
Optimizing Walking Controllers for Uncertain Inputs and Environments

Jack M. Wang David J. Fleet Aaron Hertzmann

University of Toronto

(a) (b) (c) (d) (e)

Figure 1: Walking controllers optimized for different environments with uncertainty. (a) Walking can be relaxed in a deterministic
environment, without random external perturbations. (b) Under gusty conditions, the gait is more aggressive, with a wider stance. (c) On a
slippery surface with internal motor noise, the gait is cautious with arms extended for balance. (d)Walking on a narrow wall on a windy day
produces a narrower gait with small steps. (e) With internal motor noise, carrying hot beverages requires a slow gait with steady arms.

Abstract

We introduce methods for optimizing physics-based walking con-
trollers for robustness to uncertainty. Many unknown factors, such
as external forces, control torques, and user control inputs, can-
not be known in advance and must be treated as uncertain. These
variables are represented with probability distributions, and a re-
turn function scores the desirability of a single motion. Controller
optimization entails maximizing the expected value of the return,
which is computed by Monte Carlo methods. We demonstrate ex-
amples with different sources of uncertainty and task constraints.
Optimizing control strategies under uncertainty increases robust-
ness and produces natural variations in style.

Keywords: Physics-based animation, controller synthesis, human
motion, optimization.

1 Introduction

When designing controllers for character locomotion, one cannot
know with certainty all factors that will influence the character’s
motion at run-time. Many unknown factors, such as external forces
due to strong winds, interactive user inputs, or noise in the motor
control system, can be significant and must be treated as uncertain.
One might try to cope with such uncertainty by making the con-
troller stiff and deliberate. However, it would be more desirable for

http://www.dgp.toronto.edu/~jmwang/optuie/

the control strategy to adapt to different scenarios, much as humans
do. For example, when walking on a slippery surface of variable
roughness, one might improve stability with a lower center-of-mass
(COM), outstretched arms, and smaller steps. Alternatively, when
experiencing extreme gusty winds, one might walk more stiffly with
a widened stance to avoid being blown over.

This paper introduces a technique for automatically learning robust
control strategies under different scenarios and various sources of
uncertainty. We consider four sources of uncertainty. First, we
incorporate unknown, varying external forces acting on the body,
like wind on a gusty day. Second, we incorporate uncertainty due
to user inputs. When designing controllers for interactive simu-
lation, a priori one cannot know a user’s run-time control inputs,
e.g., to change a character’s heading or speed. A third source of un-
certainty arises when transitions occur between controllers, where
the start state for one controller depends on the state produced by
the previous controller at the point of transition. Any variability
in the timing of the transition, or in the motion produced by the
first controller, will produce start states for the second controller
that cannot be known a priori. The fourth source of uncertainty
we consider is motor noise. In humans, it is believed that neuronal
motor noise influences motor strategies, e.g., in the coordination
of eye saccades, finger pointing, and in line drawing [Harris and
Wolpert 1998; Todorov 2004; Körding 2007]. Accordingly, the
inclusion of motor noise may help to produce human-like control
strategies under different environmental conditions. Noise is also
a convenient way to capture a wide range of otherwise unmodeled,
complex sources of uncertainty that might significantly influence a
character’s motion.

Learning different control strategies is formulated in terms of opti-
mizing 3D locomotion controllers in the presence of unknown en-
vironmental variables and controller inputs. We use a probabilistic
formulation in which all prior beliefs over unknown quantities are
modeled by probability distributions. Together with a controller
and dynamics, they define a probability distribution over motions.
A return function scores the quality of a given motion. Our goal
then is to optimize a controller to maximize the expected return, a
quantity not computable in closed-form. We useMonte Carlo meth-
ods to approximate the expected return. This approximation is op-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/284352116?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

timized by Covariance Matrix Adaptation (CMA) [Hansen 2006].
As a result, the character’s control strategy and style of movement
are determined automatically as a function of stochastic variables
and the return function.

Our controllers exhibit increased robustness compared to baseline
controllers that are optimized for scenarios where all significant
factors are known a priori. For example, the amount of unexpected
external force that a given walking controller can withstand can be
greatly increased. Furthermore, the type and degree of robustness
can be controlled through the specification of probability distribu-
tions over the unknowns. Different tasks and types of uncertainty
together lead to different styles of movement. For example, a char-
acter walking on a slippery surface with increased motor noise tends
to extend his arms and bend his knees for balance and stability. In
contrast, a controller walking on a narrow beam with uncertain ex-
ternal forces will be conservative, taking relatively small steps with
a narrow gait width to avoid stepping too close to the edge.

Optimization under uncertainty is also useful when composing con-
trollers. In general, switching between controllers is unreliable,
unless the controllers are highly robust, or they operate in simi-
lar regions of state space. We find that controllers optimized under
uncertainty are generally more robust and therefore more tolerant
to state variability at transitions. We also show that controllers op-
timized with uncertain start states can be used to create transition
and recovery controllers to facilitate composition.

The approach we advocate here is conceptually intuitive and
broadly applicable, supporting an extremely general class of uncer-
tainty. Given a basic controller and CMA, this method is also very
simple to implement. Optimization under uncertainty is expensive,
often requiring overnight computations. Nevertheless, once opti-
mized, the resulting controllers run at real-time rates.

2 Related Work

Previous work in optimal control for physics-based animation as-
sumed deterministic dynamical systems. Grzeszczuk et al. [1995;
1998] demonstrate control optimization for high-dimensional ma-
rine animals. In land-based locomotion, early methods focused on
low-dimensional characters [van de Panne and Fiume 1993; Sims
1994; van de Panne and Lamouret 1995]. More recently, con-
trollers based on tracking motion capture data have been optimized
for both 2D [Sharon and van de Panne 2005; Sok et al. 2007] and
3D [da Silva et al. 2008; Muico et al. 2009] humanoid locomotion.
Because the resulting motion style is defined by the motion cap-
ture data, such techniques cannot be used to investigate the effect
of uncertainty on style. In our previous work [Wang et al. 2009],
we optimized full-body locomotion controllers in deterministic set-
tings. These controllers are robust only to limited external distur-
bances, and do not exhibit stylistic variation as a function of un-
certainty. We extend this approach to stochastic environments and
user inputs, and show that different sources of uncertainty lead to
stylistically different control strategies.

Some techniques have been proposed for switching between low-
level physics-based controllers. Faloutsos et al. [2001] describe a
method for learning at what instants one can transition from one
controller to another. Coros et al. [2009] learn optimal control poli-
cies to transition between low-level controllers to accomplish dif-
ferent tasks. These methods assume that the low-level controllers,
and hence the motion style, are specified in advance and fixed. Our
approach complements these, as we focus on learning low-level
controllers, including those capable of making transitions.

Reinforcement learning has been used for control in kinematic mo-
tion graphs [Lee and Lee 2006; Treuille et al. 2007; Lo and Zwicker

2008; Lee et al. 2009]. These techniques assume completely deter-
ministic systems. McCann and Pollard [2007] proposed the use of
a probability distribution over user inputs, and maximize expected
return with respect to this distribution. Motion graph control is sig-
nificantly different from low-level physical control, however, be-
cause actions in motion graphs are discrete and low-dimensional.
Motion-graph methods do not explicitly handle the possibility of
control failure, such as tripping and falling.

As robotic controllers must account for uncertain conditions, op-
timization has been used for several low-dimensional robotic con-
trollers. For example, Tedrake et al. [2004] optimize the control of
a low-dimensional passive-based humanoid walker. This walker is
designed to be very stable even in the absence of control, thereby re-
ducing greatly the role of uncertainty. Abbeel et al. [2007] demon-
strate controllers for impressive helicopter stunts, which is a system
with low-dimensional dynamics but no ground-contact discontinu-
ities. Byl and Tedrake [2009] optimize a two-dimensional walker
in the presence of stochastic ground roughness.

3 Optimal Control under Uncertainty

Our approach to controller design combines probabilistic modeling
of uncertain (i.e., unknown) quantities, and optimization under un-
certainty. We begin with the formulation of the deterministic case.

3.1 Deterministic simulation and optimization

An articulated rigid-body character at time t is represented by a
state vector st, comprising joint angles, root position and root ori-
entation. Articulated rigid-body dynamics and integration provides
a function for mapping the state st at time t to the state at the next
time instant st+1:

st+1 = f(st, τ t, et) . (1)

This mapping is a function of state st, the internal joint torques τ t

produced by the character controller, and the relevant world param-
eters et, such as external forces (e.g., wind) acting on the character.

The control torques τ t are determined by a controller. A controller,
π, defines a mapping from the current state, st, to the desired con-
trol signal:

τ t = π(st, ct; w) , (2)

where w is a vector of control parameters, and ct is a vector of
user inputs at time t. Given a start state s1, the control parame-
ters w, any user inputs c1:T and environmental parameters e1:T , a
deterministic simulation is performed by recursively applying (2)
to determine τ t, and then (1) to compute st+1 for each time-step
1 ≤ t < T . This yields an animation sequence s1:T .

We formulate the optimal control problem with the specification
of a return function (e.g., see [Sutton and Barto 1998]), denoted
R(s1:T), which measures the quality of a simulation. In the deter-
ministic case, optimal control seeks the control parameterswwhich
produce motions that maximize the return function [van de Panne
and Fiume 1993; Grzeszczuk and Terzopoulos 1995; Wang et al.
2009]. We use a return function based on a simplified, but more
general, version of the energy terms in [Wang et al. 2009]. These
are described in the Appendix.

A controller optimized for a specific run-time environment without
uncertainty can sometimes be robust to moderate perturbations, but
typically not to large perturbations, changes in environmental con-
ditions, or variations in start state that might occur when controllers
are composed. For example, a carefully chosen w that allows the
character to walk in a straight line may fail when the character is

pushed in the chest, or when a user attempts to change the heading
or the speed of the character.

Character and controller details. Our character model is iden-
tical to that of Wang et al. [2009], which is based on SIMBICON
[Yin et al. 2007]. There are 30 internal degrees-of-freedom (DOF).
Mass distributions are computed from an automatically generated
mesh [Hasler et al. 2009] that approximates a male with height
180 cm, and weight 70 kg. The controller has four states, each
with linear proportional-derivative (PD) joint control combined
with SIMBICON-like balance control. The control parameteriza-
tion π(st, ct;w) is like that in [Wang et al. 2009], but with several
minor differences. First, the target angles that rotate the shoulders
in the coronal plane are not manually specified; instead they are
optimized. Second, to reduce the number of optimized parameters,
and to encourage smoothness of the body’s motion, several control
parameters are constrained to share the same value in all four con-
troller states. These include the damping and stiffness constants for
each upper body DOF, and the target values for the elbow angles
and the shoulder angle of rotation in the coronal plane.

We make one final change to the controller. Although the target
angle for the stance hip in the transverse plane (θt) can be speci-
fied as a user input to control the character’s heading direction [Yin
et al. 2007], direct manipulation of this parameter, e.g., by the user,
can easily lead to failure. Instead, we define an additional time-
varying target heading direction θd, which determines the change
in θt from one time-step to the next, and is better suited to be a user
input. If the new θd is close to the current target heading, θc, we
immediately change the target angle to θd. When θd differs signif-
icantly from θc, the target stance hip angle is adjusted gradually, to
reduce instability. In particular, it is updated from one time-step to
the next using

θt+1 = αhip(θd − θt) + (1− αhip)(θc − θt) + θt , (3)

where θt is the stance hip target angle at time t, and αhip is a weight
parameter. Each controller state has two values for αhip, for when
θc > θd or θc < θd, respectively. All these parameters are opti-
mized along with the other controller parameters.

3.2 Random environments and optimal control

When user inputs and environmental variables are uncertain, we do
not have specific values for ct and et a priori. Rather, we character-
ize our limited prior knowledge by specifying a probability distri-
bution over each unknown variable. As examples, here we consider
four general types of uncertainty. First, environmental uncertainty
is represented by p(e); this might represent, for example, the dis-
tribution over wind forces applied to the character’s torso. User in-
puts, such as commands to change the character’s heading, are also
unknown a priori. We therefore include a distribution over possi-
ble user inputs p(c). Third, the precise initial state of a controller
is often unknown during run-time applications. For example, we
may wish to compose controllers where transitions from one con-
troller to another occur at variable time instants. Accordingly, we
can specify a distribution over start states for a given controller with
a second distribution p(s1). Finally, human motor neurons are sub-
ject to signal-dependent noise [Faisal et al. 2008], which is thought
to play a significant role in human motion planning [Harris and
Wolpert 1998]. We incorporate motor noise by perturbing the joint
torques produced by the controller. To this end we specify a distri-
bution over joint torques, τ , given the parameters of the controller,
the current state, and the user inputs, i.e., τ t ∼ p(τ |st, ct,w).

Together, these sources of uncertainty and noise, in combination
with the dynamics (1), define a probability distribution over anima-
tions p(s1:T |w). Despite the complexity of this distribution, it is

rather straightforward to draw fair samples from it. To sample an
animation sequence from p(s1:T |w), one first samples a start state
s1 ∼ p(s1). Then, for each time-step t, the environmental variables
e and the user inputs c, if desired, are sampled from their distribu-
tions: et ∼ p(e) and ct ∼ p(c). Joint torques τ t are sampled
as τ t ∼ p(τ |st, ct,w). Finally, the next state st+1 is computed
according to the dynamics (1).

With random variables, we can no longer optimize the return of a
single scenario, and then expect the controller to work during an-
other simulation for which random variables take on different val-
ues.1 Instead, we optimize the expected return. The expected return
of a controller, with control parameters w, is

V (w) ≡ Ep(s1:T |w) [R(s1:T)]

=

∫

p(s1:T |w)R(s1:T) ds1:T . (4)

The optimal control problem is to select w to maximize this ex-
pected return. By optimizing the expected return, we aim to find a
controller that will work well, on average, with plausible values for
the uncertain quantities. The same principles have been effective in
modeling human motor control [Todorov 2004; Körding 2007].

3.3 Evaluation and optimization

Due to nonlinear dynamics and non-Gaussian noise, the expected
return (4) cannot be computed analytically; hence we use Monte
Carlo methods [Sutton and Barto 1998]. Specifically, N anima-
tion sequences are sampled, as described above. The approximation

V̂ (w) is then computed as the average return on these sequences:

V̂ (w) =
1

N

N
∑

i=1

R(s
(i)
1:T) , (5)

where s
(i)
1:T ∼ p(s1:T |w) .

For example, suppose the only source of randomness is an external
force, f , applied to the character’s torso at time t, where the direc-
tion and magnitude of the force are uniformly distributed. We run
the simulation N times, each time applying different forces drawn

at random from the uniform distribution. To optimize V̂ (w), we
use the CMA algorithm [Hansen 2006].

Note that, because new motions are sampled for each evaluation,

V̂ (w) is a random quantity. Hence, even if w is fixed, one obtains

a different result each time V̂ (w) is evaluated. This can cause prob-
lems for optimization algorithms. One issue is as follows. Suppose,
when comparing two controllers w1 and w2, we obtain estimates

for which V̂ (w1) > V̂ (w2). We cannot tell whether this is be-
cause w1 is really better than w2, or if the random forces sampled
for the second evaluation were more challenging than those for the
first. We address this by using the method of Common Random
Numbers (CRN) [Spall 2003], also known as PEGASUS [Ng and
Jordan 2000]. In CRN, one reuses the same random seed each time
V̂ (w) is evaluated. This makes V̂ (w) deterministic: for the ex-
ample above, the same sample of N random forces would be used
in each evaluation. This resolves difficulties with many optimizers,
and, under certain conditions, can be shown to yield better results
with high probability. We find that effective controllers can be op-
timized with small values of N (e.g., see Fig. 4).

1However, even for a deterministic system, simulations of multiple walk

cycles will exhibit small deviations from perfect gait periodicity. Controllers

optimized for long simulations will therefore be somewhat more robust than

those optimized for short durations.

Figure 2: Comparison of baseline controllers to motion capture
data. Top: Thigh orientation w.r.t. down vector. Bottom: Angle be-
tween thigh and shin. The dotted curve and orange region represent
the mean and standard deviation of walk cycles from 115 subjects.
Dashed blue and red curves represent the mean of optimized con-
trollers of [Wang et al. 2009] and SIMBICON, respectively. Solid
lines represent baseline controllers: optimized with no user con-
straints and the 1.6 m/s controller described in Sec. 4.4.

With each application, the controllers are optimized using the
method of CRN with N = 10 simulations, and CMA. The simula-
tor frequency is 2400 Hz (time-steps are about 0.00042 s), and each
simulation run is 10 s long. Following our previous work [Wang
et al. 2009], we run 19 CMA samples in parallel per iteration. The
optimization here is, however, more expensive, because each eval-
uation of the return function requires N simulations. Convergence
typically requires a few hundred iterations. Running the optimiza-
tions overnight on a cluster of 20 CPUs is usually sufficient. Further
parallelization of the N independent samples is possible.

Because the optimization is nonconvex, a good initial guess is re-
quired and local minima are problematic. We first optimize a con-
troller with no uncertainty, as in Sec. 3.1. This baseline controller
is then used as the initial guess for controller optimization under
uncertainty. When uncertainty or variability in environmental con-
ditions is extreme, it is easy for the optimization to get trapped in
poor local minima. In these cases, we first optimize controllers for
smaller noise levels or perturbations (often with early stopping).
These are then used to initialize optimizations for higher levels of
noise. We find that incremental optimization, while slowly chang-
ing conditions from baseline controllers to the desired scenarios,
typically produces effective controllers.

4 Applications

To demonstrate the impact and generality of optimization under
uncertainty, we consider several applications where different en-
vironment conditions and sources of uncertainty combine to pro-
duce different strategies for robustness. These controllers are com-
pared against their corresponding baseline controllers to evaluate
the significance of uncertainty. The baseline controllers are sim-
ilar to those described in our previous work [Wang et al. 2009],
but with small differences in control parameterization, objective
function, and mass distribution, the gaits produced by baseline con-
trollers appear more natural. Many features, such as knee angle
(Fig. 2(bottom)) behave as before, while others, such as the thigh
orientation trajectory (Fig. 2(top)) bear greater similarity to motion
capture data.

direction 0 N (baseline) 100 N 200 N 300 N 350 N 400 N

(1, 0) 125 175 275 375 350 425

(1,±1) 75 125 225 275 300 325

(0,±1) 75 125 325 375 425 475

(−1,±1) 25 100 175 225 250 275

(−1, 0) 75 200 350 325 375 375

Figure 3: Controller robustness to pushes. During optimization
and testing, random forces to the torso are parallel to the ground
with uniformly distributed directions over (0, 2π]. At each simula-
tion time instant, a force lasting 0.4 s is initiated with probability
0.025% (approximately 6 pushes in a 10 s simulation). Controllers
were optimized in sequence, with those for smaller force magni-
tudes F used to initialize optimizations for larger F . Top: Success
rate vs. F , averaged over 100 trials at each magnitude F . Con-
trollers optimized with larger forces (see legend) are more robust to
a wider range of pushes. Bottom: Maximum force (in newtons) tol-
erance for controllers pushed in different directions. Each column
represents a controller trained for a particular F .

4.1 External disturbances

We begin with a scenario in which external forces are applied to
the torso of the character, but with unknown timing and direction,
such as gusts of wind. Other quantities are assumed known: the
generation of internal joint torques is deterministic (2), there are
no user inputs c, and the start state s1 is optimized along with the
control parameters.

Walking under random pushes to the chest. Consider a base-
line controller optimized for walking in a fixed direction, efficiently
and with a human-like speed to step-length ratio [Wang et al. 2009].
While such controllers produce gaits that appear loose and relaxed
(e.g., Fig. 1a), they are not particularly robust. Strong pushes to
the chest can easily make the character fall. Conversely, controllers
optimized under uncertainty, where p(e) represents random pushes
to the chest, are significantly more robust. Further, the larger the
magnitudes of the pushes during optimization, the more robust the
resulting controller (see Fig. 3).

To model pushes to the chest, forces of magnitude F newtons from
random directions parallel to the ground are applied to the torso
COM. We learned controllers with F = 100, 200, 300, 350, and
400, all of which differ significantly from the baseline controller.
The knee swings are less passive, making each step appear more
deliberate. The arm swings are more pronounced, making the gaits
appear more energetic. At F = 200, the upper body leans forward
slightly, resulting in a fast gait (e.g., see Fig. 1b). At F = 400,
the upper body is bent almost parallel to the ground, lowering the
average COM from 1.02 m (baseline) to 0.96 m. We also find that,
as F increases, the average squared torque over time (Epower in
[Wang et al. 2009]), grows quickly from 34671 (baseline) to 194847
(F = 400).

Fig. 3(top) shows the success rate for different controllers under
different force magnitudes during simulation, where a simulation
trial is deemed successful if the character does not fall within 10 s.

Controllers optimized for larger forces are clearly more robust.
Fig. 3(bottom) reports the maximum force tolerated by each con-
troller from 8 directions. Following [Wang et al. 2009], we apply
pushing forces to the torso once every 4 s. A controller succeeds if
the character does not fall within 40 s.

Walking on a narrow beam. When walking on a narrow beam
high above the ground (e.g., see Fig. 1d), the consequence of even a
slight misstep can be catastrophic. If the environment is determin-
istic and known, one’s gait on the beam might not differ from that
used on the ground plane. In the presence of uncertain forces ap-
plied to the body, however, one must be more conservative to avoid
taking a bad step and falling. To demonstrate this, we first opti-
mized a baseline controller to walk on a narrow beam that is 0.5 m
in width. We enable collision detection between body parts here,
so that gaits with legs passing through each other are not possible.
As expected, the resulting controller is like that for walking on the
ground plane, except that the width of its gait is less than 0.5 m.

We then apply random forces to the torso, like those in the previous
experiment, but with F = 30. Under pushes of this magnitude,
the baseline controller quickly takes a wrong step and falls off the
beam. Unlike the ground plane, where extending the width of a
step in the sagittal or coronal direction can prevent falling even with
large forces, here, just a light push is enough to cause the character
to fall. Nevertheless, a successful controller for this environment
can be learned through optimization. As depicted in Fig. 1d, the
resulting controller takes smaller, more deliberate steps, and keeps
the feet closer to center of the beam. The average step length de-
creased from 0.82 m (baseline) to 0.53 m, and Epower increased
from 44998 to 100657.

4.2 Interactive user control

The control parameterization allows a user to specify heading (Sec.
3.1) and hence the walking direction. Nevertheless, the baseline
straight-walking controller does not handle changes in heading suc-
cessfully. To improve this, we view user input as a source of un-
certainty, and optimize a controller to cope with random changes
in desired heading direction. The optimized controller is slower
(1.1 m/s) than the baseline controller optimized without turning (1.6
m/s). Unlike our results in the pushing experiment, this controller
has the upper body leaning back slightly. We created an interface
where the user changes the desired heading direction at will using
the keyboard, 0.5 radians at a time. When used with the baseline
controller, the character falls frequently. When optimized with ran-
dom orientation changes, however, the user can easily learn to in-
teractively navigate the 2D plane without the character falling.

We also use this task to examine the effect of N on the optimized
solutions. We optimized 10 controllers with stochastic heading
changes for each of N = 1, 3, 5, 10, 20. The results in Fig. 4
show that for small values ofN there is higher sampling variability,
and hence less robustness on average. As N increases, the aver-
age performance increases, as does the reliability of the controllers.
Around N = 10 the marginal gain in controller performance de-
creases significantly compared to the added computational expense
during optimization for this task.

4.3 Motor noise

We now consider the effects of motor noise together with differ-
ent environments and return functions. In a deterministic setting,
control optimization may succeed at challenging tasks with rela-
tive ease, even if there is little margin for error. In the presence of
randomness, however, controllers must become more careful.

Figure 4: Effect of N on controller robustness. We use the turn-
ing task as an example to show that optimization with CRN is effec-
tive with small N . To model p(c), heading changes occur at each
time instant with probability 0.05%, each of which is drawn from
N (0, 0.5), a mean-zero Gaussian density with a standard devia-
tion of 0.5 radians. To assess controller performance we use the
fraction of 100 simulations that do not fall within 10 s. The curve
shows the mean success rate for 10 controllers, at each value of
N , with standard error bars. The orange region depicts the sample
standard deviation for 10 controllers.

Biological neural control systems exhibit noise. This seemingly
random variability is found in the measurement of many biological
quantities, even in highly repetitive tests [Faisal et al. 2008]. For
example, all neurons, including motor neurons, exhibit variability
in their output potentials even when the same stimuli are presented
on repeated trials. Such neural noise is often signal dependent. In
the motor system, larger control signals exhibit greater noise; i.e., in
motor neurons that control muscle activation, the standard deviation
scales in proportion to firing rates. There is strong evidence that
motor noise plays a major role in determining human motor control
strategies [Harris andWolpert 1998]. Motor noise may also provide
robustness under a wide range of otherwise unmodeled phenomena,
including numerical errors in computer simulation.

We employ a simplified model in which motor noise affects the joint
torques produced by the controller. Motivated by neural noise, we
assume the standard deviation of the noise increases with torque,
and decreases with the strength of the joint (i.e., the maximum
torque that can be generated at that joint). The particular form of
our model is a modified version of that developed by Hamilton et
al. [2004]. For each joint i, given a desired (noiseless) torque of the
controller τ̄i, the noisy torque τi is drawn from a Gaussian density
with mean τ̄i and standard deviation σ(τ̄i):

τi ∼ N (τ̄i;σ(τ̄i)), (6)

σ(τ̄i) = τ̄iβ exp(−2.76)MVT
−0.25, (7)

whereMVT is the maximum voluntary torque output at the partic-
ular joint and β is a scale factor that allows one to adjust the noise
level. For each joint DOF, we use MVT = kp, the spring stiffness
constant of the PD-controller at that joint DOF.

Walking on a slippery surface. Walking on a surface with a
low coefficient-of-friction µ requires caution. When optimizing a
baseline controller for walking in a straight line on a surface with
µ = 0.4, with no noise or uncertainty in the environment, we obtain
a controller that is somewhat more cautious, taking smaller steps
than a comparable controller trained with greater friction. Never-
theless, more pronounced differences are evident when controllers
are optimized with uncertainty due to motor noise. We optimized
three controllers, each with a different amount of motor noise, by
varying the scale factor in (7), i.e., β = 50, 75, 100. We find that,
for high noise levels, the character raises his arms wide in the coro-
nal plane and lowers his center of gravity, producing a gait much
like that of a person treading carefully on ice (e.g., see Fig. 1c).

Figure 5: Carrying hot beverages. Left: Poses from controllers
optimized without and with motor noise (β = 100). Right: Mug
orientation as a function of time from the two controllers, both sim-
ulated without motor noise.

Carrying hot beverages. When designing a controller to carry a
mug of hot coffee, we want to ensure the character will not spill the
coffee. Accordingly, the controller receives large penalties (neg-
ative rewards) at every time-step for which the orientation of the
mug deviates too far from vertical. Fig. 5(left) shows one pose of
the baseline controller where the arms are not particularly stiff and
the step length is relatively long. By comparison, a corresponding
pose of the controller optimized with β = 100 shows a shorter step
length with arms that remain steady and level. Fig. 5(right) plots the
mug tilt as a function of time. The baseline controller walks in a re-
laxed fashion, but allows the mug orientation to reach the spillage
threshold. Even small disturbances will therefore cause coffee to
spill. In contrast, the strategy optimized with motor noise creates a
margin for safety below the threshold.

To model this task, let Θt = [θcor, θsag, θtrans] represent the ori-
entation of a hand in the world frame at simulation step t, such that
Θt = [0, 0, 0] corresponds to a level, upright mug. Suppose that

spills occur whenever m(t) =
√

θcor
2 + θsag

2 > 0.1. Note that
this model ignores acceleration of the mug, which could also be in-
cluded for realism. For the baseline controller, optimized in a deter-
ministic setting, the mug orientation quickly exceeds the 0.1 thresh-
old, even for small amounts of motor noise (e.g., with β = 25). For
a controller optimized with β = 50, the walking speed slows, and
the cup orientation is more stable. For β = 100, the gait appears
cautious and hip-driven (63% of the lower body power output is
from the hip, compared to 43% in the baseline and β = 50 case).
The latter two controllers, optimized to handle larger noise levels,
are both able to walk without spillage when simulated with β = 25,
unlike the baseline controller.

4.4 Recovery controllers

Optimization with random external perturbations, like that in Sec.
4.1, produces controllers that anticipate external disturbances. For
example, they achieve robustness by remaining stiff and keeping
the COM relatively low. A complementary approach is to design a
reactive controller, where a basic controller π is active under nor-
mal circumstances, but a recovery controller πr is invoked when a
disturbance is detected. The recovery mechanism helps the charac-
ter return to a normal gait so that π can be restarted. For example,
one might walk with a relaxed gait until pushed, at which point
the recovery controller takes over until the basic controller with the
relaxed gait can resume control.

Ideally, πr would bring the character to states with high expected
return with respect to the basic controller π, but this is costly to
evaluate. Instead, we aim for states that are typical of π. We define
several key features ŝ of a character’s state, and then estimate p(ŝ),
the distribution of features observed during normal walking under
π. Here, ŝ comprises the horizontal distance from the stance ankle

direction baseline rec. 100 N rec.150 N

(1, 0) 50 125 200

(1,±1) 50 75 175

(0,±1) 150 175 175

(−1,±1) 25 50 125

(−1, 0) 75 125 125

Figure 6: Robustness of recovery controllers. Top: Recovery con-
trollers optimized to return to the baseline controller (Sec. 4.4) for
larger pushes show greater robustness. Success rate is estimated
from 100 random trials. Bottom: Maximum disturbance force com-
ponents (in newtons) tolerance for recovery controllers pushed in
different directions.

to the COM, and the COM velocity, projected into both the sagittal
and coronal planes. Finally, we combine π and πr to form a new
reactive controller πnew as follows:

πnew(s) =

{

π(s) p(ŝ) > κ

πr(s) otherwise ,
(8)

where κ is a threshold. This controller runs π when the input is in
π’s typical states, and runs πr otherwise.

For the recovery task we begin with a controller π optimized to
walk comfortably at 1.6 m/s, with step-length 0.8 m. We generate
motions of duration 100 s from π with random heading changes
(see Sec. 4.2) that occur with probability 0.025% at each time-step,
drawn from N (0, 0.3). We then fit an axis-aligned Gaussian to
these motion features to approximate p(ŝ).

The goal of the controller πnew is to walk using π where possible,
using πr to return the character to states with high p(ŝ) (i.e., typi-
cal states from π). We model random external forces using random
pushes to the torso (as in Sec. 4.1), of 100 N and 150 N. The op-
timization variables are κ and the parameters of πr , where πr is
initialized to π, κ is initialized to e−7. The reward for the opti-
mization penalizes time-steps not spent in the basic controller, and
heavily penalizes falling:

r(st) = −recover t − failed t , (9)

where recovert is 0.01 if p(ŝt) < κ, and 0 otherwise, and failed t

is defined in the Appendix.

Following pushes, the recovery controllers successfully return the
character to states with p(ŝ) > κ after a few steps at most, thus re-
activating π. Adding the recovery controller improves robustness
(Fig. 6), to a degree comparable to directly optimizing the basic
controller, as in Sec. 4.1. However, direct optimization still pro-
vides larger improvements in robustness, since the entire walking
style is allowed to be modified.

4.5 Transition between speeds

The ability to compose controllers is essential for characters to per-
form interesting activities in sequence. Previous work either as-
sumes the existence of low-level controllers to or from which one

can reliably transition, or has focused on identifying specific states
where it is safe to switch [Faloutsos et al. 2001; Coros et al. 2009].
In general, between very different controllers (e.g., walking fast and
slow), finding reliable switching states is difficult. We can however
exploit the recovery controllers (8) above to facilitate such transi-
tions.

More concretely, to facilitate transitions from controller πA to con-
troller πB , we define a new controller

πAB(s) =

{

πB(s) pB(ŝ) > κAB

πr,B(s) otherwise ,
(10)

where pB(ŝ) characterizes the key features of motions produced by
πB , and κAB is a threshold. When a command to switch from πA

to πB is received, πAB is activated. Since the states produced by
πA are not necessarily typical of πB , i.e., pB(ŝ) < κAB , the tran-
sition will usually activate πr,B directly. The recovery controller
πr,B will then be active until control under πB can begin. To de-
termine πAB , like the recovery controller in (8), we optimize κAB

and the parameters of πr,B to transition the character from a start
state produced by πA, to a state where πB may be activated. To
generate a range of possible start states for transitions, we simulate
motions from πA along with random switching times.

We demonstrate transition controllers to change speed while walk-
ing. First, we learned controllers for walking at 0.8, 1.6 and 2.4 m/s,
and modeled their typical states with pB(ŝ) as above. For optimiza-
tion and testing, we run each simulation for 7 s, with switching
times drawn from a uniform distribution between 1 and 2 s. A tran-
sition is deemed successful if the character is still walking after 7 s.
Unlike previous experiments, we use CRN with N = 20.

Without transition controllers, transitions from high to low speeds
fail frequently. Out of 500 random trials, switching from 2.4 m/s to
1.6 m/s failed 203 times (40.6%), while switching from 2.4 m/s to
0.8 m/s failed 238 times (47.6%). The number of failures is reduced
dramatically by the transition controllers, down to 7 (1.4%) and 16
(3.2%), respectively. Solely in terms of failure rates, transition con-
trollers do not make much difference in other cases. For example,
the failure rates for 0.8 m/s to 2.4 m/s and 1.6 m/s to 2.4 m/s were
lowered from 5.4% to 2.2% and from 6.2% to 5.8%. However,
they often still served to bring the character into a stable state more
quickly and gracefully than direct switching, resulting in smoother
transitions. Comparisons are included in the supplemental video.

4.6 Composing many controllers at run-time

The ability to transition from one controller to another facilitates
the implementation of a character that can switch control strategies
on demand. In the supplemental video, we demonstrate a character
switching between several walking controllers, each optimized us-
ing methods described for fast speeds, slow speeds, a slippery sur-
face, recovery, turning, and the high beam. Most of the switching
did not require explicit transition controllers, since the controllers
optimized with uncertainty are often robust enough as they are. All
switching was determined by user commands within a single inter-
active session.

5 Discussion

We have presented a unified framework that captures many sources
of uncertainty in a single optimization process. Our work shows
the value of explicitly representing uncertainty in character con-
trollers: control strategies automatically adapt to specific sources of
randomness, making them more robust and composable, while cre-
ating natural stylistic variations. A main limitation of our method

is that the quality of results still falls short of kinematic methods,
and it could be argued that some of our adaptations appear unusual.
While we have tested with a simple four-state PD controller, we be-
lieve these observations are general and should be useful for more
sophisticated control parameterizations as well, but optimization
may also become more difficult.

There remain other sources of uncertainty that could be handled
with our model; each of these could lead to new forms of robust-
ness and control strategies. Perhaps most significant is perceptual
uncertainty [Körding 2007], namely, the incomplete picture of the
world we get from our senses. For example, visual estimation of
depth and motion are inherently noisy, a crucial fact for anyone
attempting to catch or avoid a fast-moving object. Other sources
of uncertainty include proprioceptive error (e.g., pose uncertainty),
ground roughness [Byl and Tedrake 2009], and the behaviors of
other agents.

Incorporating uncertainty into other approaches to optimization of
character control should be straightforward. For example, many
optimal control formulations used in recent animation research —
including the Bellman equations, policy iteration, and the linear-
quadratic regulator — can be formulated with probabilistic dynam-
ics. However, restrictive dynamics and uncertainty models (e.g.,
linear dynamics and Gaussian noise) are normally required for op-
timal closed-form solutions in continuous models.

Acknowledgements

Thanks to Zoran Popović for early discussions, and the reviewers
for their suggestions. This research is supported in part by NSERC,
CFI, the Ontario MRI, and CIFAR. Part of this work was done while
AH was on a sabbatical visit to Pixar Animation Studios.

References

ABBEEL, P., COATES, A., QUIGLEY, M., AND NG, A. Y. 2007.
An application of reinforcement learning to aerobatic helicopter
flight. In Adv. NIPS 19. MIT Press, 1–8.

BYL, K., AND TEDRAKE, R. 2009. Metastable walking machines.
Int. J. Rob. Res. 28, 8, 1040–1064.

COROS, S., BEAUDOIN, P., AND VAN DE PANNE, M. 2009.
Robust task-based control policies for physics-based characters.
ACM Trans. Graphics 28, 5, 170.

DA SILVA, M., ABE, Y., AND POPOVIĆ, J. 2008. Interactive
simulation of stylized human locomotion. ACM Trans. Graphics
27, 3, 82.

FAISAL, A. A., SELEN, L. P. J., AND WOLPERT, D. M. 2008.
Noise in the nervous system. Nature Rev. Neurosci. 9, 292–303.

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D.
2001. Composable controllers for physics-based character ani-
mation. In Proc. SIGGRAPH, ACM, 251–260.

GRZESZCZUK, R., AND TERZOPOULOS, D. 1995. Automated
learning of muscle-actuated locomotion through control abstrac-
tion. In Proc. SIGGRAPH, ACM, 63–70.

GRZESZCZUK, R., TERZOPOULOS, D., AND HINTON, G. 1998.
NeuroAnimator: Fast neural network emulation and control of
physics-based models. In Proc. SIGGRAPH, ACM, 9–20.

HAMILTON, A. F. D. C., JONES, K. E., AND WOLPERT, D. M.
2004. The scaling of motor noise with muscle strength and motor
unit in number in humans. Exp. Brain Res. 157, 4, 417–430.

HANSEN, N. 2006. The CMA evolution strategy: A comparing
review. In Towards a New Evolutionary Computation. Advances
on Estimation of Distribution Algorithms. Springer, 75–102.

HARRIS, C. M., AND WOLPERT, D. M. 1998. Signal-dependent
noise determines motor planning. Nature 394, 780–784.

HASLER, N., STOLL, C., SUNKEL, M., ROSENHAHN, B., AND

SEIDEL, H.-P. 2009. A statistical model of human pose and
body shape. Computer Graphics Forum 28, 2, 337–346.

KÖRDING, K. 2007. Decision Theory: What “Should” the Nervous
System Do? Science 318, 606–610.

LEE, J., AND LEE, K. H. 2006. Precomputing avatar behavior
from human motion data. Graphical Models 68, 2, 158–174.

LEE, Y., LEE, S. J., AND POPOVIĆ, Z. 2009. Compact character
controllers. ACM Trans. Graphics 28, 5, 169.

LO, W.-Y., AND ZWICKER, M. 2008. Real-time planning for
parameterized human motion. In Proc. Symposium on Computer
Animation, ACM SIGGRAPH/Eurographics, 29–38.

MCCANN, J., AND POLLARD, N. S. 2007. Responsive characters
from motion fragments. ACM Trans. Graphics 26, 3, 6.

MUICO, U., LEE, Y., POPOVIĆ, J., AND POPOVIĆ, Z. 2009.
Contact-aware nonlinear control of dynamic characters. ACM
Trans. Graphics 28, 3, 81.

NG, A. Y., AND JORDAN, M. I. 2000. PEGASUS: A policy search
method for large MDPs and POMDPs. In Proc. UAI, AUAI,
406–415.

SHARON, D., AND VAN DE PANNE, M. 2005. Synthesis of con-
trollers for stylized planar bipedal walking. In Proc. ICRA, IEEE,
2387–2392.

SIMS, K. 1994. Evolving virtual creatures. In Proc. SIGGRAPH,
ACM, 15–22.

SOK, K. W., KIM, M., AND LEE, J. 2007. Simulating biped
behaviors from human motion data. ACM Trans. Graphics 26,
3, 107.

SPALL, J. C. 2003. Introduction to Stochastic Search and Opti-
mization: Estimation, Simulation, and Control. Wiley.

SUTTON, R. S., AND BARTO, A. G. 1998. Reinforcement Learn-
ing: An Introduction. MIT Press.

TEDRAKE, R., ZHANG, T. W., AND SEUNG, H. S. 2004. Stochas-
tic policy gradient reinforcement learning on a simple 3D biped.
In Proc. IROS, vol. 3, IEEE/RSJ, 2849–2854.

TODOROV, E. 2004. Optimality principles in sensorimotor control.
Nature Neuroscience 7, 9, 907–915.

TREUILLE, A., LEE, Y., AND POPOVIĆ, Z. 2007. Near-
optimal character animation with continuous control. ACM
Trans. Graphics 26, 3, 7.

VAN DE PANNE, M., AND FIUME, E. 1993. Sensor-actuator net-
works. In Proc. SIGGRAPH, ACM, 335–342.

VAN DE PANNE, M., AND LAMOURET, A. 1995. Guided opti-
mization for balanced locomotion. In Proc. CAS, EG, 165–177.

WANG, J. M., FLEET, D. J., AND HERTZMANN, A. 2009. Opti-
mizing walking controllers. ACM Trans. Graphics 28, 5, 168.

YIN, K., LOKEN, K., AND VAN DE PANNE, M. 2007. SIMBI-
CON: Simple biped locomotion control. ACM Trans. Graphics
26, 3, 105.

Appendix: Return function details

Our return function is based on the energy function of Wang et
al. [2009]. We use the term return instead of energy, for consis-
tency with the policy search literature. The complete return func-
tion, for motion s1:T , is the sum of rewards over time, plus terms
Epower, Eratio [Wang et al. 2009] to encourage power usage simi-
lar to human walking:

R(s1:T) =

(

∑

t

r(st)

)

− (wpEpower + wrEratio) , (11)

where r is a scalar reward function of the current state, wp =
10−5(200/mass), wr = 5.

In practice, there’s no need to compute rewards at the frequency of
the simulation. We set r(st) = 0 except for when t is a multiple of
20, or when a state switch due to ground contact occurred at time t
(the end of a stride). The reward is defined as the negative sum of
a number of energy terms (i.e., r(st) = −

∑

i
Ei). The individual

energy terms are defined by a thresholded quadratic penalty (i.e.,
Q(d; ǫ) = d2 if |d| > ǫ, 0 otherwise).

A user may specify the desired average forward speed, vx, or step
length, s. This is done by penalizing differences between these
quantities from the previous stride and user-specified targets (v̂x, ŝ,
respectively):

Euser = Q(vx − v̂x; 0.05) +Q(s− ŝ; 0.05) . (12)

Both of these terms are optional. If neither is specified, then we use

Estep = Q(s− ŝ; 0.05) , where ŝ = l
(

vx/
√

gl
)0.42

, (13)

and l is the leg length of the character.

The target heading direction may be time-varying, with energy

Efacing = Q(vy; 0.05) + 0.005Q(θd − θ, 0.1) , (14)

where vy is the average simulation velocity (in m/s) of the COM in
the y direction in the current stride, θd, is the desired heading, θ is
the current heading, and vx, vy are both computed by with respect
to θd. Small angular momenta are also preferred:

Eang = Q(Lx; 0.04) +Q(Ly; 0.05) +Q(Lz; 0.01) , (15)

where Lxyz are the maximum normalized angular momenta about
the COM in the previous stride.

LetΦt = [φcor, φsag, φtrans] represent the head orientation in the
world frame at time step t. The objective to stabilize the head is

Ehead = Q(vhead; 0.25) + ht , (16)

where vhead is the maximum head velocity in the x direction during
the previous stride, ht = 0.001 when ‖Φt‖2 > 0.1.

Stable foot contact is rewarded by

Eland = stancet + stubbed t . (17)

If, during state 1 or 3 (toe-off), neither the stance toe nor the stance
foot has 3 or more points of ground contact, then stancet = 0.001;
it is zero otherwise. We set stubbed t = 0.001 at any time when the
top of the swing toe is in contact with the ground.

Finally, we heavily penalize falling:

Efail = failed t , (18)

where for all states, if the COM falls below 0.7 m (i.e., the simulated
character has fallen) then failed t = 100, otherwise failed t = 0.
Euser, Estep, Eang, Q(vy; 0.05), Q(vhead; 0.25) are all set to zero
except for at the end of every stride.

