5 research outputs found

    Pistage 3D par mesures angulaires sans manœuvres

    Get PDF
    International audiencePassive target estimation is a widely investigated problem of practical interest. We are concerned specifically with an autonomous flight system developed onboard the ONERA ReSSAC unmanned helicopter. This helicopter is equipped with a (visible or infrared) camera and so is able to measure azimuths and elevation angles of a target. The latter is supposed to follow a constant velocity motion. It is well known that observer must maneuver in order to insure the observability of the target state. We are interested in tracking partly the target state when both the observer and the target have a constant velocity model in a three-dimensional space. We describe the set of all the trajectories compatible with the angle measurements and we propose a quick method to estimate these trajectories.Le pistage passif d'une cible est un domaine de recherche actif. Nous nous intéressons particulièrement au drone hélicoptère Ressac. Celui-ci est équipé d'une caméra optique et infrarouge. Il est donc capable d'effectuer des mesures angulaires (azimuts et sites) d'une cible. Cette cible est supposée suivre une mouvement rectiligne uniforme dans l'espace. Il est bien connu que l'observateur doit manœuvrer pour pour assurer l'observabilité de l'état de la cible. Dans ce papier, nous estimons partiellement cet état lorsque la cible et l'observateur sont en mouvement rectiligne uniforme dans l'espace 3D. Nous décrivons l'ensemble des trajectoires cible compatibles avec ces mesures angulaires et nous proposons une méthode rapide d'estimations de ces trajectoires

    Information-Theoretic Control of Multiple Sensor Platforms

    Get PDF
    This thesis is concerned with the development of a consistent, information-theoretic basis for understanding of coordination and cooperation decentralised multi-sensor multi-platform systems. Autonomous systems composed of multiple sensors and multiple platforms potentially have significant importance in applications such as defence, search and rescue mining or intelligent manufacturing. However, the effective use of multiple autonomous systems requires that an understanding be developed of the mechanisms of coordination and cooperation between component systems in pursuit of a common goal. A fundamental, quantitative, understanding of coordination and cooperation between decentralised autonomous systems is the main goal of this thesis. This thesis focuses on the problem of coordination and cooperation for teams of autonomous systems engaged in information gathering and data fusion tasks. While this is a subset of the general cooperative autonomous systems problem, it still encompasses a range of possible applications in picture compilation, navigation, searching and map building problems. The great advantage of restricting the domain of interest in this way is that an underlying mathematical model for coordination and cooperation can be based on the use of information-theoretic models of platform and sensor abilities. The information theoretic approach builds on the established principles and architecture previously developed for decentralised data fusion systems. In the decentralised control problem addressed in this thesis, each platform and sensor system is considered to be a distinct decision maker with an individual information-theoretic utility measure capturing both local objectives and the inter-dependencies among the decisions made by other members of the team. Together these information-theoretic utilities constitute the team objective. The key contributions of this thesis lie in the quantification and study of cooperative control between sensors and platforms using information as a common utility measure. In particular, * The problem of information gathering is formulated as an optimal control problem by identifying formal measures of information with utility or pay-off. * An information-theoretic utility model of coupling and coordination between decentralised decision makers is elucidated. This is used to describe how the information gathering strategies of a team of autonomous systems are coupled. * Static and dynamic information structures for team members are defined. It is shown that the use of static information structures can lead to efficient, although sub-optimal, decentralised control strategies for the team. * Significant examples in decentralised control of a team of sensors are developed. These include the multi-vehicle multi-target bearings-only tracking problem, and the area coverage or exploration problem for multiple vehicles. These examples demonstrate the range of non-trivial problems to which the theory in this thesis can be employed

    Information-Theoretic Control of Multiple Sensor Platforms

    Get PDF
    This thesis is concerned with the development of a consistent, information-theoretic basis for understanding of coordination and cooperation decentralised multi-sensor multi-platform systems. Autonomous systems composed of multiple sensors and multiple platforms potentially have significant importance in applications such as defence, search and rescue mining or intelligent manufacturing. However, the effective use of multiple autonomous systems requires that an understanding be developed of the mechanisms of coordination and cooperation between component systems in pursuit of a common goal. A fundamental, quantitative, understanding of coordination and cooperation between decentralised autonomous systems is the main goal of this thesis. This thesis focuses on the problem of coordination and cooperation for teams of autonomous systems engaged in information gathering and data fusion tasks. While this is a subset of the general cooperative autonomous systems problem, it still encompasses a range of possible applications in picture compilation, navigation, searching and map building problems. The great advantage of restricting the domain of interest in this way is that an underlying mathematical model for coordination and cooperation can be based on the use of information-theoretic models of platform and sensor abilities. The information theoretic approach builds on the established principles and architecture previously developed for decentralised data fusion systems. In the decentralised control problem addressed in this thesis, each platform and sensor system is considered to be a distinct decision maker with an individual information-theoretic utility measure capturing both local objectives and the inter-dependencies among the decisions made by other members of the team. Together these information-theoretic utilities constitute the team objective. The key contributions of this thesis lie in the quantification and study of cooperative control between sensors and platforms using information as a common utility measure. In particular, * The problem of information gathering is formulated as an optimal control problem by identifying formal measures of information with utility or pay-off. * An information-theoretic utility model of coupling and coordination between decentralised decision makers is elucidated. This is used to describe how the information gathering strategies of a team of autonomous systems are coupled. * Static and dynamic information structures for team members are defined. It is shown that the use of static information structures can lead to efficient, although sub-optimal, decentralised control strategies for the team. * Significant examples in decentralised control of a team of sensors are developed. These include the multi-vehicle multi-target bearings-only tracking problem, and the area coverage or exploration problem for multiple vehicles. These examples demonstrate the range of non-trivial problems to which the theory in this thesis can be employed

    Trajectographie Passive sans manœuvre de l'observateur

    Get PDF
    Les méthodes de trajectographie conventionnelles par mesures d angle supposent que la source est en mouvement rectiligne uniforme tandis que l observateur est manœuvrant. Dans cette thèse, nous remettons en cause cette hypothèse en proposant un autre modèle de cinématique de la source : le mouvement circulaire uniforme. Nous prouvons qu une telle trajectoire est observable à partir d un observateur en mouvement rectiligne uniforme. Puis, nous étudions l apport de mesures additionnelles de fréquence ou la faisabilité de la trajectographie par mesures de distances. Le cas d une source en mouvement rectiligne uniforme et d un observateur manœuvrant est étudié pour ce dernier type de mesures. Chaque cas donne lieu à une analyse de l observabilité de la trajectoire de la source et à la mise au point de l estimateur du maximum de vraisemblance. Nous montrons que ce dernier s avère le plus souvent efficace.The conventional bearings-only target motion analysis methods assume that the source is in constant velocity motion (constant speed and heading) while the observer maneuvers. In this thesis, we reassess this hypothesis and propose another model of the kinematics of the source: the constant turn motion (an arc of circle followed at constant speed). We prove that this kind of trajectory is observable by an observer in constant velocity motion. Then, we study the contribution of the addition of frequency measurements or the feasibility of target motion analysis methods that use range only measurements. The case of a source in constant velocity motion with a maneuvering observer is examined for this last type of measurements. Each case leads to an analysis of the observability of the trajectory of the source and to the development of the associated maximum likelihood estimator. We show that this estimator often appears to be efficient.TOULON-Bibliotheque electronique (830629901) / SudocSudocFranceF
    corecore