputs and Environments

    Get PDF
    Figure 1: Walking controllers optimized for different environments with uncertainty. (a) Walking can be relaxed in a deterministic environment, without random external perturbations. (b) Under gusty conditions, the gait is more aggressive, with a wider stance. (c) On a slipperysurfacewithinternalmotornoise,thegaitiscautiouswitharmsextendedforbalance. (d)Walkingonanarrowwallonawindyday produces anarrowergaitwithsmallsteps. (e) Withinternalmotor noise, carryinghotbeverages requires aslowgait withsteady arms. We introduce methods for optimizing physics-based walking controllers for robustness to uncertainty. Many unknown factors, such as external forces, control torques, and user control inputs, cannot be known in advance and must be treated as uncertain. These variables are represented with probability distributions, and a return function scores the desirability of a single motion. Controller optimization entails maximizing the expected value of the return, which is computed by Monte Carlo methods. We demonstrate examples with different sources of uncertainty and task constraints. Optimizing control strategies under uncertainty increases robustness andproduces naturalvariations instyle. Keywords: Physics-based animation, controller synthesis, human motion, optimization.
    corecore