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AbstractBen Grocholsky Doctor of Philosophy
The University of Sydney March 2002

Information-Theoretic Control of
Multiple Sensor Platforms

This thesis is concerned with the development of a consistent, information-theoretic basis for
understanding of coordination and cooperation decentralised multi-sensor multi-platform sys-
tems. Autonomous systems composed of multiple sensors and multiple platforms potentially
have significant importance in applications such as defence, search and rescue, mining or intel-
ligent manufacturing. However, the effective use of multiple autonomous systems requires that
an understanding be developed of the mechanisms of coordination and cooperation between
component systems in pursuit of a common goal. A fundamental, quantitative, understanding
of coordination and cooperation between decentralised autonomous systems is the main goal of
this thesis.
This thesis focuses on the problem of coordination and cooperation for teams of autonomous

systems engaged in information gathering and data fusion tasks. While this is a subset of the
general cooperative autonomous systems problem, it still encompasses a range of possible ap-
plications in picture compilation, navigation, searching and map building problems. The great
advantage of restricting the domain of interest in this way is that an underlying mathemati-
cal model for coordination and cooperation can be based on the use of information-theoretic
models of platform and sensor abilities. The information theoretic approach builds on the es-
tablished principles and architecture previously developed for decentralised data fusion systems.
In the decentralised control problem addressed in this thesis, each platform and sensor system is
considered to be a distinct decision maker with an individual information-theoretic utility mea-
sure capturing both local objectives and the inter-dependencies among the decisions made by
other members of the team. Together these information-theoretic utilities constitute the team
objective.
The key contributions of this thesis lie in the quantification and study of cooperative control

between sensors and platforms using information as a common utility measure. In particular,

• The problem of information gathering is formulated as an optimal control problem by
identifying formal measures of information with utility or pay-off.

• An information-theoretic utility model of coupling and coordination between decentralised
decision makers is elucidated. This is used to describe how the information gathering
strategies of a team of autonomous systems are coupled.

• Static and dynamic information structures for team members are defined. It is shown
that the use of static information structures can lead to efficient, although sub-optimal,
decentralised control strategies for the team.

• Significant examples in decentralised control of a team of sensors are developed. These
include the multi-vehicle multi-target bearings-only tracking problem, and the area cover-
age or exploration problem for multiple vehicles. These examples demonstrate the range
of non-trivial problems to which the theory in this thesis can be employed.
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Chapter 1

Introduction

1.1 Objective of the Thesis

This thesis addresses the development of a consistent information-theoretic framework for

engineering decentralised multi-sensor multi-vehicle systems. A theoretical basis for the

realisation of the practical implementation of cooperative multi-sensor teams is presented.

The approach taken builds on the established principles and architecture developed for

decentralised data fusion and sensor management. Each vehicle and sensor system is con-

sidered to be a distinct decision maker within a team. Each member has an individual

utility measure that captures the inter-dependencies among team members. Together

these utilities constitute the team objective. The team members are organised and com-

municate in a manner that jointly achieves the team goal.

The scope of this study is focused on the investigation of distributed sensing, a task

fundamental to autonomous operation of robotic systems. This work addresses the ques-

tion:

What allows a collective of distributed autonomous decision makers to

work together as a team toward a common objective?

The problem of seeking, sensing, interpreting perceptual information and interacting

1
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Figure 1.1: Examples of typical robotic vehicles and sensor sub-systems are illustrated. This
thesis seeks to understand dependencies among system elements and develop a cooperative
decentralised architecture that seamlessly achieves synergistic inter-operation of complementary
system capabilities. Team decision making capability is added to the individual sub-systems,
communication and negotiation realises their cooperative potential.

with other decision making elements in an inherently uncertain environment is a complex

and, as yet, unsolved problem. A successful multi-robot system implementation would

revolutionise approaches to a wide variety of practical tasks. Information gathering is

the fundamental goal of tasks such as coastal surveillance, environmental monitoring,

emergency search and rescue, relaying telecommunication signals and land-mine clearance.

Sensor systems provide measurements used to search for, identify and localise features,

thereby constructing and updating representations of the problem environment. Their

use entails an imperative to optimise the allocation of resources and allow the synergistic

inter-operation of all component elements in pursuit of this common goal, capitalising on

their distinctive but complementary capabilities. Typical sensors and sensor platforms
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are shown in Figure 1.1.

Research in economics, social science, computer science, artificial intelligence and en-

gineering has provided diverse approaches to this challenging problem. While interesting

and significant progress has been made, this research has not adequately addressed the

optimality of the collective system performance and the complexity of the solution pro-

cess. To allow practical implementation, a consistent, coherent approach with quantifiable

performance is essential. This work is motivated by the practical benefits of cooperative

sensor teams and by the limitations of existing approaches.

1.2 An Information-Theoretic Approach

Decentralised decision making and control is a logical extension to information-theoretic

decentralised data fusion methods. Once information is made available locally, in a de-

centralised form, and information based utility functions have been defined, it is then

possible to implement a decentralised team decision process. Information-theoretic mod-

els offer a uniquely powerful method of mathematically describing large-scale systems.

Decentralised methods allow information gathering and decision making systems to be

described in a mathematically rigorous and modular manner. The global system can be

considered as a system of interacting sub-systems, a concept labelled Systems of Systems.

Resulting systems are analytic, predictive, modular and dynamically configurable.

The basis for the approach adopted in this thesis is provided by established methods

in decentralised data fusion, team decision theory, information-theoretic utility and the

best-response negotiation procedures. An amalgam of these ingredients offers a general

approach to the decentralised control of active sensor teams.
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1.3 Principal Contributions

The main contributions of this thesis are:

• Information gathering is formulated and solved as an optimal control problem. The
utility associated with a planned sequence of control actions is determined a priori

from the modelling of the vehicles, sensors and environment. The sensing task is

converted into a numerical representation suitable for systematic optimisation.

• A consistent framework is developed for the design of multi-sensor cooperative

teams. Information-theoretic utility measures and an established decentralised data

fusion architecture are combined with the team decision problem formulation. This

results in a decentralised cooperative control architecture for autonomous multi-

sensor information gathering systems. Areas where engineering approximations can

be applied to trade-off system performance against solution effort are identified.

• The utility of a team decision maker is considered from both an individual and a
team perspective. This establishes the relationship between the individual and team

optimal actions, and the complexity of possible cooperation. Cooperation is only

beneficial when coupling in utility results in team optimal actions that differ from

the individual actions determined in isolation. It is observed that coupled utility

does not necessarily alter the individual actions. A situation is demonstrated where

the action associated with absolute minimum individual utility is team optimal.

• A distinction is made between coordination and cooperation. Coordination is con-
sidered to occur when a mechanism coupling the actions of the system gives rise

to an increase in the utility of the system. The cooperative solution is taken to be

the negotiated equilibrium between sensor action plans. This distinction permits a

range of practically useful coordinated solutions without the effort associated with

seeking cooperation.
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• The mechanisms that under-pin coordination and cooperation are investigated.
These are identified as coupled team utility and communication of information.

Communication of observed information couples future actions leading to coordi-

nation. Communication of expected observation information couples the individual

decision making processes. Exchanging expected observation information allows

decision makers to account for and influence each other leading to a cooperative

solution.

• Scalable coordinated decision making is realised by addition of a local information
seeking control layer to the established decentralised data fusion architecture. The

decentralised data fusion network propagates observed information influencing the

locally optimised sensing plans. A special case is obtained when the decisions are

made without looking ahead in time. This requires extremely low solution effort

and can be interpreted as ‘surfing’ the mutual information vector field.

• Decentralised cooperative sensing is achieved through anonymous negotiation based
on propagation of expected observation information. Each decision maker updates

their sensing plan using a better-response procedure and communicates the change

in expected observation information. This negotiation cycle is repeated to determine

the sensing actions that optimise the team objective.

• An endogeneous non-hierarchical node based cooperative sensor system architecture
is proposed. This is an extension of the established decentralised data fusion node.

The name ‘endogeneous’ emphasises that the functionality enabling team decision

making is internal. Each node is augmented with an individual distributed decision

making procedure and a negotiation communication manager. This architecture is

the key to achieving transparent synergistic inter-operation among decision making

elements of sensor teams.
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1.4 Thesis Structure

Chapter 2 considers approaches to distributed multi-robot systems. Conventions used

through the thesis are stated. These include definitions of coordination, cooperation and

the characteristics of decentralised systems. The formulation of the team decision prob-

lem is presented and its connection to the Nash bargaining problem is established. An

iterative procedure known as better-response negotiation is introduced as a means for

determining Nash equilibria. Key elements in engineering decentralised decision making

team members are identified as: modelling of the environment, sensors and vehicles; spec-

ification of communication structures; capturing team utility; parameterisation of actions

and devising solution procedures.

Chapter 3 covers the problem of quantifying and fusing information in multi-sensor sys-

tems. Information is formally defined, in terms of uncertainty, by Fisher and Shannon

measures. The Information filter is presented as a mechanism for scalable decentralised

fusion of data from multiple sources. The manner in which information is lost and gained

in the fusion process is discussed and quantified. Entropic and mutual information are

determined to be appropriate expected utility measures for sensing actions. Common

information among observations is identified as the source of coupling in team utility de-

rived from entropic information. The decentralised data fusion process and information-

theoretic utility structure are identified as forming a consistent basis for gathering, ex-

changing, evaluating and fusing information in the team decision problem. The approach

is demonstrated through the analysis of a discrete sensor assignment problem.

Chapter 4 presents information gathering as an optimal control problem. Modelling of

the environment, vehicles and sensors is combined with utility based on entropic informa-

tion. This is applied to the determination of optimal information seeking trajectories for
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the case of a single bearings-only sensor platform localising a point feature. The impli-

cations of this example for active sensing tasks is explored and discussed. Consideration

then turns to problems involving multiple sensor platforms. Attention is focused on the

team utility structure and its role in cooperation. A proposed decomposition of the team

utility is used to explore the influence of coupled utility on the optimal member decisions.

This identifies relationships between the optimal individual and team solutions with im-

plications for the complexity of the cooperative solution. A localisation example with

two range-only sensors is used to illustrate these results. It is then demonstrated that the

optimal team solution can be determined through a better-response negotiation procedure.

Chapter 5 explores communication and coupled utility among decision makers as funda-

mental mechanisms underlying coordination and cooperation. Propagation of observation

information through the decentralised data fusion process leads to coordination by alter-

ing the prior information on which local decisions are based. The individual decision

making processes become coupled when propagation of expected observation information

is permitted. This enables determination of the cooperative team solution by negotiation.

Coordinated and cooperative solutions are demonstrated through extension of the single

vehicle bearings-only example from Chapter 4 to multiple sensor platforms and features.

The applicability of this approach to other tasks is demonstrated through an area explo-

ration problem. Finally, all the elements considered through this are brought together to

form a general architecture for decentralised coordinated control of multi-sensor informa-

tion gathering systems.

Chapter 6 presents the main conclusions and identifies a range of future research direc-

tions for the work described in this thesis.



Chapter 2

Distributed Systems

2.1 Introduction

This chapter introduces a framework for the design of decentralised multi-agent systems.

The formulation of the team decision problem is presented and its connection to the Nash

bargaining problem is established. Conventions used through the thesis are defined. These

include the characteristics of decentralised systems in Section 2.2, the elements of the

team problem in Section 2.3 and the distinction between coordination and cooperation in

Section 2.4. Section 2.5 explores the relationship between solving team decision problems

and methods in distributed optimisation. An iterative procedure known as better-response

negotiation is introduced as a means for solving the team decision problem.

2.2 Decentralised System Architectures

A decentralised system consists of a network of agent nodes, each with its own processing

facility, which together do not require any central fusion, control or communication facility.

In a decentralised system, fusion and control occur locally at each node on the basis of

local observations and the information communicated from neighbouring nodes. At no

8
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point is there a common place where fusion or global decisions are made. Decentralised

systems should be distinguished from distributed systems which rely on some central

facilities.

A decentralised system is characterised by three constraints [29]:

1. There is no single central decision centre; no one node should be central to the

successful operation of the network.

2. There is no common communication facility; nodes cannot broadcast results and

communication must be kept on a strictly node-to-node basis.

3. Nodes do not have any global knowledge of network topology; nodes should only

know about connections in their own neighbourhood.

Figures 2.1 and 2.2 show two possible realisations of decentralised systems.

The constraints imposed provide a number of important characteristics for decen-

tralised systems:

• Eliminating the central decision centre and any common communication facility
ensures that the system is scalable as there are no limits imposed by centralised

computational bottlenecks or lack of communication bandwidth.

• Ensuring that no node is central and that no global knowledge of the network
topology is required for control means that the system can be made survivable

to the on-line loss (or addition) of sensing nodes and to dynamic changes in the

network structure.

• As all decision processes must take place locally at each site and no global knowledge
of the network is required a priori, nodes can be constructed and programmed in a

modular fashion.

The potential of distributed multi-robot systems can not be realised without adhering to

a strict decentralised architecture.
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Communications Medium


Figure 2.1: A decentralised data fusion
system implemented with a point-to-point
communication architecture.

Sensor Payloads


Internal Communciation


External Communication


Figure 2.2: A decentralised data fusion
system implemented with a hybrid, broad-
cast and point-to-point, communication
architecture.

2.2.1 Decentralised Estimation, Decision and Control Algorithms

The ability to construct a decentralised system architecture clearly depends on whether

it is possible to efficiently decentralise existing centralised data fusion and control algo-

rithms. For many common data fusion and decision-theory algorithms, this turns out

to be possible, and indeed many decentralised algorithms are, surprisingly, more effi-

cient, in terms of both computation and communication, than conventional distributed,

federated or hierarchical systems. In particular, the Kalman filter algorithm for target

tracking and navigation applications[75], Bayesian methods, for identification and deci-

sion making[74, 46], and linear quadratic Gaussian (LQG) control algorithms [59] can all

be efficiently decentralised.

Conventional decision and fusion algorithms employ the common notion of ‘state’ (po-

sition, velocity, identity, etc), together with associated probabilities and likelihoods, to

assimilate data and generate control actions. Decentralised decision and fusion algorithms

rely instead on the notion of information, formally defined through both Fisher and Shan-

non information measures, for continuous and discrete or continuous states respectively.

The real advantage of an information measure is that it is straightforward to separate



11

out what is new information from what is either prior knowledge or common informa-

tion. Assimilation of information measures is additive. This means that any fusion or

decision process is associative (it does matter what order it is done in) and thus can be

decentralised without (too much) concern as to when information is communicated or

assimilated. This is in stark contrast to conventional data fusion algorithms (such as

the Kalman filter) where state fusion is not associative and so it matters when and how

estimates are constructed.

2.2.2 An Example Decentralised System

Given the widely stated advantages of decentralised systems, it is surprising how few

practical implementations exist. The OxNav project is an outstanding practical imple-

mentation of decentralised systems methodology. OxNav demonstrated fully decentralised

and modular sensing, navigation and control for a single mobile robot. Current work pre-

sented in this thesis builds on this approach.

In the OxNav project a modular vehicle consisting of a number of standardised mod-

ular cages was designed (Figure 2.3). Each cage contained a specific part of the overall

vehicle function; drive unit, sensor, power distribution, communication systems. Each

cage contained a processor, power and communication facilities, and all local software to

implement the required decentralised functions of that unit. There is no central unit or

processor where information is combined or where control is coordinated. A wide range

of different vehicle systems were constructed from a small number of standardised cages,

without the need to change either hardware or software. The decentralised control system

for the vehicle demonstrated that the design of local decentralised control algorithms for

an individual driven wheel unit allows the control of vehicles with any number of and

kinematic configuration of driven and steered wheels. The decentralised navigation sys-

tem is also described. The system employs a number of modular tracking sonar units.

Each unit employs a model of vehicle motion to track environment features to provide
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Figure 2.3: The OxNav Vehicle; a fully modular fully decentralised navigation and control
system

independent estimates of vehicle location. The estimates are exchanged between sonar

units to provide global navigation information. Vehicle guidance was achieved through

exchange of information between vehicle drive units and sonar navigation sensors. The

key demonstrations undertaken in this project were:

1. Modular hardware design by Burke [12, 13].

2. Scalable distributed and decentralised estimation and communication Berg [3, 4].
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3. Distributed and decentralised trajectory tracking control by Mutambara [58, 57, 56,

55, 54, 59].

4. Information-theoretic sensor management for classification and estimation by Manyika

[43, 45, 44, 46].

2.3 The Team Decision Problem

The formulation of the team decision problem presented here stems from the work of

Marshak and Radner [48, 47, 73] in the study of decentralised decision making in economic

systems. Team theory in the context of optimal control was developed by Ho et. al.

[34, 35, 36, 33]. Application to control of robot sensing was explored by Durrant-Whyte

and Hager [21, 30] and later Wen [99]. The formulation has recently been revisited and

extended in the context of Distributed Artificial Intelligence by Pynadath and Tambe

[71, 72].

A team consists of multiple decision makers. Each decision maker must make a decision

that accounts for the decisions made by other members of the team. The key components

of the team decision problem are:

1) The presence of different but correlated information for each decision maker regard-

ing some underlying uncertainty;

2) The need for coordinated actions on the part of all decision makers in order to realise

the payoff.

The team decision problem is to find optimal decision rules for each member so that the

expected utility of the whole team is maximised. This cooperative situation falls under

the general category of bargaining problems as defined by Nash [60].
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2.3.1 Elements of the Team Problem

The team problem consists of five key elements:

1. Uncertain World

A random vector x ≡ [x1, . . . ,xn] ∈ X ⊂ Rn with known probability distribution

P (x), represents all the uncertainties with bearing on the problem under consider-

ation. This includes states, unknown initial conditions and uncertain parameters.

2. Decision Variables

The means of actuation available to decision makers u ≡ [u1, . . . ,um] ∈ U ⊂ Rs.

3. Information Structure

Relates observed and communicated information z ∈ Z ⊂ Rm to the uncertain

world x, η : X 7→ Z. The information structure allows for differing information

between decision makers and determines which team member knows what at which

time. The information structure is static if the information on which a decision

is made is not affected by the actions of other decision makers z ≡ η(x) ∈ Z ≡
[η1(x), . . . ,ηm(x)]. In a dynamic information structure, the decision makers act on

information influenced by the action of other team members z ≡ η(x,u) ∈ Z ≡
[η1(x,u), . . . ,ηm(x,u)].

4. Utility Structure

Relates states and actions to payoff (or loss) U : U×X 7→ R.

5. Decision Rule

A set of control laws or strategies that relate the information available to an indi-

vidual to their control actions γ : Z 7→ U. ui = γi(zi), γi ∈ Γ ≡ [γ1, . . . ,γm]. This

is a decentralised mechanism as the action is based on local information.
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2.3.2 Modelling the Environment, Sensors and Vehicles

Designing decision making teams requires determining a suitable probabilistic model of

the state, sensors and the environment. The approach taken throughout this work utilises

information filter for decentralised data fusion. The information filter is the ‘information’

or ‘inverse covariance’ form of the extended Kalman Filter[25, 50]. The Kalman filter

employs an explicit statistical model of how the parameter of interest x(t) evolves over

time and an explicit model of how the observations z(t) are related to this parameter.

Representation of the states, actions, observations and associated uncertainty is detailed

here. A brief review of the information filter and its application to multi-sensor data fusion

is conducted in Chapter 3. Detailed derivation of the information filter is presented in

[43]. The implementation of a decentralised data fusion (DDF) architecture based on the

information filter is summarised in Appendix B.1. The DDF architecture establishes an

appropriate information structure for multi-sensor teams.

Representing the State of the World

Uncertain parameters of interest in the system are represented by a state vector x. Un-

certainty in the state P (x) is parameterised by a Gaussian probability distribution

P (x) = N (x,P)

=
1

√

(2π)n| P |
exp

{

−1
2
(x− x)TP−1(x− x)

}

(2.1)

Where x is the mean and P the error covariance.

State Transition Model

The characteristics of the operating system and environment are described by a non-linear

stochastic differential equations. Perturbation methods may be employed to linearise this
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system about a nominal trajectory xn(t) and un(t) to yield a model linear in error
1,

ẋ(t) = f(x(t),u(t),w(t))

δẋ(t) = F(t)δx(t) +B(t)δu(t) +G(t)w(t). (2.2)

Where,

x(t) ∈ Rn is the state vector of interest,

u(t) ∈ Rs are the known control inputs,

f : Rn × Rs × Rq 7→ Rn is a mapping of state and control input to state rates,

w(t) ∈ Rq are random variables describing model and state evolution uncertainty,

F(t) is the n× n linearised time varying state matrix,

B(t) is the n× s linearised time varying input matrix, and

G(t) is the n× q linearised time varying noise matrix.

F(t) =
∂f

∂x

∣
∣
∣
∣x(t)=xn(t)
u(t)=un(t)

, B(t) =
∂f

∂u

∣
∣
∣
∣x(t)=xn(t)
u(t)=un(t)

, G(t) =
∂f

∂v

∣
∣
∣
∣x(t)=xn(t)
u(t)=un(t)

(2.3)

δx(t)
4
= x(t)− xn(t), δu(t)

4
= u(t)− un(t) (2.4)

The state transition noise w(t) is assumed to be a zero mean uncorrelated Gaussian

process with covariance Q(t)

E{w(t)} = 0, E{w(t)wT (τ)} = Q(t)δ(t− τ). (2.5)

Observation Model

An observation model relates sensed outputs of the system to the state. Again this can

be perturbed to produce a linear error model,

z(t) = h(x(t),u(t),v(t))

1Stability of the error dynamics is not assured in linearised estimation problems without certain
conditions. Maybeck [50] examines this in detail in the development of the Extended Kalman Filter.
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δz(t) = H(t)δx(t) +D(t)w(t). (2.6)

Where,

z(t) ∈ Rm is the observation vector at time t,

h(· · ·) is a mapping of state and control inputs to observations,
v(t) ∈ Rr are random variables describing uncertainty in the model and observations,

H(t) is the m× n linearised time varying observation matrix, and

D(t) is the m× r linearised time varying observation noise matrix.

H(t) =
∂h

∂x

∣
∣
∣
∣x(t)=xn(t)
u(t)=un(t)

, D(t) =
∂h

∂w

∣
∣
∣
∣x(t)=xn(t)
u(t)=un(t)

(2.7)

The observation noise represented by v(t) is a zero mean uncorrelated Gaussian process

with covariance R(t). Further, the observation noise v(t) and the state transition noise

w(t) are uncorrelated

E{v(t)} = 0, E{v(t)v(τ)} = R(t)δ(t− τ) (2.8)

E{v(t)wT (τ)} = 0 ∀ t, τ. (2.9)

2.3.3 Capturing Group and Individual Utility

Except in the case of perfect knowledge, a utility function U(x,u) is not very useful
because the true state of the world x is not known with precision. Hence, the true utility

gain associated with the action u will not be known. Rather the probability distribution

P (x) summarises all the probabilistic information available about the state at the time

of the decision. With this, one natural method of defining utility is expected utility (or
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Bayes expected utility). For a continuous state variables is defined

J(u)
4
= E{U(x,u)} =

∫ ∞

−∞

U(x,u)P (x)dx (2.10)

Clearly, Bayes expected utility weights the utility gained by the probability of occurrence

(an average utility).

The team formulation associates an expected utility with each decision maker. There

is no restriction on the differences or similarity among the individual team member ex-

pected utilities. The team utility functions jointly represent the global utility measure.

Interdependencies among the individual utilities and actions require the joint optimisation

of all actions.

2.3.4 Solving the Team Problem

For given strategies γ, the utility U is a well defined function of the state of the world x.

Thus, the expectation of utility U with respect to P (x) is well defined, and dependent on
γ. The team decision problem can now be stated as

max
γ∈Γ

J(γ) = max
γ∈Γ

Ex{U(u = γ(η(x)),x)} . (2.11)

This is a deterministic functional optimisation problem. The general solution to this

problem can, in principle, be obtained through the calculus of variations in the same

manner as other optimal control problems (see Appendix A.3 for example). However, in

practice an exact solution is often not tractable and recourse must be made to solution

through approximate parameterisation.

As shown by Ho [33], the team problem of Equation 2.11 can be considered from the i th

decision makers point of view. Let γ̄ i denote a fixed strategy for all other team members.

Knowledge of this is determined by the specific information structure employed. Then
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the i th decision makers problem is

max
γi∈Γi

J(γi, γ̄i) = max
γi∈Γi

Ex{U(ui = γi(ηi(x)), γ̄i,x)} . (2.12)

Since the information structure is fixed, zi is a well defined random variable, Ex can be

replaced by Ezi Ex|zi where Ex|zi is the expectation conditional on zi. Determining the

optimal ui for zi is equivalent to choosing γ i. Thus

max
γi∈Γi

J(γi, γ̄i) = max
γi∈Γi

Ezi Ex|zi{U(γi, γ̄i,x)}

= Ezi max
ui∈Ui

Ex|zi{U(ui, γ̄i,x)}

This provides the person-by-person form of the problem defined in Equation 2.11

max
ui∈Ui

Ji(ui, zi; γ̄i) ≡ max
ui∈Ui

Ex|zi{U(ui, γ̄i,x)} , ∀ i. (2.13)

Each decision makers optimisation problem is parameterised by the strategy of the other

team members as well as its own decision variables. Thus, to solve Equation 2.13 in

general will require an iterative loop as shown in Figure 2.4.

The person-by-person optimality condition or Nash equilibrium solution [61] is given

by

Find u∗
1, . . . ,u

∗
n such that

Ji(u
∗
1, . . . ,u

∗
n, z1,x) ≥ Ji(u1,u

∗
2, . . . ,u

∗
n, z1,x) ∀u1 ∈ U1

...
...

Ji(u
∗
1, . . . ,u

∗
n, zn,x) ≥ Ji(u1, . . . ,u

∗
n−1,un, zn,x) ∀un ∈ Un







(2.14)

2.4 The Bargaining Problem and Nash Equilibrium

Nash’s concept of equilibrium is remarkably simple and insightful. Its elegance has been

lost in much of the work that stemmed from it. Nash revisited a classical economic



20

Yes


No


g

i
u
  
for all
 
i
  
is optimal
 


Consistency check
  

g

i
i
 u
u
 =
*
 ?
 


Solve individual problem using 
  
 g
u
  

For each
 
i
. 
Let the answer be 
  
 *


i
u
  


Initialise
 
 n
u
u
 ,...,
1
  
denoted as
  
 g
u
  

Individually optimal solution
  


or
 randomised
  


Figure 2.4: Conceptual team decision problem iterative solution procedure

problem. A situation where individuals take actions associated with a set of outcomes.

Each individual desires to maximise their gain from a bargaining process. The individuals

are able to accurately compare preferences. The exchange is cooperative in the sense that

individuals are able to discuss and agree on a joint plan of action.

Nash argued axiomatically that a particular solution was the only rational solution to

this problem [60]. The Nash equilibrium condition is stated in Equation 2.14. The indi-

viduals jointly maximise their rewards. At this condition no individual has an incentive

to deviate. This situation is considered for two individuals in Figure 2.5.

Criticism of the Nash solution focuses on the issue of rationality. This may be arguable

in certain contexts. In application to engineering cooperative robot teams there is no such

concern. Engineered decision makers act rationally and make objective judgements on a

common quantitative scale.

The approach of Nash is remarkably general. The theory of von Neumann and Mor-

genstern [98] allows a mechanism for decision makers to make “side payments” in a com-
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Figure 2.5: Two decision maker actions result in a set of possible utility outcomes. Surely
the only rational decision is to maximise individual utility over the set of all possible group
outcomes (point D for the 1st and point B for the 2nd decision maker). Careful consideration of
the bargaining problem reveals an alternative situation. The outcome depends on the action of
both individuals. The first decision maker only receives outcome J1D if the second accepts J2D.
Should both try to individually maximise, the outcome is a point within the set with lower than
expected associated rewards. The arc of the hull BCD is Pareto efficient. Moving along this
arc increases one individuals reward at the expense of the other. Point C is the Nash solution
where individual rewards are jointly maximised. In dealing with rational bargainers, this is the
only solution.

modity for which each individual has linear utility. It is possible to conceive other means

by which decision makers my influence each others utility such as threats, bribes or al-

truism. However, as highlighted by Nash [62], these mechanisms simply affect the set of

possible utility outcomes and equilibria. No special consideration is necessary as these

mechanisms may be treated as any other activity that may take place in playing the game.

Market mechanisms fall within the concept of the Bargaining Problem.
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Market mechanisms have been promoted as vital to the successful operation of coor-

dinated robotic systems [20]. Such reasoning is based on the assertion that profit motive

ensures efficiency. This notion must be applied with caution. The Nash solution relies

on jointly maximising individual rewards with respect to all involved decision makers.

This is distinctly different to maximising individual reward without considering the likely

actions of others. For a cooperative team it is vital that the utility measures used rep-

resent the true value for a task. It is not relevant or necessary for the utility structure

to resemble a financial or commodity market. The market concept may prove to be an

effective method when complex utility structures can be approximated by trading in an

artificial commodity.

2.4.1 Coordination and Cooperation

The terms coordination and cooperation are used loosely throughout the robotics and

distributed artificial intelligence literature. For consistence, definitions of cooperation and

coordination are sought. A distinction is drawn between cooperation and coordination.

Coordination between team members exists when one member’s decision is influenced by

the action of another decision maker. Definitions generally accepted within the English

language [41] suggest coordination involves “harmonious function for effective results”.

This is a broad definition. Implementations with wide variations in system performance

could be considered coordinated. Cooperation among team members gives rise to joint

action for common benefit. Cao et al. [14] define robot cooperation as “a multiple-robot

system displays cooperative behaviour if, due to some underlying mechanism, there is an

increase in the total utility of the system”. It is more than this. It must involve possessing

and exchanging knowledge in some form.

Cooperation implies coordination. Cooperation is a form of coordination where the

influence and benefit occurs in the present, rather than evolving over time. In order

to realise this benefit cooperation must involve planning. The decision makers reach an
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equilibrium through negotiation. It would be to a decision makers detriment to depart

from the cooperative solution. The convention used throughout this thesis is that the

cooperative solution is the extremum of the range of coordinated solutions.

2.4.2 The Role of Communication

Communication is fundamental to coordination and cooperation. Communication allows

decision makers to be obtain external knowledge required to plan and execute a task.

Through communication, decision makers can influence and account for each others ac-

tions.

Stilwell [86, 85] proposes a powerful and sensible framework based on observer theory

that establishes the communication requirements for a task. Within this, he differentiates

between active and passive communication. Active in the sense that messages are explic-

itly passed between team members and passive where knowledge is implicitly inferred by

observing the effects of team members. This is an important and practical distinction.

The motivation to minimises active communication is provided by requirements for power

conservation or stealth. These same motives apply to implicit communication: forces in

‘box pushing’ [14] that require energy to generate; and actuator acoustic noise[86] which

may reveal knowledge of existence or location for example. In an adversarial situation,

it is desirable to minimise knowledge implicitly communicated to an opponent. When

communication is required, alternative means with differing associated costs must be con-

sidered.

A conjecture of some artificial intelligence researchers [24] is that sending signals or

transmission of knowledge, only constitutes communication if it is intentional. This leads

to misleading concepts such as “cooperation without communication” [14]. In this, de-

cision makers are coordinated through observation of the unintentional effect of others

on the environment. This would argue that they are in fact implicitly communicating

through the environment. In this work, transmitting knowledge is considered communi-
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cation, regardless of intent.

2.4.3 Levels of Coordination and Cooperation

To clarify the relation between coordination and cooperation, it is suggested that three

categories exist:

1. Cooperation or Negotiated Coordination - Mutual agreement (equilibrium) is

achieved through collective, coordinated and predictive planning and execution.

2. Un-negotiated Coordination (Not Cooperation) - An active mechanism gives

rise to coordinated response but there is no mechanism for bargaining between

decision makers. “coordination without negotiation”

3. Passive Coordination (Not Cooperation) - coupling through passive mecha-

nism gives rise to coordinated response.

These conventions are used throughout this work.

2.5 Cooperative Solution by Negotiation

The iterative solution procedure to the team problem suggested in Figure 2.4 is known

as best-reply iteration. This is strongly related to fictitious play concepts in game theory

[76]. The formulation of the team decision problem results in a parameter optimisation.

Optimisation is a large, diverse and active research area. What follows aims to establish

the connection between conventional optimisation theory and the team decision problem.

The global team problem Equation 2.11, is of the form

u? = argmax
u∈U

J(u), u = {u1, . . . ,un}T . (2.15)
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General solution methods for this problem fall under the category of nonlinear program-

ming (NLP). A common fixed-point iterative optimisation implementation is sequential

quadratic programming (SQP) [26, 2]. Assuming the performance measure is twice dif-

ferentiable, the unconstrained quadratic problem at each iteration stage can in principle

be solved for the full parameter vector by Newton’s method

uk+1 = uk +
[
∇2uJ(uk)

]−1∇uJ(uk). (2.16)

Newton’s method is significant conceptually but in its exact form is only of limited prac-

tical use. This is primarily due to the expense of inverting the Hessian and complications

when the Hessian is non-negative definite. This motivates the use of alternate schemes.

Bertsekas [6] details algorithms suitable for parallel and distributed implementation. Two

simple approaches are:

Generalised Jacobi Algorithm:

uk+1 = uk + κ
[
D(uk)

]−1∇uJ(uk), (2.17)

where κ is a positive stepsize andD(uk) is a diagonal matrix ith diagonal entry is∇2iiJ(uk),

assumed to be nonzero for each i. Note this is a generalisation of the Jacobi Over Relax-

ation scheme for solving linear equations.

Generalised Gauss-Seidel Algorithm:

uk+1 = uk + κ
∇iJ(p(i, k))

∇2iiJ(p(i, k))
, i = 1, . . . , n, (2.18)

where p(i, k) =
{
uk+1
1 , . . . ,uk+1

i−1 ,u
k+1
i , . . . ,uk+1

n

}
. Note this is a generalisation of the

Successive Over Relaxation scheme for solving linear equations.

These algorithms, in effect, treat every parameter in the solution vector separately.

Each parameter is updated individually accounting only for its own influence, rather than
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updating the entire solution vector simultaneously while accounting for all parameter

interdependencies (as in Newton’s method). In the Jacobi implementation updates are

performed based on the solution from the last iteration stage. The Gauss-Seidel method

sequentially updates the parameters using the most recent solutions.

Implemented in a single processing centre, these algorithms may simply offer a com-

putational advantage over Newton’s method. A significant additional benefit is achieved

when it is realised that these algorithms can be implemented in a distributed fashion

across a network of processors. Each processor node computes and communicates up-

dates of its associated parameter. Calling each node a decision maker with a decision

variable described by the parameter completes the analogy between distributed optimi-

sation implementations and team decision problems.

Large-scale optimisation methods solve problems by decomposition into subproblems.

Retaining coupling between sub-problems ensures the global result is achieved. Decom-

position may be more efficient than global solution methods since it avoids directly trying

to solve for the entire problem solution vector. Over a sequence of iterations, each sub-

problem effectively ‘learns’ the coupling in a small region of the solution space, from the

reaction of other sub-problems. Thus, the concept of learning equilibria in game theory

[38]. Each robot in a multi-robot system is analogous to the subproblems in a numerical

optimisation method. This analogy extends to more complex optimisation problems and

solution methods. Further detailed analysis of distributed block-iterative algorithms is

provided by Bertsekas [6].

2.5.1 Negotiation Through Better Response

Better-response negotiation is proposed as a method for finding pure Nash equilibria. The

solution involves deterministic or stochastic 2 fixed point iterative schemes. Individual

2Stochastic methods are not discussed here. Probabilistic update methods are more computationally
intensive and not decentralisable. Their advantage is provable global convergence.
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decision makers act in manner that is the best response to the actions of other decision

makers. A key feature of the Nash solution is that it is the best response to itself. Wilson

[100] shows that these schemes are applicable if the problem has a finite number of Nash

equilibria 3. The form of the updated solution for the ith decision maker is

uk
i = (1− κk)uk−1

i + κkBi(ū),+βk (2.19)

where k is the index in the iteration process. ū = ū1, . . . , ūj, . . . , ūn, j 6= i is the fixed

action of the other decision makers. B(ū) is known as the best response function. u?
i =

Bi(ū) is the action that optimises the i
th decision makers expected utility with respect

to the other team members actions. {κk : 0 < κk ≤ 1} is a step size that sets how far
the solution moves towards the best response. βk is an error that may be introduced to

help escape unstable equilibria or weak local optimum solutions. Additionally, the order

in which the decision makers update and communicate their actions determines ū on

which the new decision is based. Generalising the terminology used in iterative solutions

to linear equations, the scheme is referred to as Jacobi if the updates are synchronous,

Gauss-Seidel if the updates are made sequentially using the latest available information

and Randomised-Gauss-Seidel if the team members update their decisions according to a

randomised order. Together, the schedules of κk, βk and the individual decision updates

determine the region of contraction for a method and corresponding solution convergence

rate. Two implementations are:

1. Best Response. κk = 1, βk = 0 ∀k. The iteration update is the full best response.

2. Deterministic Better Response. κk and βk are variables (possibly random) that are

scheduled according to deterministic functions of the iteration number. κk → 1

and βk → 0 as k increases.

3If not the problem is under-determined and the optimal actions are a function of each other.
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The exact best response implementation suffers three weaknesses. Firstly, unstable

non-optimal stationary points (saddle or singular points) may be fixed points of the se-

quential iteration. Secondly, the synchronous iteration may oscillate between stationary

points or about symmetries between stationary solutions. Thirdly, full best response may

only converge in a very small region about the true solution. These weaknesses can be

overcome by relaxation and/or perturbation of the iteration process. Hence, adoption

of the better response over best response implementation. Sequential updates break the

oscillations that potentially occur in synchronous schemes. Randomising the update order

breaks equilibria that arise from the sequential process and are not Nash solutions.

Given κk and βk that provide a convergent sequence, convergence to solution may be

undesirably slow. It is reasonable to expect that the utility function may be approximated

by a polynomial in the region of the solution. This motivates the use of a line search

procedure to accelerate solution convergence. A quadratic fit can be used to interpolate

or extrapolate a solution update from three actions and their corresponding utilities. The

procedure is illustrated in Figure 2.6 and the update is given by.

uk+1
i =

1

2

α12J(u
k
i , ū) +α20J(u

k−1
i , ū) +α01J(u

k−2
i , ū)

µ12J(u
k
i , ū) + µ20J(u

k−1
i , ū) + µ01J(u

k−2
i , ū)

(2.20)

where αlm = u
k−l
i − uk−m

i and µlm = (u
k−l
i )2 − (uk−m

i )2.

2.5.2 Solving Linear Equations as a Team Problem

A classical problem is used to highlight the connection between team decision problem

and optimisation. Special cases in this problem emphasise the importance of considering

the structure of utility in the solution process. Consider the system of n linear equations

Au = b, u = {u1, . . . ,un}T . (2.21)
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Figure 2.6: Quadratic line search procedure for accelerated convergence

The solution is equivalent to maximising the sum of squares utility measures

J(u) = −(Au− b)T (Au− b)

= −
n∑

i=1

(Aiu− bi)
2

=
n∑

i=1

Ji(ui) (2.22)

where Ai and bi are the i
th row and element of A and b. Two well known numerical

solutions to this problem are Jacobi and Gauss-Seidel iteration. These can be expressed in

terms of a decomposition of the matrix A. Let A = D+L+U, where D are the diagonal

elements of A, L are the elements below the diagonal and U are the elements above the

diagonal. These algorithms are:

Jacobi : uk+1 = D−1
[
b− (L+U)uk

]
(2.23)

Gauss− Seidel : uk+1 = (D+ L)−1
[
b−Uuk

]
. (2.24)

These are best-response procedures that update uk+1
i by maximising Ji(u

k
i , ū

k) of Equa-

tion 2.22. This zeros the error in the ith equation with respect to the values of the other
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parameters. Not accounting for the effect ui has on the error in all other equations. The

Jacobi method updates simultaneously and the Gauss-Seidel method updates sequentially.

Substituting the Jacobian and Hessian of J(u)

∇uJ(uk) = −2AT (Au− b), ∇2uJ(uk) = −2ATA

into the generalised Jacobi and Gauss-Seidel methods of Equations 2.17 and 2.18 generates

schemes that update each parameter accounting for their effect on errors in all equations.

These are best-response procedures that update uk+1
i by maximising J(uk

i , ū
k) of Equation

2.22.

All of these approaches are best-response procedures derived from different utility

structures. In the generalised approaches, each decision is made based on the same global

utility measure. The other methods update decisions based on decomposed individual

utilities. The implication for team decision making is that different utility structures

can represent the problem but result in solution procedures with different convergence

properties. Example solution trajectories are shown in Figure 2.7.

The structure of the matrix A determines the coupling among parameters in utility.

Special cases provide insight to the complexity for different solution approaches. Consider:

A Diagonal: ⇒ All parameters are independent. No negotiation re-

quired. All approaches yield solution on first step.

ATA Diagonal: ⇒ The Hessian is diagonal. Generalised approaches yield

solution on first step.

A Block Diagonal: ⇒ Coupling is within disjoint sub-sets of the parameter

vector.

A Lower Triangular: ⇒ Coupling is hierarchical. A single pass of a sequential

algorithm provides the solution

A Singular: ⇒ Infinite Nash equilibria. No Negotiated solution.
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Figure 2.7: Solving a 2D system of linear equations as a team. Classical iterative solution
methods are best-response procedures based on different utility and information structures.
Algorithms that perform solution updates based on the effect on an individual equation are
compared to those that consider the effect on all equations. On the 4th iteration, the second
decision maker implements a quadratic line search. For this quadratic problem the line search
immediately results in the exact solution.
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2.6 Summary

This chapter defined a decentralised approach to multi-robot systems. The formulation

of the team decision problem was presented. An overview is shown in Figure 2.8. The

key elements in team decision making were identified as: modelling of the environment,

sensors and vehicles; specification of communication structures; capturing team utility;

parameterisation of actions and devising solution procedures. The remainder of this thesis

develops this basis into a consistent approach to the control of cooperative sensor teams.

Figure 2.8: An overview of the team decision problem. The team members maintain information
about an uncertain world. Information is obtained through sensor observations and communi-
cation. Probabilistic modelling of the environment, sensors and vehicles provides an means to
capture and predict the expected utility for a planned sequence of actions. The decision makers
jointly optimise their utilities through communication and negotiation.



Chapter 3

Measuring and Fusing Information

3.1 Introduction

Sensing tasks involve the gathering, exchange, evaluation and combination of information.

Sensors are used to make observations of physical quantities with the objective of obtaining

an estimate of some state of the world. Uncertainty lies at the heart of the sensing

and estimation problem. Probabilistic methods can be used to combine measurement

information with models of the sensors, vehicles and the environment. With a probabilistic

model of information, estimates of an underlying state may be obtained in a coherent

and principled manner. Given a probabilistic method for fusing sensor information and

measures that quantify uncertainty, it is logical to ask: what sensing action should team

members take to minimise the group uncertainty or, alternatively, to maximise group

information?

Information in terms of uncertainty is formally defined in Section 3.2 through the

Shannon and Fisher information measures. The ‘information’ or inverse covariance form

of the estimation problem is introduced in Section 3.3. Section 3.4 extends the use of

information measures to the general data fusion problem and illustrates the process of

loss and gain of information. The issue of valuing and selecting a potential sensing action

33
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is addressed in Section 3.5. This includes consideration of actions made by individuals

within a group of sensors. Finally in Section 3.6, these components are a applied to a

practical multi-sensor decision problem. This sensor management task, aims to allocate

limited sensing resources in order to maximise system information.

3.2 Information Measures

Estimation and control problems inherently deal with uncertainty of states, observations

and actions. Uncertainty in these quantities is most usually described in terms of a

probability distribution. It is essential to provide a measure of the informativeness of

the probability distributions associated with the data fusion task. Two formal definitions

of information are of particular practical use; the Shannon information (or entropy) and

the Fisher information. Both of these measures evaluate the ‘information’ contained in a

probability distribution in terms of its compactness. Both measures are a function of the

distribution, rather than the underlying state or observation.

3.2.1 Entropic Information

The entropy or Shannon information H(x) associated with a probability distribution

P (x), defined on a random variable x, is defined as the expected value of minus the

log-likelihood. For continuous-valued random variables this is given by (see [66] Chapter

15)

H(x)
4
= − E{logP (x)} = −

∫ ∞

−∞

P (x) logP (x)dx. (3.1)

The convention H(x) is used to indicate entropy associated with the variable x. The

integral is taken over all values of x so HP (·) is not strictly a function of x but rather the
distribution P (·).
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Entropic information i(x) is defined as the negative of entropy. Information is a

maximum when entropy is a minimum

i(x) = −H(x). (3.2)

When x is continuous valued, the least informative distribution is uniform.

Entropy is the only reasonable definition of ‘informativeness’. An excellent proof of

this remarkable result (first shown by Shannon [80]) can be found in [15]. The implication

of this is that entropy is a uniquely appropriate measure for evaluating information sources

modelled by probabilistic descriptions.

Of particular interest in the following is the entropic information on an n-dimensional

state x modelled by a Gaussian of mean x and covariance P (Equation 2.1)

i(x) = −H(x) = −1
2
log[(2πe)n| P |] (3.3)

as shown in Cover [17]. The entropy is proportional to the log of the determinant of the

covariance. The determinant of a matrix is a volume measure; the entropy is a measure

of the volume enclosed by the covariance matrix and consequently the compactness of the

probability distribution.

3.2.2 Fisher Information

A second probabilistic information measure, widely used in estimation, is the Fisher In-

formation. Unlike entropy, Fisher information is only defined on continuous distributions.

The Fisher information J (x) is defined as the second derivative of the log-likelihood

J (x) = d2

dx2
logP (x). (3.4)
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For a vector x, J (x) is a matrix referred to as the Fisher Information Matrix. The Fisher
information describes the information contained in the distribution P (x). It measures

the surface of a bounding region containing the probability mass. Thus, like entropy, it

measures the compactness of a density function. However, entropy is a scalar, volumetric

measure. Fisher information is a matrix capturing the axes or area of the bounding

surface.

Equation 3.4 can be used to determine the Fisher information for a Gaussian (nor-

mal) probability distribution P (x) = N (x,P), as in Equation 2.1. Taking logs of this
distribution and differentiating twice with respect to x gives J (x) = P−1. The Fisher

information is simply the inverse covariance. For a Gaussian distribution, this shows the

explicit relationship between the Fisher and entropic information measures through the

determinant of P

i(x) = −1
2
log[(2πe)n| P |]

=
1

2
log[(2πe)n| J (x) |]. (3.5)

3.3 Data Fusion

Data fusion seeks to combine information, about a state x, from a variety of sources. The

mechanism for combining prior information with observed and communicated information

is Bayes theorem.

P (x | z) = P (z | x)P (x)
P (z)

. (3.6)

The value of this theorem lies in the interpretation of the probability density functions

P (x | z), P (z | x) and P (x). Prior beliefs about the state of x are encoded in the form
of relative likelihoods in the prior probability density P (x). To obtain more information

about the state x an observation z is made. The observations are modelled as a conditional

probability density function P (z | x). This describes the likelihood of making observation
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z for fixed state x. The new likelihood associated with the state of the world x must now

be computed from the prior information and the information obtained by observation.

This is encoded in the posterior distribution P (x | z) which describes the likelihoods
associated with x given the observation z. The marginal distribution P (z) serves to

normalise the posterior. The value of Bayes theorem is now clear. It provides a direct

means of combining observed information with prior beliefs of the state of the world.

Manyika and Durrant-Whyte have developed the ‘Information Form’ of the Extended

Kalman Filter starting from Bayes theorem [46]. Estimates produced are equivalent to

the conventional covariance formulation. However, the information formulation has many

properties that make it highly suitable for decentralised multi-sensor data fusion. The

derivation of the filter is omitted here. Decentralised Data Fusion (DDF) implementation

details are summarised in Appendix B.1.

3.3.1 The Information Filter

The information form of the Kalman filter is obtained by replacing the representation of

the state estimate x̂ and covariance P with the information state ŷ and Fisher information

Y. Notation (i | j) is introduced to indicate a value at time i, conditional on observation
information obtained up to time j. The information state and information matrix are

defined as

ŷ(i | j) 4
= P−1(i | j)x̂(i | j), Y(i | j) 4

= P−1(i | j). (3.7)

The state dynamics and observation processes are represented by discrete time versions

of the models detailed in Section 2.3.2. In [43] it is shown by means of sufficient statistics

(see [66]) that an observation z(k) at discrete time k, contributes i(k) to the information

state ŷ and I(k) to the Fisher information Y where

i(k)
4
= HT (k)R−1(k)ν(k), I(k)

4
= HT (k)R−1(k)H(k), (3.8)
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and where ν(k) = z(k)− h(x̂(k | k − 1) is the observation innovation. The update stage
of discrete time Kalman Filter reduces to

ŷ(k | k) = ŷ(k | k − 1) + i(k), (3.9)

Y(k | k) = Y(k | k − 1) + I(k). (3.10)

The probabilistic representation of prior information, observation likelihood and pos-

terior information used in the information filter can be summarised as:

Prior: P (x | Zk−1) modelled by ŷ(k | k − 1) and Y(k | k − 1)
Likelihood: P (z(k) | x) modelled by i(k) and I(k)

Posterior: P (x | Zk) modelled by ŷ(k | k) and Y(k | k).

3.3.2 Multi-Sensor Information Fusion

Fisher information plays an important role in estimation problems involving multiple

information sources. In conventional approaches to state estimation, it is difficult to

capture the statistical relationships that exist between different estimates produced by

different combinations of observations. Accounting for the cross-correlations between

observation innovations results in a complex update stage in any multi-sensor Kalman

filter implementation. This is most easily overcome by dealing directly with the likelihood

functions of the observations. The Fisher information makes explicit the information in

the likelihood function.

The contributions to the information state and information matrix made by observa-

tions relate directly to the underlying likelihood functions for the states, rather than the

estimates themselves. Combined with the assumption that the sensor observations are

conditionally independent, this leads to a remarkably simple observation fusion stage for

the information filter. For N sensor information sources, the posterior information state
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and information matrix are obtained from

ŷ(k | k) = ŷ(k | k − 1) +
N∑

i=1

ii(k), (3.11)

Y(k | k) = Y(k | k − 1) +
N∑

i=1

Ii(k). (3.12)

Where Ii(k) and ii(k) are the information matrix and information state contributions of

the sensors i = 1, . . . , N . The posterior state estimate may be obtained from

x̂(k | k) = Y−1(k | k)ŷ(k | k). (3.13)

The simple additive nature of the update stage makes the Information filter highly

attractive for multi-sensor, decentralised and distributed estimation. This feature is ex-

ploited in Decentralised Data Fusion (DDF) architecture developed and demonstrated by

Durrant-Whyte et al. at the University of Oxford and University of Sydney.

3.4 Measuring Information in the Fusion Process

Entropy can be applied to quantitatively measure the information contained in the prob-

ability distributions involved in the fusion process. The entropic information gain asso-

ciated with an observation is quantified by mutual information. The evolution of infor-

mation measures in the information fusion process is illustrated through an example of

estimating a scalar variable from uncertain observations.
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3.4.1 Conditional Entropy

The entropic information measure can be extended to conditional entropy

H(x | z) 4
= E{− logH(x | z)} = −

∫ +∞

−∞

P (x | z) logP (x | z)dx. (3.14)

This describes the information about x contained in P (· | z) following an observation z.
H(x | z) is a function of z and as such depends on the value of the observation made.
The mean conditional entropy, H(x | z), taken over all possible values of z, is given

by

H(x | z) 4
= E{H(x | z)}

= −
∫ +∞

−∞

P (z)

∫ +∞

−∞

P (x | z) logP (x | z)dxdz

= −
∫ +∞

−∞

∫ +∞

−∞

P (x, z) logP (x | z)dxdz. (3.15)

Note that H(x | z) is not a function of either x or z. It is a essentially a measure of the
information that will be obtained (on the average) by making an observation before the

value of the observation is known.

3.4.2 Mutual Information

With these definitions of entropy and conditional entropy, it is possible to write an ‘infor-

mation form’ of Bayes theorem. Taking expectations of the logs of both sides of Equation

3.6 with respect to both the state x and the observation z gives

H(x | z) = H(z | x) +H(x)−H(z). (3.16)

Simply, this describes the change in entropy or information following an observation from

a sensor modelled by the likelihood P (z | x).
Being able to describe changes in entropy leads naturally to asking the important
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question: what is the most informative observation one can make? This question may be

answered through the idea of mutual information.

The mutual information I(x, z) obtained about a random variable x with respect to
a second random variable z is now defined as

I(x, z) = −E{log P (x, z)
P (x)P (z)

}

= −
∫ +∞

−∞

∫ +∞

−∞

P (x, z) log
P (x, z)

P (x)P (z)
dxdz. (3.17)

Mutual information is an a priori measure of the information to be gained through ob-

servation. The expectation is taken over z and x, so the mutual information gives an

average measure of the gain to be expected before making the observation.

As

P (x, z)

P (x)P (z)
=
P (x | z)
P (x)

, (3.18)

mutual information may be written in the alternative forms

I(x, z) = −E{log P (x | z)
P (x)

} = −E{log P (z | x)
P (z)

} . (3.19)

Mutual information is thus a function of the ratio of the density P (x | z) following an
observation to the prior density P (x). If x and z are independent, then P (x | z) = P (x)

and the expressions in Equation 3.18 become equal to one and (taking logs) the mutual

information becomes equal to zero. This is logical; if knowledge of the state is independent

of the observation, the information to be gained by taking an observation (the mutual

information) is zero. Conversely, as x becomes more dependent on z, then P (x | z)
becomes more peaked or compact relative to the prior distribution P (x) and so mutual

information increases. Note that mutual information is always positive (it is not possible

to lose information by taking observations). Equation 3.17 can be written in terms of the

component entropies as
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I(x, z) = H(x) +H(z)−H(x, z)

= H(x)−H(x | z)

= H(z)−H(z | x).

(3.20)

Equation 3.20 measures the ‘compression’ of the probability mass caused by an obser-

vation. Mutual information provides an average measure of how much more information

we would have about the random variable x if the value of z where known. Most im-

portantly mutual information provides a pre-experimental measure of the usefulness of

obtaining information (through observation) about the value of z.

3.4.3 Information Evolution in Estimation

The evolution of information over time is of significant interest in sensing problems. Fil-

tering approaches to estimation recursively calculate successive estimates of a state that

evolves over time. This is implemented through periodic prediction and observation of

that state. The entropic information and mutual information measures developed can be

applied to quantify information gains and losses in the estimation process.

The information state and information matrix can be predicted forward in time through

the stochastic process model (Equation 2.2). In continuous time the evolution of the Fisher

Information can be described as the solution to the ‘information form’ of the Riccati equa-

tion

Ẏ(t) = −F(t)Y(t)− FT (t)Y(t)−Y(t)G(t)Q(t)GT (t)Y(t) +
N∑

i=1

HT
i (t)R

−1
i (t)Hi(t).

(3.21)

The Fisher information in the discrete time information filter is governed by the following

prediction and updates stages 1 (see Appendix B.1)

1For a suitably small time increment ∆t, the discrete time system matrices are approximated by
F(k) = exp{F(t)∆t}, Q(k) = GT (t)Q(t)G(t)∆t and R(k) = 1

∆t
R(t)
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Prediction:

Y(k | k − 1) =
[
F(k)Y−1(k | k − 1)FT (k) +Q(k)

]−1
(3.22)

Update: Y(k | k) = Y(k | k − 1) +
N∑

i=1

Ii(k) (3.23)

Equations 3.22, 3.23 and 3.21 indicate how the system dynamics, process noise and ob-

servation affect the information in the system. Since Q and R are positive semi-definite

matrices, process noise cannot gain information and observation cannot lose informa-

tion. It is most interesting to note that the system dynamics F can contribute either an

information loss or gain over time.

The entropic information in this process at the prediction and updates stages is mea-

sured by

Posterior Information : i(k) =
1

2
log[(2πe)n| Y(k | k) |], (3.24)

Prior Information : i(k | k − 1) = 1
2
log[(2πe)n| Y(k | k − 1) |]. (3.25)

The entropic information change associated with transitions between probability distri-

butions is the mutual information. There are three transitions of interest in the filter

predict-update cycle illustrated in Figure 3.1: the information change in the prediction

stage; the information gain associated with observation; and the overall dispersion or con-

centration of information for the combined stages. The corresponding mutual information

measures are:

Process Mutual Info. : I(k,x(k − 1)) = 1
2
log

[ | Y(k | k − 1) |
| Y(k − 1 | k − 1) |

]

(3.26)

Observation Mutual Info. : I(k, z(k)) =
1

2
log

[ | Y(k | k) |
| Y(k | k − 1) |

]

(3.27)

Mutual Information : I(k) =
1

2
log

[ | Y(k | k) |
| Y(k − 1 | k − 1) |

]

.(3.28)
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Figure 3.1: Information is lost and gained in the data fusion prediction and observation cy-
cle. Entropic information and mutual information provide measures of the performance of the
estimation process and the contributions made by sensor measurements.

The rate of change of entropic information can be determined from the Fisher infor-

mation rate (Equation 3.21). Using matrix calculus identities from [42], the instantaneous

rate of change of entropy, or mutual information rate is

İ(t) = 1
2

d

dt
log | Y(t) | = 1

2
trace

(

Y−1(t)Ẏ(t)
)

. (3.29)

This provides a measure analogous to mutual information in continuous time. It is not of

practical use in determining mutual information over time as this can be found directly

from the Fisher information. Equation 3.29 can be separated into contributions from the

process model and observations

İ(t,x) = 1
2
trace

(
Y−1

(
−FY − FTY −YGQGTY

))
, (3.30)

İ(t, z) = 1
2
trace

(

Y−1

N∑

i=1

HT
i R

−1
i Hi

)

. (3.31)

3.4.4 Illustration of Information Measures

A simple process is presented to illustrate the temporal evolution of information in an

estimator. A sensor is required to estimate the value of a scalar characteristic x through
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observation z. The feature characteristic dynamics are assumed to be governed to a first

order Gauss-Markov process

ẋ(t) = −β(x(t)−w(t)), (3.32)

where 2

E{w(t)} = w(t) = 0, E{[w(t)−w(τ)]2} = Qδ(t− τ).

The observation model is

z(t) = x(t) + v(t) (3.33)

where

E{v(t)} = v(t) = 0, E{[v(t)− v(τ)]2} = R(t)δ(t− τ), E{w(t)v(τ)} = 0 ∀ t, τ.

The Fisher information Y(t) for this process is governed by the following scalar Riccati

equation

Ẏ(t) = 2βY(t)− β2QY2(t) +R−1(t).

For constant observation information R−1 and Y(0) 6= 0, the analytic solution is

Y(t) =
1

βQ

(

tanh

(

tβς + arctanh

(
Y(0)βQ− 1

ς

))

ς + 1

)

(3.34)

where ς =
√

R−1Q+ 1. The steady state solution to Equation 3.34 provides an upper

bound on the information gathered through observation

Yupper = lim
t→∞

Y(t) =

√

R−1Q+ 1 + 1

Qβ
. (3.35)

If observations are are stopped (R−1(t) = 0) at time t = τ , the process loses information

according to

Y(t) = 2

(

βQ+

(
2

Y(τ)
− βQ

)

.e−2β(t−τ)

)−1

. (3.36)

2The information measures used are applicable to uncertainty described by general probability distri-
butions. Gaussian modelling significantly simplify the analysis.
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The lower bound on information lost given by the steady state solution to Equation 3.36

Ylower = lim
t→∞

Y(t) =
2

βQ
. (3.37)

The linearised discrete time solution is

Y(k | k − 1) = Φ(k)Y(k − 1 | k − 1)

Y(k | k) = Y(k | k − 1) + Γ(k)R−1(t)

where

Φ(k) = e(2β−β
2
QY(k−1|k−1))∆T and

Γ(k) =
e(2β−β

2
QY(k−1|k−1))∆T − 1

2β − β2QY(k − 1 | k − 1) ≈ ∆T.
3

Example Solution

An example solution for this process is shown in Figure 3.2. The parameters used are 4

Q = .1, β = .1, R−1 = 100, Y(0) = 150, and ∆T = .5s.

Information gain and loss are shown over a 20 second time period. At t = 8 seconds

observations are stopped.

The solution illustrates the ‘information dynamics’ that result as an output from the

combined state dynamics, process noise and observations. Although the observation in-

formation is constant in the Fisher sense, the mutual information depends on the entropic

information level. The information gain associated with observation is higher when in-

3Γ(k)→ ∆T as the solution approaches steady state. Care should be applied in the discretisation to
preserve the true contribution and DC gain of the observations.

4The parameters in this example are not given units. The situation corresponds to the generic task
of estimating a arbitrary characteristic. The units are application specific.
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formation is low. At steady state the information gain through observation equals the

information loss through the process model.

The actual estimated value is deliberately not presented here. This is to emphasise a

property of entropy and mutual information. The solution presented is the information

that will be obtained over time, on average, by a system modelled by Equations 3.32

and 3.33. A particular observation innovation sequence may result in different posterior

information. The value of the presented solution is that it provides a prediction of the

expected information obtained, before the actual observations are made.

This example corresponds to a highly simplified situation. In general, the state dy-

namics, process noise and observation information are dependent on the state and control

inputs, alluding to the possibility of using the control inputs to influence the evolution of

information.

3.5 The Utility of Information

Natural measures of the information obtained through observation in a sensing task are

provided by entropy and mutual information. In executing this task, a set of actions

corresponding to different sensor configurations are available to the system. The system

then must decide on actions that maximise some measure of utility. The goal is typically

maximising information gain. It is therefore logical to establish a relationship between

the utility of decisions and these information quantities.

Each decision maker has a an action u ∈ U available to it. This is a general notion.

The set U may be a continuous subspace U ⊂ Rs or a set of m discrete s-tuples U =

{u1, . . . ,um}. In general, the effect of each possible action u ∈ U is to induce a posterior

probability distribution P (x | u) on the state x. A utility function U(x,u) places a value
on each action.

Utility theory can be used to encode a preferential ordering over the actions available.
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Figure 3.2: Illustration of information measures over continuous and discrete time. The solutions
presented indicate the expected information gain for a system modelled by a first order Gauss-
Markov process (Equations 3.32 and 3.33). The value of this is that it provides a prediction of
the information that will be obtained (on average) from a sequence of observations, before the
observations are made.

A usable utility measure is defined by the concept of Bayes expected utility (defined in

Section 2.3.3). Decisions are made through the maximisation of this expected utility over

all possible actions. The optimal action (or Bayes action) is defined through

u? = arg max
u∈U

J(u)

= arg max
u∈U

E{U(x,u)} . (3.38)
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It remains to determine appropriate utility functions for the sensing problem.

3.5.1 Entropy as Expected Utility

Consider the posterior density P (x | u) on a state of interest x, given a sensing action u.
An appropriate definition of utility is now provided by the log-likelihood

U(x,u) = logP (x | u). (3.39)

It was shown by Manyika [43] that the log-likelihood satisfies the utility or ‘rationality’

axioms guaranteeing a preference ordering. Proof that the axioms imply the existence of

a utility function can be found in [5].

Taking expected values of Equation 3.39 gives

J(u) = E{U(x,u)}

= E{logP (x | u)}

= i(x | u). (3.40)

The efficacy of choosing log-likelihood as utility is now clear. The expected utility is

the entropic information. The increase in expected utility for an action is the predicted

mutual information or information gain. The Bayes action has the natural interpretation

as the action that maximises mutual information or information gain. This allows the

information-theoretic tools developed in Section 3.4 to be applied to decision problems

involving sensing and communication. Most importantly, this enables the expected utility

for an action to be determined a priori through the process probabilistic modelling, as

indicated in Figure 3.3.

The means of constructing consistent utility functions attracts discord within the

decision theory research community. However, in the engineering of autonomous decision
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Figure 3.3: The expected utility for a planned sensing action is entropic information. The gain
in expected utility is the mutual information or predicted information gain associated with the
action. Probabilistic modelling of the system state and observation processes allow the expected
reward for an action to be determined a priori.

makers, the primary importance is finding utility representations that truly capture the

value of the actions. The sensing task presents a situation where this is relatively straight

forward. Consistency in the modelling can be verified from the results of the actual

measurement process.

3.5.2 Entropy as Team Expected Utility

The argument for entropic information as the expected utility for an individual sensing

decision maker extends naturally to a team of decision makers. Consideration of multi-

sensor information fusion in Section 3.3 reveals that the posterior Fisher information is

simply the sum of the information in the prior and observation likelihoods. The relation-

ship between Fisher information and entropy leads to the following entropic information

group sensing expected utility function

J(u1, . . . ,un) = E{logP (x | {u1, . . . ,un})}

= i(x | {u1, . . . ,un}). (3.41)
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The Fisher information update following a group of observation is given by Equation

3.23. Entropic information is obtained from the Fisher information by Equation 3.5.

This results in a utility measure for a sensor team in terms of the prior information and

observation information corresponding to each action

J(u1, . . . ,un, k) = i(x(k) | {u1, . . . ,un})

=
1

2
log [(2πe)n| Y(k | {u1, . . . ,un, k}) |]

=
1

2
log

[

(2πe)n| Y(k | k − 1) +
n∑

i=1

Ii(k | ui) |
]

. (3.42)

There is no requirement for each decision maker to maintain a common state x or have

identical prior information Y(k | k − 1). Equation 3.42 can be applied to generate indi-
vidual utility functions immediately usable in the team decision problem formulations of

Sections 2.3.

The actions among decision makers are now coupled in utility through the common

information resulting from all observations. The information common to the set of ob-

servations is the sum of mutual information I(ui,uj) between all pairs of actions. A

consequence is that a decision maker’s optimal action may change if it accounts for the

information gathered by other team members. In turn, its actions influence the optimal

decisions of other team members.

However, situations exist where the optimal actions are independent in utility; or

equivalently incorporating the influence other decision makers changes utility but does

not alter an optimal action. Figure 3.4 presents a visual interpretation of information

as team utility. The entropy power inequality or Minkowski inequality [17] provides an

upper bound on the information resulting from the combination of independent random

sources. The combined information is less than the sum of the individual sources as there

is information common to them. A consequence is that the team utility gain is always less

than or equal to the sum of the information gains determined individually in ignorance
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of the other team members actions. This is stated in terms of mutual information as

I(x, {u1, . . . ,un}) ≤
n∑

i=1

I(x,ui). (3.43)
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Figure 3.4: Visual interpretation of information as sensor team utility. Each information source
has an associated entropic information i(·), represented by the shapes in this diagram. The
control actions ui alter the shape and location of i(ui). The utility, as information gain
I(x, {u1, . . . ,un}), is the area of i(x) (marked grey) covered by the observation information
i(u1), . . . , i(un). The utility of actions are coupled through their common information. This
‘information shape’ analogy yields insight into the range of complexity for solution of the opti-
mal decision problem. It is possible to think of situations where the best arrangement of shapes
is rudimentary and others where many arrangements may require consideration. As the shapes
change over time, the best arrangement may alter abruptly.

3.5.3 Alternate Information Related Measures

The previous section established entropy as an expected utility measure for sensing tasks.

It is maintained that this is uniquely the most appropriate measure of the information

in a probability distribution. It is possible and potentially suitable, however, to establish

alternative measures. The reasons for this include: seeking acceptable simplified approx-

imate solutions; overcoming adverse numerical conditioning; or desire for different ‘risk
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taking’ or ‘risk averse’ profiles (see [5]). The potential of the most likely candidates for

expected utility in sensing tasks is now examined. This issue is revisited in Section 4.3.7

where the influence is illustrated by comparing trajectories for different measures applied

to a single bearings-only sensor feature localisation problem.

Constructing an appropriate expected utility requires forming a scalar utility mea-

sure from the Fisher information. This scalar measure must combine and weight the

elements or eigenvalues of the Fisher information or its inverse. Two likely alternatives

to maximising entropic information are:

1. max trace (Y) and

2. min trace (Y−1).

It is of use to recall the relation of these measures to the eigenvalues. This provides a

geometric interpretation of alternate measures. Let {λ1, . . . ,λn} be the eigenvalues of
the Fisher information Y, then

| Y | = 1

| Y−1 | =
n∏

i=1

λi,

trace (Y) =
n∑

i=1

λi and

trace (Y−1) =
n∑

i=1

1

λi

.

(3.44)

A state vector is observable if the Fisher information is invertible. This requires a

non-zero determinant of the Fisher information. This clearly relates entropic information

to observability. If combined prior and observation Fisher information is singular for all

possible actions, the team sensor suite is inadequate for the task. A serious flaw in using

the trace of the Fisher information is that non-zero values can be obtained regardless of

the invertibility Fisher information matrix.

Entropic information, as the log of the product of the eigenvalues of the Fisher infor-

mation matrix, applies significant weight to decreasing the uncertainty in the states with
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lowest Fisher information. This is a highly desirable characteristic. Mutual information

gain results in actions which seek to acquire knowledge about what is most uncertain.The

trace of the covariance matrix, as the sum of the inverses of the eigenvalues also penalises

low Fisher information. The trace of the Fisher information fails to distinguish between

gains based on the value of the eigenvalues.

Insight into how these measures evolve over time is provided by the matrix calculus

relations [42]

d
dt
| Y(t) | = | Y(t) |trace

(

Y−1(t)Ẏ(t)
)

,

d
dt
log | Y(t) | = trace

(

Y−1(t)Ẏ(t)
)

,

d
dt
trace (Y−1(t)) = −trace

(

Y−1(t)Ẏ(t)Y−1(t)
)

and

d
dt
trace (Y(t)) = trace

(

Ẏ(t)
)

.

(3.45)

This reveals that the trace of the Fisher information does not weight instantaneous ob-

servation information by prior Fisher information. The trace of the covariance does, but

in a manner different and more complicated than entropy.

The only practical criticism of entropy is in the case of poorly scaled Fisher informa-

tion. A combination of extremely large and small eigenvalues of the Fisher information

will give high entropic information. This is despite large uncertainty in components of the

estimated state. In this case it could be desirable to operate on the eigenvalues directly.

Many other candidate measures for utility are possible including

• ∏ diag (Y−1),

• minmax diag (Y−1),

• maxmin diag (Y) and

• maxmin eig (Y).

All measures relate in some way to changes in the uncertainty. They vary in the different
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weighting attributed to prior information, process information loss and observation infor-

mation gain. Differing decision rules with different characteristics and performance will

result from the use of different measures.

3.5.4 Deriving Task Specific Utility From Entropy

Entropic information can be used to derive alternate utility measure suitable for specific

tasks. One example would be a requirement to obtain a level of information that is lower

than the achievable upper bound. In this situation the objective is not simply to maximise

final information over a series of actions.

Consider the following extension to the Gauss-Markov process example form Section

3.4.4. An action u(t) is introduced that varies the sensor observation information accord-

ing to

R−1(t) = R−1
maxu(t), u(t) ∈ [0, 1], t ∈ [t0, tf ].

The goal (utility) is to keep the total information above a certain threshold iThreshold while

simultaneously minimising the use of the sensor resource. An appropriate utility is 5.

J(tf ) =

∫ tf

t0

[ωδ(t)(i(t)− iThreshold) + (ω − 1)u(t)] dt (3.46)

where, δ(t) =







1 if i(t) < iThreshold

0 otherwise
and ω is a weighting factor that is used to adjust

the trade-off between the use of the sensor and information levels below the threshold.

This is required as information measures alone do not establish a unique solution. Example

action sequences which this utility measure could be used to optimise are shown in Figure

3.5.

This simple example indicates entropy can be used as a basis for other utility functions.

5Many functional forms are suitable. Since this form is linear, it is likely to result in a switching
optimal action.
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Entropy based utilities could be formed to capture the value of actions such as: activating

or deactivating a sensor, adjusting a sensors operating mode, pointing a sensor in a

particular direction, and communicating an observation to fellow decision makers.

3.6 Sensor Management

Sensor management concerns the optimal allocation of limited sensor resources to best

maintain knowledge of inherently uncertain characteristics crucial to a task. This fun-

damentally involves making decisions associated with the evaluation, acquisition and ex-

change of information. As such, information-theoretic modelling and Bayesian decision

theory offer an appropriate methodology for studying this problem. The tools required to

model sensing and estimation tasks, place value on sensor actions, decide upon optimal

actions, and fuse observation information from sensors have been presented in Sections

3.3, 3.4 and 3.5.

The sensor management problem is briefly explored here as an example of multi-

sensor information fusion and team decision making. This is intended to demonstrate

and illuminate concepts in the information-theoretic approach to decentralised data fusion

and decision making. There is no attempt to comprehensively cover the issue of sensor

management. The approach follows the work of Manyika [43, 46]. For a discussion of the

problem intricacies and alternate approaches see McIntyrre [51] and Ng [64].

A decision making procedure is implemented on top of the decentralised data fusion

(DDF) process. The actions considered are discrete. These include sensor to feature

assignment, selecting the sensors operational mode, and activating communication chan-

nels. Modelling is applied to generate a dynamic probabilistic representation of the sys-

tem. Information-theoretic methods are applied to form expected utilities for the different

action combinations. A decision process seeks the action configuration that maximises

expected utility. This solution structure is shown in Figure 3.6.
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Figure 3.5: Entropy can be used as a basis for other utility functions. In this example it is
desired to maintain entropic information above a threshold. Maximising entropic information
does not capture the value of this task. Four action sequences are presented with equivalent
mutual information gains. Equation 3.46 presents a utility function derived from entropy that
assigns a value suitable for optimising this task.
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Figure 3.6: Structure of the sensor management problem

The following example is presented to illuminate the essential features of this approach.

3.6.1 Discrete Sensor Management for Target Tracking

Three tracking sensors at fixed locations xs,i = [xs,i,ys,i]
T i = 1, 2, 3 make range and

bearing observations of three targets with location and velocity xj(k) j = 1, 2, 3 at discrete

time k, where t(k+1)−t(k) = ∆T . Each sensor is only capable of tracking a single target.
The sensor’s discrete control action is the target assignment. The control objective is to

find the 1→ 1, sensor → target mapping that maximises the global entropic information

of the target state estimates. The available sensor configurations are

a = {u1,u2,u3} ∈ A =







a1 = (1→ 1, 2→ 2, 3→ 3)

a2 = (1→ 1, 2→ 3, 3→ 2)

a3 = (1→ 2, 2→ 1, 3→ 3)

a4 = (1→ 2, 2→ 3, 3→ 1)

a5 = (1→ 3, 2→ 1, 3→ 2)

a6 = (1→ 3, 2→ 2, 3→ 1)







.
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3.6.2 Probabilistic Modelling

Process Model

Target dynamics are represented by the linear discrete time probabilistic model

xj(k + 1) = Fxj(k) +wj(k)

xj(k) =












xj(k)

ẋj(k)

yj(k)

ẏj(k)












, F =












1 ∆T 0 0

0 1 0 0

0 0 1 ∆T

0 0 0 1












where wi(k) is taken to be a zero-mean E{wj(k)} = 04×1 uncorrelated Gaussian sequence

with variance,

E{wj(k)w
T
j (k)} = Qj =












1
3
∆T 3 1

2
∆T 2 0 0

1
2
∆T 2 ∆T 0 0

0 0 1
3
∆T 3 1

2
∆T 2

0 0 1
2
∆T 2 ∆T












σ2j .

Sensor Observation Model

The observation vector zi(k)= [r(k), θ(k)]
T , is a non-linear function of the state of the

target being observed.

zi(k) = h(x(k),vi(k))

hi(x(k),vi(k)) =




r(k)

θ(k)



 =





√

(x(k)− xs)2 + (y(k)− ys)2

arctan
[
x(k)−xs
y(k)−ys

]



+ vi(k)
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where vi(k) is taken to be a zero-mean E{vi(k)} = 02×1 uncorrelated Gaussian sequence

with variance,

E{vi(k)v
T
i (k)} = Ri =




σ2r,i 0

0 σ2θ,i.





The Jacobian of the observation model with respect to target state is

H(x(k)) =






x(k)−xs√
(x(k)−xs)2+(y(k)−ys)2

y(k)−ys√
(x(k)−xs)2+(y(k)−ys)2

y(k)−ys
(x(k)−xs)2+(y(k)−ys)2

xs−x(k)
(x(k)−xs)2+(y(k)−ys)2




 =




sin θ(k) cos θ(k)

1
r
cos θ(k) −1

r
sin θ(k)



 .

The expected observation information for this sensor model is given by

I(k) = HT (k)R−1H(k) =





sin2 θ(k)
σr

+ cos2 θ(k)
r2σθ

sin θ(k) cos θ(k)
σr

− sin θ(k) cos θ(k)
r2σθ

sin θ(k) cos θ(k)
σr

− sin θ(k) cos θ(k)
r2σθ

cos2 θ(k)
σr

+ sin2 θ(k)
r2σθ



 .

Note, the determinant | I(k) | = 1
r2σrσθ

. Hence, the observation information for this model

is range dependent.

3.6.3 Decentralised Information Fusion

Each sensor runs an information filter with local knowledge of the global 12×1 information
state and 12× 12 block diagonal information matrix

ŷi(k | k) =








ŷi,1(k | k)
ŷi,2(k | k)
ŷi,3(k | k)







, Yi(k | k) =








Yi,1(k | k) 0 0

0 Yi,2(k | k) 0

0 0 Yi,3(k | k)







.

The corresponding entropic information measure is

ii(k) =
1

2
log
[
(2πe)12| Yi(k | k) |

]
=
1

2

3∑

j=1

log
[
(2πe)4| Yi,j(k | k) |

]
.
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The sensors now make observation zi(k) of their allocated target ui and determine the

associated information state and matrix updates

ii(k) = HT
i,ui
(k)R−1

i zi(k),

Ii(k) = HT
i,ui
(k)R−1

i Hi,ui(k).

This information is propagated through the team information structure. The sensor nodes

then update their local information state and information matrix by

ŷi,j(k | k) = ŷi,j(k | k − 1) + ij(k), j = 1, 2, 3

Yi,j(k | k) = Yi,j(k | k − 1) + Ij(k), j = 1, 2, 3.

Each decision maker is made aware of the team information and can recover an individual

estimate of the target states by

x̂i(k | k) = Y−1
i (k | k)ŷi(k | k).

3.6.4 Action Expected Utility

With its sensor model and predicted estimate of the target state, each sensor i constructs

the expected observation information gain from observing target j = 1, 2, 3

Ii,j(k) = HT
i,j(k)R

−1
i Hi,j(k).

From this the mutual information gain for sensor i observing each target j is

Ii,j(k) =
1

2
log

[ | Yi,j(k | k − 1) + Ii,j(k) |
| Yi,j(k | k − 1) |

]

.
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The global utility for control action al = {u1,l,u2,l,u3,l} ∈ A is

J(al, k) =
3∑

i=1

Ii,al(i)(k).

The individual mutual information measures can be added to form a team measure as the

1→ 1 sensor to target constraint makes the observations mutually exclusive. There is no

information common to the observations. The optimal action is selected from

a?(k) = arg max
a∈A

J(a, k).

Note that this problem formulation results in a two dimensional Linear Sum Assign-

ment Problem 6 where Ii,j(k) form the elements of the cost matrix and a corresponds to
a permutation matrix [31, 6, 11].

3.6.5 Solution Process

The linear assignment problem is polynomial time solvable and has a extremely wide

variety of solution approaches. Efficient combinatorial optimisation is a significant and

ongoing research problem. Directly sorting all globally feasible solutions is rejected as

the number of solutions is the factorial of the problem dimension. A review of solution

methods is provided by the DIMACS Challenge [37] or Burkard [11]. The approaches are

mainly simplex or primal-dual approaches. An instance of the primal-dual approach is

the auction algorithm of Bertsekas [6, 7]. A very different and interesting approach by

Haken [31], is the method of ‘coupled selection equations’.

The approach taken here is a slight adjustment of the method used by Manyika [43].

Local action ranking can not be performed without considering the actions of others. An

iterative best response procedure is used. At each stage, the decision makers choose and

6asymmetric if the number of targets is greater than the number of sensors
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communicate their best action accounting for knowledge of Ii,j(k) communicated from
other decision makers’ previous preferences. The process is terminated once all sensors

are assigned to a target and the assignment is the best response to itself.

3.6.6 Discussion of Solution Results

A variety of rigorous solution techniques can be applied to solve this problem in a

decentralised manner. However, of most significant interest are the properties of the

information-theoretic formulation and the characteristics the solution exhibits.

Results from a solution to this example problem are shown in Figure 3.7. Figure 3.7

(b) shows that the value of observing a target is range dependent. As the targets move the

optimal group control action switches. This decision and communication structure has

provided a coordinated solution to the global control objective. Local prior and communi-

cated external information allow each node to arrive at a solution it believes is best for the

group. This example indicates that without this communicated external information the

resulting control action would differ. There are times during the solution where “greedy”

allocation based on gain from individual sensor to target mutual information is not the

best group decision. A powerful result is achieved when the communicated information

is combined with the observation model. Then each sensor is aware of targets it can not

see and can determine the utility associated with observing those targets. Therefore, the

decision to switch target allocation is made based on this utility comparison without the

sensors observing their future target. This action is referred to as sensor hand-off and

cueing. This characteristic is not specified by the system designer. It arises when an

optimal decision process is applied to the problem and utility formulation.

Significantly, it can be seen that the sensor nodes do not require any knowledge of the

other sensors’ location or characteristics. This simplicity is an important property of the

decentralised information-theoretic approach. Everything required to select the optimal

action is contained in the local ŷi(k | k), Yi(k | k) and the communicated Ii,j(k). Indi-
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vidual decision makers influence each other through communicated expected observation

information.

Note that in this case the local sensor knowledge is the true global information since all

information is communicated between the sensor nodes. If all information is not available

at each node this formulation is still valid. However, the local utility value associated

with an action will differ between nodes.

The 1 → 1 sensor to target tracking problem results in a simple utility structure as

there is no information mutual to the observations. This same approach can be applied to

more complicated problems such as the beacon based navigation as demonstrated in the

OxNav system [46, 43]. Although the assignment is one sensor to each beacon, the obser-

vation information is combined to localise the vehicle carrying the sensors. This results

in common information among the observations. The value of each sensor assignment is

dependent on the assignments of all other sensors. For this reason this problem is sig-

nificantly more complex. The non-linear assignment problem resulting from the coupled

utility is NP-hard.
While highly simplified, the target and range-bearing sensor modelling used is repre-

sentative of real world problems. The information-theoretic approach captures the value

of sensor configurations. Only knowledge essential to evaluating action utility is com-

municated among decision makers. Irrelevant physical detail, such as the location, type

and quality of the other sensors, is abstracted away. The dynamics of the information

measures suggest an optimal system configuration that can be sought by decentralised

decision making procedures.

3.7 Summary

This chapter formally defined information in terms of uncertainty, outlined a methodology

for decentralised fusion of information from multiple sources and determined entropy and
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Figure 3.7: Information-theoretic approach to a discrete sensor management task.
(a) Problem geography, (b) Information based Utility for each individual
sensor → target assignment, (c) Entropic target information, (d) optimal group
sensor → target assignment
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mutual information to be appropriate expected utility measures for sensing actions.

The problem of combining information form multiple sources was considered. The

fusion process was observed to be simply the summation of the Fisher information of the

source likelihood functions. The additive and associative properties of the information

sources led to an efficient and scalable decentralised data fusion implementation based on

the ‘information’ or ‘inverse covariance’ formulation of the extended Kalman filter.

Information-theoretic reasoning promoted entropic information and mutual informa-

tion gain as natural expected utility measures for placing value on available sensing ac-

tions. Individual team member utility is coupled through information common to the

team observations. Team optimal sensing actions can be determined through exchange of

expected observation information.

Two complementary mechanisms were introduced: the decentralised data fusion ar-

chitecture; and information-theoretic team expected utility. The resultant combination

is a consistent methodology for gathering, exchanging, evaluating and fusing information.

This framework is eminently compatible with the team decision making structure outlined

in Chapter 2.

The viability and relative simplicity of this approach was demonstrated through the

analysis of a discrete sensor assignment example. Attention is now turned to consideration

of problems involving dynamic optimisation of continuous sensor and sensor platform

trajectories.



Chapter 4

Control of Information Gathering

Tasks

4.1 Introduction

This chapter investigates autonomous sensing tasks in the context of optimal control.

Optimal control is a general dynamic optimisation problem where control actions are se-

lected over time to optimise a performance index or utility function. Section 4.2 applies

the information metrics developed in Chapter 3 to formulate utility measures suitable

for information gathering tasks. Unlike the discrete sensor assignment problems consid-

ered earlier, this involves determining continuous trajectories for the sensors and sensor

platforms in the system. These concepts are first applied to single vehicle single sensor

situation in Section 4.3. Concepts and results are illustrated through an example of a

single feature localised by a single bearings-only enabled vehicle. Subsequently, attention

is focused on the far more complex multiple vehicle multiple sensor problem.

The multiple vehicle multiple sensor problem is posed as a team decision problem with

information based utility measures. Many complex issues arise in this situation. Crucial

to the multiple vehicle problem is coordination and cooperation among decision makers.

68
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Coordination and cooperation is investigated by considering decomposition of the global

utility structure in Section 4.4. Partial utility measures are formed by considering the

local knowledge and influence of a decision maker. The usefulness and validity of these

concepts is explored with regard to decentralised solution procedures. In Section 4.5 a

simplified localisation problem is used to investigate these matters. The best response

procedure from Section 2.5.1 is applied to determine the cooperative solution through

decentralised negotiation.

The optimal control solution methods employed are well established and are detailed

in Appendix A. The approach taken is to approximate the optimal solution through

parameterisation of the control trajectories. Sequential quadratic programming is used to

solve the resulting constrained parameter optimisation problem.

4.2 Information as a Control Objective

Chapter 3 introduced information based utility measures that capture the value of sensing

actions. These were applied to determine optimal discrete sensor assignments for the

sensor management problem. This concept is now extended to the problem of controlling

continuous vehicle and sensor trajectories.

In the presence of uncertainty, the true value of a future action can not be determined

exactly. Probabilistic dynamic models of the vehicle, sensors and environment allow a

priori evaluation of the expected utility associated with a sequence of actions. Entropic

information provides a natural utility measure representing the expected compactness of

the posterior probability distribution conditional on the action sequence.

Typical real world sensors have spatially dependent observation information. The

measurement uncertainty varies over a finite range with the relative distance to the object

of interest. Control inputs, such as focal length or signal power level in electro-optic

sensors, may be available to vary the measurement uncertainty. Dynamics and constraints
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??
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Figure 4.1: Mission objectives are cast in to utility functions that include information based
measures. Utility is dependent on the control inputs to the vehicles and sensors. Generating
vehicle and sensor trajectories is formulated as an optimal control problem.

may be associated with the allocation of the sensors to areas of interest. These sensors

are carried on board vehicles that in turn have constrained dynamics and uncertainty

associated with their state and controls. The sensors and vehicles operate in an uncertain

and dynamic environment. Probabilistic models of the sensors, vehicles and environment

can be combined to give an overall representation of the dynamic and control variables

for the problem.

Objectives formed from information measures can be combined with other perfor-

mance measures such as expended energy and risk. When combined with models of the

environment, vehicles and sensors, the sensing requirements are mapped into a numerical

description suitable for systematic optimisation. Given prior knowledge, the expected

utility for a sequence of control actions can be evaluated. Differentiation of the models

allows determination of the sensitivity of the utility measure to the control action. The

best control action can be determined by an extremum seeking loop. This process is

illustrated in Figure 4.2.
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Figure 4.2: Information flow in active sensing. Models of vehicles sensors and the environment
provide means to capture and predict a priori the expected utility of a sequence of actions.
Fusing observation information updates the knowledge from which subsequent optimal actions
are generated.

4.3 A Single Platform Example: Bearings-Only Fea-

ture Localisation

The use of information measures as a performance index in control problems is best illus-

trated through a motivational example. The bearings-only feature localisation problem

is considered. This single vehicle problem has been studied widely by other researchers.

Three studies by Oshman and Davidson [65], Tremois and Le Cadre [90] and Passerieux

and Van Cappel [68] consider the problem from an optimal control perspective. The vehi-

cle control action and trajectory is sought that minimises the determinant of the feature

error covariance at a fixed terminal time tf . This is equivalent to maximising final en-

tropic information or the integral of mutual information gain over time. This example

is revisited with the aim of illustrating the use of entropic information as a performance

metric, the value of prior information, the effect of different information measures and
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the influence of varied optimisation time horizons. The geography of this problem is

illustrated in Figure 4.3.

Figure 4.3: Bearings-only feature localisation problem

4.3.1 Modelling the Vehicle, Sensor and Environment

Central to this problem is the modelling of the vehicle, feature and sensor.

Sensor Platform Model

A sensor platform is moving in the xy plane with constant velocity V . The vehicle’s

location and heading at a time t is captured in the state xs(t). The single control variable

is the rate of change of platform heading. This is shown in Figure 4.4 and modelled by
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the following equations.

xs(t) =








x(t)

y(t)

ψ(t)







, xs(0) =








x(0)

y(0)

ψ(0)







, u(t) = ψ̇(t), ẋs(t) =








V cos(ψ(t))

V sin(ψ(t))

u(t)








(4.1)

x

y

V

o

ψψ

ψψ..

y

x..

..

Figure 4.4: 2D sensor platform vehicle model

Feature Model

The feature is a stationary point on the xy plane. It is modelled by two Gaussian random

constants representing its location xf = [xf , yf ]
T in the xy plane. The feature location is

estimated by the conditional mean x̂f (t) = E{xf (t) | Zt} , where Zt are the observations

made up to time t. The feature location uncertainty is captured by the covariance of the

two dimensional Gaussian distribution Pf (t) = E{(xf − x̂f (t))
T (xf − x̂f (t)) | Zt} . In

the information filter this is represented by the inverse covariance Y(t) = P−1
f (t).

The feature state is not influenced by control input. Process noise is included in the

model to allow for flexibility in the design of the estimator. It is valid to set this to

zero but small non-zero values may improve numerical conditioning. The feature process

model is given by

ẋf (t) = ω(t) (4.2)
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where ω(t) is represented by a zero mean Gaussian process with covariance Q(t) uncor-

related in time, E{ω(t)} = 0, E{ω(t)ωT (τ)} = Q(t)δ(t− τ).

xf
Location Estimate

True Location

3 σσ Confidence Ellipse�xf t
From Y t

Figure 4.5: Feature representation for localisation

Sensor Model

Figure 4.6: 2D range and/or bearing sensor model

The sensor platform carries a sensor making bearings-only observations of a point

feature in the xy-plane. The observation is the bearing of the stationary feature

xf = [xf , yf ]
T relative to the sensor platform location xs(t). As indicated in Figure 4.6.

The observation model equation is:

z(t) = h(xf ,xs)

h(t) = θ(t)− ψ(t) + ν(t)
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= arctan

[
yf − ys(t)

xf − xs(t)

]

− ψ(t) + ν(t) (4.3)

where ν(t) is a zero-mean scalar Gaussian processes with variance R = σ2,

E{ν(t)} = 0, E{ν(t)νT (τ)} = Rδ(t− τ), E{ν(t)ωT (τ)} = 0 ∀ t, τ
The Jacobian with respect to the feature state is:

H(t) = ∇x̂f
h(xf ,xs)

=

[ −(ŷf − ys(t))

(x̂f − xs(t))2 + (ŷf − ys(t))2
,

x̂f − xs(t)

(x̂f − xs(t))2 + (ŷf − ys(t))2

]

=
1

r(t)

[

− sin θ̂(t), cos θ̂(t)
]

Following the reasoning used in derivation of the linearised filter, the resulting obser-

vation information is:

I(t) = HT (t)R−1H(t)

=
1

σ2r̂(t)2




sin2 θ̂(t) − sin θ̂(t) cos θ̂(t)

− sin θ̂(t) cos θ̂(t) cos2 θ̂(t)



 (4.4)

4.3.2 System Equations

The system state consists of the current sensor platform location, feature location esti-

mate, feature inverse error covariance and the performance index. In this case the feature

state remains constant and is not included in the system equations for the optimisation

process. The performance index is a function of the feature inverse error covariance at

the optimisation horizon final time. Hence, there is no requirement to append an integral

cost equation to the system equations. Since the feature information matrix is symmet-

ric, only three of the four values need to be propagated. The evolution of the predicted
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feature Fisher information is given by

Ẏ(t) = −Y(t)QY(t) + I(t, x̂f (t),xs(t)). (4.5)

Let

Y(t) =




Yx(t) Yxy(t)

Yxy(t) Yy(t)



 , I(t) =




Ix(t) Ixy(t)

Ixy(t) Iy(t)



 and Q =




Qx 0

0 Qy



 ,

the equations governing the evolution of the feature information are appended to the

vehicles system dynamics. The stacked system equations become

ẋ(t) = f(x,u) =


















ẋ(t)

ẏ(t)

ψ̇(t)

Ẏx(t)

Ẏxy(t)

Ẏy(t)


















=


















V cos(ψ(t))

V sin(ψ(t))

u(t)

−Y2x(t)Qx − Y2xy(t)Qy + Ix(t)

−Yx(t)QxYxy(t)− Yxy(t)QyYy(t) + Ixy(t)

−Y2xy(t)Qx − Y2y(t)Qy + Iy(t)


















. (4.6)

With utility to maximise at terminal time tf is

J(tf ) = | Y(tf ) | = Yx(tf )Yy(tf )− Y2xy(tf ). (4.7)

Note, in practice the estimation procedure is implemented in discrete time. Performing

the optimisation in a continuous differential formulation allows use of ODE solvers more

efficient than fixed interval recursive implementations. This is particularly justified when

sensor sampling rates are significantly faster than the state dynamics.
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4.3.3 Solution Procedure

The solution to this problem is approached using the control parameterisation scheme

described in Appendix A. The control action, vehicle heading rate, is parameterised by

a number of zero-order steps over the optimisation horizon. The resulting unconstrained

nonlinear programming problem is solved using the SQP routine fminunc from the Matlab

optimisation toolbox [8].

The solution procedure requires gradient information about the performance index

with respect to the solution parameters. This is determined using the forward sensitivity

analysis described in Appendix A. This procedure requires the Jacobians of the system

equations and terminal cost with respect to state and control action. The Jacobians are

∂f
∂x =


















0 0 −V sin(ψ) . . .

0 0 V cos(ψ) . . .

0 0 0 . . .

4(ŷf−y)2(x̂f−x)

σ2r6

4(ŷf−y)3

σ2r6 − 2(ŷf−y)

σ2r4 0 . . .

4(ŷf−y)(x̂f−x)2

σ2r6 − (ŷf−y)

σ2r4

4(ŷf−y)2(x̂f−x)

σ2r6 − (x̂f−x)

σ2r4 0 . . .

4(x̂f−x)3

σ2r6 − 2(x̂f−x)

σ2r4

4(ŷf−y)(x̂f−x)2

σ2r6 0 . . .

0 0 0

0 0 0

0 0 0

−2YxQx −2YxyQy 0

−YxyQx −YxQx − YyQy −YxyQy

0 −2YxyQx −2YyQy


















,

(4.8)

where r =
√

(x̂f − x)2 + (ŷf − y)2, and

∂f

∂u
=
[

0 0 1 0 0 0
]T

, (4.9)
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∂J

∂x
=
[

0 0 0 −Yy 2Yxy −Yx

]

. (4.10)

To solve this problem initial conditions are required for the feature location estimate

and inverse covariance. For the information form of the estimation process and entropic

information metrics there is no problem with choosing zero initial information. The prior

may be known from an alternate information source or estimation method. In the case that

no initial information is available, the integral required to determine mutual information

gain is indefinite. This can be addressed by choosing a suitable small non-zero initial

value. The initial location estimate is required as the observation information prediction

is a function of the relative range and bearing to the feature. This amounts to requiring

an initial range estimate, bearing to the feature being provided by observations.

4.3.4 Solution

This seemingly simple problem belies significant complexity. The objective amounts to

a complex trade-off between reducing range and maximising change in bearing. The

solution trajectory and characteristics vary with initial range, sensor variance and prior

information. This is reasonable given the form of the observation information Equation 4.4

and the control objective Equation 4.7. The observation information increases in inverse

proportion to the range squared and the information gain is higher along bearings with

lower prior information. A variety of solutions are presented to investigate these effects.

In all cases the vehicle velocity is 1m/s and the bearing sensor makes observations at

16Hz with σ = 2.5o.

Details of an example solution are shown in Figures 4.7 to 4.9. The control action

is determined at 4Hz over a 1.5 second time horizon. The initial prior is constructed

from a single bearing observation combined with a “guess” that the target range is 21

metres with large variance. The actual initial range is 14.1 metres. Figure 4.7 shows the

optimal trajectory of sensor platform, the state estimate and the evolution of the feature
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Figure 4.9: 4Hz parameterised control action and resulting vehicle heading.

information. Figure 4.8 shows the state and observation innovations with 3σ confidence

levels. Figure 4.9 shows the parameterised control solution and vehicle heading.

As the feature location estimate approaches the true value, the predicted information

evolution becomes more accurate. This is expected as the predicted information gain

is a function of the state estimate conditional on prior observations. The control and

estimation problems are indeed coupled. The open-loop sensing plan is based on the

feature state estimate that is updated as observations are made.

4.3.5 Temporal Considerations

This feature localisation example highlights the temporal dependencies in controlling the

sensing processes. To illustrate this solutions for varied time horizons are compared. The

cases are listed in Table 4.1. In all cases the vehicle velocity is 1m/s and the bearing

sensor makes observations at 16Hz with σ = 2.5o.
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Case 1 2 3 4 5 6 7 8 9

Final time Tf 26 25 24 22.75 21.25 20 18.75 16.5 14
Time horizon Th .5 1 2 3.25 4.25 5 6.25 8.25 14
Control parameters 2 2 4 4 4 5 4 7 7
Optimisation stages 52 25 12 7 5 4 3 2 1

Table 4.1: Details of parameterised solution cases used to investigate the influence of planning
horizon duration. Final time, optimisation time horizon, the number of parameters used to
represent the control action and the total number of optimisation stages are indicated.

To isolate the influence of varied time horizons the open-loop solutions are computed

with the correct range to the feature. While unrealistic, this allows investigation of char-

acteristics of the solution trajectories with varied time horizons. The resulting vehicle

trajectories and expected information time series are shown in Figure 4.10. As the plan-

ning horizon increases, the optimal solutions to the localisation problem tend to initially

reduce range to the feature, thus increasing the value of subsequent bearing changes.

As observations are made, the information and information state can be compared to

their predicted values. This can be observed in figure 4.7. The initial rate of information

gain is significantly greater than predicted. This is because the estimated range is far

greater than the true value, revealing an inconsistency. As the optimisation horizon is

increased, the ability to distinguish range inconsistencies is reduced over the initial portion

of the solution. A long planning horizon, such as in trial 9, would not reveal whether the

estimate on which it is based is significantly inaccurate.

Sensing problems inherently involve uncertain, linearised and potentially dynamic en-

vironments. Planning too far ahead is meaningless and incurs significant computational

expense. Not looking ahead may fail to capture potential benefits and lead to undesirable

variations in control. This implies a compromise is required in choosing the planning hori-

zon and control parameterisation. With knowledge of the system dynamics and current

state, a spectrally suitable action parameterisation can be made, optimised and updated.

Within a small region, perturbations about the open-loop trajectory can be used to
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obtain a feed-back solution. The scheme implemented in this example only updates the

control solution at the end of each open-loop stage. An alternative would be to incorporate

a perturbed feed-back rule as each observation is made.

4.3.6 Influence of Prior Information and Initial Range

To study the effects of feature prior information and initial range in bearings-only sensing,

a number of solutions is presented with a fixed small optimisation horizon. Figure 4.11

shows fifteen solution trajectories with differing prior information. Figure 4.12 shows

variations in the solution trajectories with initial range to the feature.

The first plot in each of these figures corresponds to the situation where there is no

prior information concerning the range to the feature. The only information contained in

the prior is the bearing to the feature. A closed form linearised solution to this situation

with infinitesimally small look ahead is presented in [39]. In this case the initial action is to

head perpendicular to the feature bearing. The heading rate is updated according to the

law u = −2θ̇. This results in a spiralling trajectory toward the feature. At small ranges
to the feature, the linearisation on which this solution is based fails. The trajectories

plotted agree with this solution. A small difference is introduced by the optimisation look

ahead.

With alternate priors, the solution trajectories exhibit additional characteristics. The

prior information alters the merit of reducing range over changing relative bearing. Con-

sequently the optimal initial heading varies. The solution trajectories tend to move the

sensor towards a location where observations provide the largest information gain. When

the prior location estimate confidence is near circular there is little value in varying rela-

tive bearing. Thus, the solution reduces range exclusively. At relatively large ranges the

value of bearing variations is also reduced. This effect is evident in Figure 4.12.

Intuitively, higher prior information allows development of more reliable longer term

plans. A remarkable result is that the short term plan exhibits characteristics of the
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Figure 4.11: Fifteen trajectories showing the variation in solution characteristics with prior
information. Prior information is indicated by the dashed confidence ellipse. The first plot
corresponds to the situation where there is no initial range information. It is most interesting
to observe that as the prior uncertainty is lower and more circular, the path to the feature is
more direct.
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longer term plan as prior knowledge increases. This argues that short term look ahead

provides an acceptable solution in addition to reduced solution effort.

4.3.7 Investigation of Alternate Utility Metrics

Section 3.5.3 proposed using metrics related to information other than entropy and mutual

information. The effect, performance and applicability of these can be evaluated by

applying them to this localisation example.

One possible utility measure is provided by the trace of the information matrix as

suggested in [99]. For the bearings-only problem, maximising the trace of the information

matrix minimises the distance to the feature, since trace (I(k)) = 1
σ2r2 . The trace thus

fails to capture the vital dependence on bearing in the sensor information or value prior

information. The resulting trajectory, a straight line to the expected location of the

feature, gathers the least information.

Figure 4.13 shows the variation in observer trajectories for three different cost functions

with one step ahead optimisation:

1. max | Y(k | k − 1) |

2. min trace
(
Y(k | k − 1)−1

)

3. max(min eig (Y(k | k − 1)))

The differences in solutions are to be expected as the metrics weight contributions of the

elements of the prior and observation information differently. To some extent, the most

appropriate metric is application specific. Some applications may not wish to consider the

probabilistic model as a whole. This could include optimising or bounding the uncertainty

of a projection of the state estimate.
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Figure 4.13: Comparison of information based utility measures. Trajectories are shown
for three metrics: max | Y(k | k − 1) | (solid), min trace(Y(k | k − 1)−1) (dash dot) and
max(min eig(Y(k | k − 1))) (dotted). The etropic measure provides the best solution and has
the lowest associated numerical effort.
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4.3.8 Implications for Active Sensing

Active path control of a sensor can yield significant benefits. In the case of a bearing-only

localisation problem, as described in this section, motion is essential to achieve accurate

location estimates. By controlling or optimising the path taken by the sensor, substantial

improvements in localisation performance may be obtained. Selection of a sensor motion

based on entropic information maximisation results in a solution whose characteristics are

intuitively appropriate and correct.

The example highlights the importance of control parameterisation and optimisation

time horizon on solution performance. In a linearised, uncertain and unstructured world it

is impossible to plan an entire task to completion. As uncertainty is reduced, the time over

which predictions are reliable increases. Parameterisation of the control inputs admits a

sub-optimal approximate solution. The time scales of system dynamics and performance

measures indicate suitable bandwidth and horizon for control parameterisation. This helps

to limit the computation required for an acceptable solution. The example demonstrates

that this approach, illustrated in figure 4.14 , provides an effective solution to the active

sensing problem.

4.4 Value in Multi-Vehicle Multi-Sensor Systems

In this section, the control of multi-vehicle multi-sensor systems is considered as a team

decision problem in the form described in Section 2.3. Decentralised sensor systems are

naturally considered in this framework. Value, in the sense of utility associated with a

decision maker’s action, and its dependence and influence on the actions of other members

is central to the team decision problem. The underlying information in the sensor fusion

problem forms a well defined utility structure. This section seeks to better understand

the relationship between the value of a decision maker’s actions, and the team decision

problem solution characteristics.
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Figure 4.14: Predictive control for active sensing, based on expected utility with intermittent
feedback through fusion of observed information

The team decision problem allows each decision maker to have different individual

utility. There is no need for a global utility. The optimal solution is the actions that jointly

maximise the team member’s individual utility functions. While this idea is powerful and

generic, it does not provide an intuitive view of the interrelation between members of

decentralised decision making teams. More insight is provided by imposing additional

structure in the form of a value.

The team sensing problem possesses inherent structure. Each team member estimates

the state and maintains a measure of uncertainty about a list of objects in the environment.

Decision makers may possess complementary sensory capability regarding a common state.

The decision makers are coupled through this common information.

Value amongst decision makers is crucial to coordination and cooperation. Coupled

utility may give rise to coupled, coordinated actions. Negotiation procedures allow a

priori influence in utility among decision makers. This allows cooperation between team

members.

Utility measures that do not reflect the true global value are of interest. This arises
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from the measures associated with the information available to or considered by an indi-

vidual decision maker. Fundamental to cooperation is the effect on an indiviual’s action

caused by considering other decision makers. This section explores this issue by consider-

ing the the local decision problem from an individual and team perspective. Implications

for the nature of cooperation and the solution complexity are established. This is illus-

trated through a simple two sensor feature localisation problem.

4.4.1 Local Partial utility and Global Utility

In addition to the individual’s utility with in the team Ji(u1, . . . ,un), it is of use to define

the notion of a partial utility J̃i(ui). This is a measure of the utility associated with

an individual acting without knowledge or consideration of the other decision makers.

This considers only accumulated prior knowledge and the information gathered locally.

Extreme care must be applied in using the concept of partial utility. The partial utilities

alone do not reflect the group utility. There is no reason ever to expect them to provide

a conservative approximation to the group utility. They are of interest due to reduced

complexity of the local solution.

Maximising local utility is often referred to as the “greedy” solution. This is a most

inappropriate title as the result is almost certainly not the solution for the decision maker

when the team is considered. By definition, the Nash Solution is one where no decision

maker has an incentive to deviate. There is nothing “greedy” or “selfish” about acting

without considering the influence of others. The “obtuse” solution may be a more apt

title.

Partial utility measures do not account for the coupling between decisions and do not

necessarily fully reflect the true global utility. It is important to make a distinction be-

tween coupled utility and coupled actions. If two decision makers’ utilities are coupled,

it does not imply their actions will change if the coupling were ignored. This idea leads

to an important question: When does maximising partial local utilities achieve the global
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optimal action? This has significant implications for decentralised decision making. Iden-

tifying when individual actions based on partial local utility approximations are globally

optimal provides a means for decomposing the team below the level at which actions are

coupled in group utility.

4.4.2 Utility Structure Decomposition

Insight is sought into the structure of utility in a system of cooperative decision mak-

ers. While formulation of the team decision problem caters for each individual having a

different utility function, its optimisation offers little insight into the decentralised deci-

sion making problem. An alternate structure is required that provides value measures to

individual decision makers, while capturing the influence decision makers have on each

other. To enable this, the notion of partial utility J̃i(ui) is employed. An additional

term Jc(u1, . . . ,un), captures the coupling between decision makers. Partial local utility

measures, when combined with the coupling function, are equivalent to the global utility.

A most desirable utility structure would be additive partial utility. This form is at-

tractive due to the simple structure of its derivatives with respect to the decision variable.

An additive global structure is

J(u1, . . . ,un) =
n∑

i=1

J̃i(ui) + Jc(u1, . . . ,un) (4.11)

with individual team member utility

Ji(u1, . . . ,un) = J̃i(ui) +
1

n
Jc(u1, . . . ,un).

An alternative and more complicated form consists of multiplicative partial utilities,

J(u1, . . . ,un) = Jc(u1, . . . ,un)
n∏

i=1

J̃i(ui). (4.12)
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Other functional forms, including combinations of 4.11 and 4.12 are of interest. Attention

focuses on Equation 4.11 as the additive properties of information described in Chapter

3 suggest the use of this structure in sensing problems.

Potential situations exist where the utility coupling term Jc(u1, . . . ,un) may be further

decomposed into a number of disjoint terms. This provides further simplification of the

utility structure and required solution process. In the additive structure 4.11, it implies

the global problem is composed of k independent sub-problems

Jc(u1, . . . ,un) =
k∑

i=1

Jc(ūi), ūi ⊂ u, ūi ∩ ūj = 0, i 6= j.

Decision makers are members of independent coalitions within which utility is coupled.

4.4.3 Optimising Decomposed Utilities

A common approach in solving decision and control problems is to convert them into

mathematical programming problems through parameterisation. For this reason it is of

interest to recall a simple global parameter optimisation problem:

u? = argmax
u

J(u), u = {u1, . . . ,un} ∈ U ⊂ Rn (4.13)

The conditions for a local maximum are

∂J(u)

∂ui

= 0, i = 1, . . . , n (4.14)

and that the (n× n) Hessian matrix be negative semidefinite

∂2J(u)

∂u2
≤ 0 (4.15)

All points satisfying 4.14 are known as stationary points. The nature of these points

may be determined from the eigenvalues of the Hessian:

1. Maximum: All eigenvalues are negative.
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2. Minimum: All eigenvalues are positive.

3. Saddle point : Some eigenvalues are positive and some negative.

4. Singular : One or more eigenvalues are zero. Additional information is required to

determine if such a point is an extremum.

The signs of determinants of the principle minors of the Hessian can be used to test

for maxima rather than directly testing the sign of the eigenvalues. For two parameter

systems | ∂2J(u)
∂u2 | > 0 implies the eigenvalues are either both positive or both negative

determined by the sign of ∂2J(u)
∂u1

2 . | ∂2J(u)
∂u2 | < 0 implies a positive and negative eigenvalue.

| ∂2J(u)
∂u2 | = 0 implies one or more zero eigenvalues, hence a singular stationary point with

higher derivatives required to test for an extremum.

This analysis can be applied to the additive utility structure 4.11 to investigate the

relationship between the individual and team optimal solutions.

4.4.4 Levels of Coordination and Cooperation

Section 2.4.1 discussed and attempted to define notions of coordination and cooperation.

Coordination and cooperation can only occur between decision makers if their individual

utility measures are coupled through their state and actions. This section explores the

levels of coordination and cooperation that arise in application of additive partial utility

structure 4.11 to the parameter optimisation problem 4.13. The objective is to address

the following questions:

1. When and how are the decision makers decision processes coupled?

2. When are the actions that maximise partial utilities globally optimal?

3. Do non-maximal stationary points of partial utility ever become globally optimal?

4. How complex is finding the global optimal cooperative solution?
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The conditions for global stationary points are obtained by differentiating 4.11.

∂J(u1, . . . ,un)

∂ui

=
∂J̃i(ui)

∂ui

+
∂Jc(u1, . . . ,un)

∂ui

= 0, i = 1, . . . , n (4.16)

The elements of the Hessian are

∂2J(u1, . . . ,un)

∂ui
2

=
∂2J̃i(ui)

∂ui
2
+
∂2Jc(u1 , . . . ,un)

∂ui
2

, i = 1, . . . , n

∂2J(u1, . . . ,un)

∂ui∂uj

=
∂2Jc(u1 , . . . ,un)

∂ui∂uj

, i 6= j. (4.17)

Equations 4.16 and 4.17 indicate how the coupling term influences the global topology

and the locations of the global stationary points relative to the stationary points of the

partial utility. From this the following situations emerge:

1. Cooperation Not Required and Not Beneficial

No coupling in utility between actions,

∂Jc(u1, . . . ,un)

∂ui

=
∂Jc(u1, . . . ,un)

∂uj

= 0 ∀ {ui,uj} ∈ U ⊂ R

implies ui and uj are not coupled and there is no benefit from cooperation. The

actions are optimised independently.

2. Elementary Cooperation Beneficial

Coupling between actions appears in the global utility (i.e. Jc(u1, . . . ,un) 6= 0) and
the condition

∂Jc(u1, . . . ,un)

∂ui

∣
∣
∣
ui=u∗i

= 0, for any u∗
i ∈

{

ui :
∂J̃i(ui)

∂ui

= 0

}

for i = 1, . . . , n

is satisfied. This is a special case where some combinations of partial stationary

points are global stationary points, hence, potential maxima. Each combination

can be tested with three possible outcomes:
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(i) The local maxima are the global maximum. In case (i), the individual utilities

are coupled but the optimal actions are independent. The global solution is

the set of actions maximising partial utility. This is of particular interest as

it provides a means of decomposing problems to a level below that achieved

through identifying coupling in utility.

(ii) The global maximum is a combination of the local maxima, minima, saddle

and singular stationary points. The actions and utilities of the decision makers

are coupled. Cooperation through some form of communication is required

to identify and resolve this case. However, the global solution is immediately

known from partial problems. With the possibility that a decision maker’s

best action is the worst obtained based on partial information. Realising this

situation yields significant benefit to the solution process.

(iii) All combinations are global minima, saddle points or non-maximising singu-

lar points. Global maxima must exist and lie away from these points. The

maximising solution is not locally convex in the region of the partial station-

ary points. Full cooperation between decision makers is required to reach the

global maximum.

3. Full Cooperation Required

Coupling moves global maximum away from all partial stationary points

∂Jc(u1, . . . ,un)

∂ui

∣
∣
∣
ui=u∗i

6= 0 ∀ u∗
i ∈

{

ui :
∂J̃i(ui)

∂ui

= 0

}

for i = 1, . . . , n.

Cooperation is required to obtain the global solution through some form of negotia-

tion or bargaining. Solving the partial problems does not yield the global solution.

The global solution may lie in a locally convex region near a combination of local

fixed points. However, coupling may result in significant differences between topol-

ogy of global and local utility. This can be determined from the curvature of the
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utility with respect to the actions at the partial stationary points; resulting in an

indication of the effort and complexity required to determine the solution.
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Figure 4.15: Levels of cooperation and solution complexity

From this reasoning, tests emerge that answer all of the questions posed at the begin-

ning of this section. A simple example follows to illustrate the effect of coupling between

decision makers with this utility structure.
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4.5 A Multi-Platform Example: Feature Localisation

With Two Range-Only Sensors

A simple example is presented to clarify and illuminate the issues regarding control of

and value in multi-sensor teams. This example explores utility decomposition, partial

and global solutions, and cooperation. It has significant implications for the problem of

distributed versus global decision making.
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Figure 4.16: Single feature localisation with two range-only sensors. This illustrates how the
control variables are mapped to utility. The actions are the orientation of the conditional
observation likelihoods. The utility measure is the volume of the posterior distribution, when
these observations are combined with prior information.

4.5.1 Formulation as Problems in Local and Global Utility

Two sensor platforms make range observations zi, i = 1, 2 of a features location x in the

xy-plane. The control action ui, i = 1, 2 available to observers is their bearing relative

to the expected location of the feature x̂(k | k − 1). The control objective is to maximise



99

the expected entropic information at step k given prior inverse covariance Y(k | k − 1)
and the observation inverse covariance updates I1(k | k − 1,u1) and I2(k | k − 1,u2). The
posterior inverse covariance is given by the update stage of the information filter

Y(k | k) = Y(k | k − 1) + I1(k | k − 1,u1) + I2(k | k − 1,u2).

The posterior entropic information is

i(k) =
1

2
log
(
(2πe)2| Y(k | k) |

)

arg max
{u1,u2}

i(k) ≡ arg max
{u1,u2}

| Y(k | k) |.

This problem is equivalent to maximising the utility function

J(u1,u2) = | Y(k | k − 1) + I1(k | k − 1,u1) + I2(k | k − 1,u2) |. (4.18)

The global utility in Equation 4.18 can be decomposed into the form 1

J(u1,u2) = J̃1(u1) + J̃2(u2) + Jc(u1,u2) (4.19)

where
J̃1(u1) = | Y(k | k − 1) + I1(k | k − 1,u1) |
J̃2(u2) = | Y(k | k − 1) + I2(k | k − 1,u2) |

Jc(u1,u2) = | I1(k | k − 1,u1) + I2(k | k − 1,u2) | − | Y(k | k − 1) |.

(4.20)

The partial utilities and coupling term in Equation 4.20 have an interpretation in terms

of information 2. J̃1(u1) and J̃2(u2) are the information gains for the individual isolated

sensing actions u1 and u2. Jc(u1,u2) is the information common to the observations.

Thus, the combined information gain is the sum of the individual gains less the common

1For any 2x2 matrices A, B and C, | A+B+C |=| A+B | + | A+C | + | B+C | − | A | − | B | − | C |,
proof by algebraic substitution is trivial. Note | Ii(k | k − 1,ui) |= 0, i = 1, 2 in this case.

2Although these are not equivalent to the formal definitions
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information.

4.5.2 Modelling Observation Information

The observation model is zi(k) = h(x(k),ui,vi(k)) where vi(k) is taken to be a zero-

mean uncorrelated Gaussian sequence with variance E{vi(k)v
T
i (k)} = Ri = σ2i , The

observation model is range only

h(x(k)) = r(k) + vi(k) =
√

(x(k)− xi(k))2 + (y(k)− yi(k))2 + vi(k).

The Jacobian with respect to feature state estimate is

Hi(x̂(k | k − 1)) =
[

−x̂(k|k−1)+xi(k)√
(x̂(k|k−1)−xi(k))2+(ŷ(k|k−1)−yi(k))2

ŷ(k|k−1)−yi(k)√
(x̂(k|k−1)−xi(k))2+(ŷ(k|k−1)−yi(k))2

]

=
[

− cos(ui(k)) sin(ui(k))
]

(4.21)

where ui(k) is the bearing angle from observer i to the estimated feature location, which

is taken to be the control variable. The expected observation information for this sensor

model is given by

Ii(k,ui) = HT
i (x̂(k | k − 1))R−1

i Hi(x̂(k | k − 1))

=
1

σ2i




cos2(ui(k)) sin(ui(k)) cos(ui(k))

sin(ui(k)) cos(ui(k)) sin2(ui(k))



 . (4.22)

4.5.3 Partial and Global Solutions

The models of sensor observation information are substituted into Equations 4.20 to

provide the individual partial utility measures J̃1(u1) and J̃2(u2) and their coupling in

team utility Jc(u1,u2). The form of the utility representation and its derivatives is as
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follows. Let

Y(k | k − 1) =




Yx Yxy

Yxy Yy



 . (4.23)

This prior must be positive semi-definite so

Yx ≥ 0, Yy ≥ 0, Y2
xy ≤ YxYy. (4.24)

From Equation 4.20, the partial local utility measure for each sensor is

J̃i(ui) = YxYy −Y2xy +
1

σ2i
(Yx sin(ui)

2 +Yy cos(ui)
2 − 2Yxy sin(ui) cos(ui)), (4.25)

with coupling given by

Jc(u1,u2) =
1

2σ21σ
2
2

(1− cos(2(u1 − u2))). (4.26)

The elements of the Jacobian are

∂J̃i(ui)

∂ui

=
1

σ2i
(Yx sin(2ui) +Yy sin(2ui)− 2Yxy cos(2ui)) (4.27)

∂Jc(u1,u2)

∂u1

=
1

σ21σ
2
2

sin(2(u1 − u2)) (4.28)

∂Jc(u1,u2)

∂u2

= − 1

σ21σ
2
2

sin(2(u1 − u2)). (4.29)

The elements of the Hessian are:

∂2J̃i(ui)

∂ui
2

=
2

σ2i
(Yx cos(2ui)−Yy cos(2ui) + 2Yxy sin(2ui)) (4.30)

∂2Jc(u1 ,u2 )

∂ui
2

=
2

σ21σ
2
2

cos(2(u1 − u2)) (4.31)

∂2Jc(u1 ,u2 )

∂u1∂u2

=
∂2Jc(u1 ,u2 )

∂u2∂u1

= − 2

σ21σ
2
2

cos(2(u1 − u2)). (4.32)
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These equations describe local and global utility. From which local and global optimal

actions are found 3. The partial local utility J̃i(ui), has two stationary points,
∂J̃i(ui)
∂ui

= 0

ũ+ = argmax
ui

J̃i(ui)

= arctan

( −1
2Yxy

(Yx −Yy +
√

(Yx −Yy)2 + 4Yxy)

)

+ kπ, k = 0, 1 (4.33)

ũ− = argmin
ui

J̃i(ui)

= arctan

( −1
2Yxy

(Yx −Yy −
√

(Yx −Yy)2 + 4Yxy)

)

+ kπ, k = 0, 1 (4.34)

Note, ũ+ and ũ− differ by π/2 and correspond to the directions of the eigenvectors

of the prior distribution. On substitution it is found that, ∂2J̃i (ui )
∂ui

2

∣
∣
∣
ui=ũ

+
i

< 0, hence ũ+ is

the maximising solution.

With the aid of the Matlab Symbolic Math Toolbox [16], it is possible to determine

an algebraic form for the globally optimal actions. Solutions are found to the system of

nonlinear equations ∂J(u1,u2)
∂u1

= 0 and ∂J(u1,u2)
∂u2

= 0. Applying second derivative tests to

each leaves two optimal solutions for each action.

u∗
1 = arg max

{u1,u2}
J(u1,u2)

=
1

2
arctan




2Yxy

[

−σ41 + σ42 + σ41σ42X1 ∓ (Yx −Yy)Yxy

√
X2

]

σ41σ
4
2(Yx −Yy)

[

X1 +
1
σ4

1

− 1
σ4

2

]

+ 2Yxy

√
X2





+kπ, k = 0, 1 (4.35)

u∗
2 = arg max

{u1,u2}
J(u1,u2)

=
1

2
arctan




2Yxy

[

σ41 − σ42 + σ41σ42X1 ± (Yx −Yy)Yxy

√
X2

]

σ41σ
4
2(Yx −Yy)

[

X1 − 1
σ4

1

+ 1
σ4

2

]

− 2Yxy

√
X2





+kπ, k = 0, 1 (4.36)

3This example was selected to compare local and global optimal actions due to the existence of analytic
solutions.
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Where

X1 = (Yx −Yy)
2 + 4Y2

xy

X2 = −
(

σ41σ
4
2X1 − (σ21 − σ22)

2
)(

σ41σ
4
2X1 − (σ21 + σ22)

2
)

.

Surfaces of these solutions for a range of feature prior information are shown in Figure

4.17 for the situation corresponding to σ1 = 1.5, σ2 = 2 and Yx=.75 fixed while varying

Yy and Yxy.

Figure 4.17: Surfaces of the optimal sensor actions for varied prior information highlighting
the ocurrance bifurcation in the optimum group decisions. There are three distinct regions. In
which the optimal sensing actions are equal, differ by 90 degrees or are one of two symmetrical
solutions.

4.5.4 Determining Cooperation Boundaries

On inspecting the derivatives of the utility coupling term Equation 4.26 it is found that

∂Jc(u1,u2)

∂u1

=
∂Jc(u1,u2)

∂u2

= 0, if u1 − u2 = ±kπ/2, k = 0, 1, 2, . . .
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The local stationary solutions ũ+ and ũ− given by Equations 4.33 and 4.34 differ by π/2.

Hence, any combination of the local stationary solutions is a stationary solution of the

global utility. Specifically,

{u∗
1,u

∗
2} ∈ [{ũ+, ũ+}, {ũ+, ũ−}, {ũ−, ũ+}, {ũ−, ũ−}] (4.37)

is a global stationary point, hence a potential global maximum. The conditions for this

to occur will now be determined. Recall that {u∗
1,u

∗
2} is a maximum if

∂2J(u1 ,u2 )
∂u1

2

∣
∣
∣
{u∗1,u

∗
2}
< 0 and

∂2J(u1 ,u2 )
∂u1

2

∣
∣
∣
{u∗1,u

∗
2}

∂2J(u1 ,u2 )
∂u2

2

∣
∣
∣
{u∗1,u

∗
2}
−
(

∂2J(u1 ,u2 )
∂u1∂u2

∣
∣
∣
{u∗1,u

∗
2}

)2

> 0.

For the coupled utility formulation Equation 4.19, this condition becomes

∂2J̃1 (u1 )
∂u1

2

∣
∣
∣
u∗1

+ ∂2Jc(u1 ,u2 )
∂u1

2

∣
∣
∣
{u∗1,u

∗
2}
< 0 and

(

∂2J̃1 (u1 )
∂u1

2

∣
∣
∣
u∗1

+ ∂2Jc(u1 ,u2 )
∂u1

2

∣
∣
∣
{u∗1,u

∗
2}

)(

∂2J̃2 (u2 )
∂u2

2

∣
∣
∣
u∗2

+ ∂2Jc(u1 ,u2 )
∂u2

2

∣
∣
∣
{u∗1,u

∗
2}

)

− . . .
(

∂2Jc(u1 ,u2 )
∂u1∂u2

∣
∣
∣
{u∗1,u

∗
2}

)2

> 0.

(4.38)

Substituting the stationary partial utility combinations of Equation 4.37 into the Equation

4.38 leads to inequalities for the prior and sensor observation information that establish

when these cases are global maximal solutions. The four combinations are considered as

follows

Combination 1: {u∗
1,u

∗
2} = {ũ+, ũ+}

u∗
1 − u∗

2 = ±kπ, k = 0, 1, 2, . . . so

∂2Jc(u1 ,u2 )
∂ui

2

∣
∣
∣
{ũ+,ũ+}

= 2
σ2

1σ
2
2

∂2Jc(u1 ,u2 )
∂u1∂u2

∣
∣
∣
{ũ+,ũ+}

= ∂2Jc(u1 ,u2 )
∂u2∂u1

∣
∣
∣
{ũ+,ũ+}

= − 2
σ2

1σ
2
2

.
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Substituting the partial maximal ũ+ and minimal ũ− actions Equations 4.33 and 4.34

into the Hessian for the partial utilities Equation 4.30 gives

∂2J̃i (ui )
∂ui

2

∣
∣
∣
ũ+
= − 2

σ2
i

√

(Yx −Yy)2 + 4Y
2
xy

∂2J̃i (ui )
∂ui

2

∣
∣
∣
ũ−
= 2

σ2
i

√

(Yx −Yy)2 + 4Y
2
xy

Condition 4.38 becomes

− 2
σ2

1

√

(Yx −Yy)2 + 4Y
2
xy +

2
σ2

1σ
2
2

< 0

(− 2
σ2

1

√

(Yx −Yy)2 + 4Y
2
xy +

2
σ2

1σ
2
2

)(− 2
σ2

2

√

(Yx −Yy)2 + 4Y
2
xy +

2
σ2

1σ
2
2

)− 4
σ2

1σ
2
2

> 0

or

4Y2xy + (Yx −Yx)
2 > (

1

σ21
+
1

σ22
). (4.39)

Combination 2: {u∗
1,u

∗
2} = {ũ+, ũ−}

u∗
1 − u∗

2 = ±kπ/2, k = 1, 3, 5 . . . so

∂2Jc(u1 ,u2 )
∂ui

2

∣
∣
∣
{ũ+,ũ−}

= − 2
σ2

1σ
2
2

∂2Jc(u1 ,u2 )
∂u1∂u2

∣
∣
∣
{ũ+,ũ−}

= ∂2Jc(u1 ,u2 )
∂u2∂u1

∣
∣
∣
{ũ+,ũ−}

= 2
σ2

1σ
2
2

.

Condition 4.38 becomes

− 2
σ2

1

√

(Yx −Yy)2 + 4Y
2
xy − 2

σ2
1σ

2
2

< 0

(− 2
σ2

1

√

(Yx −Yy)2 + 4Y
2
xy − 2

σ2
1σ

2
2

)( 2
σ2

2

√

(Yx −Yy)2 + 4Y
2
xy − 2

σ2
1σ

2
2

)− 4
σ2

1σ
2
2

> 0

or

4Y2xy + (Yx −Yy)
2 < (

1

σ21
− 1

σ22
). (4.40)

Which can only occur if σ1 < σ2.

Combination 3: {u∗
1,u

∗
2} = {ũ−, ũ+}
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u∗
1 − u∗

2 = ±kπ/2, k = 1, 3, 5 . . . so

∂2Jc(u1 ,u2 )
∂ui

2

∣
∣
∣
{ũ−,ũ+}

= − 2
σ2

1σ
2
2

∂2Jc(u1 ,u2 )
∂u1∂u2

∣
∣
∣
{ũ−,ũ+}

= ∂2Jc(u1 ,u2 )
∂u2∂u1

∣
∣
∣
{ũ−,ũ+}

= 2
σ2

1σ
2
2

.

Condition 4.38 becomes

2
σ2

1

√

(Yx −Yy)2 + 4Y
2
xy − 2

σ2
1σ

2
2

< 0

( 2
σ2

1

√

(Yx −Yy)2 + 4Y
2
xy − 2

σ2
1σ

2
2

)(− 2
σ2

2

√

(Yx −Yy)2 + 4Y
2
xy − 2

σ2
1σ

2
2

)− 4
σ2

1σ
2
2

> 0

or

4Y2xy + (Yx −Yy)
2 < (

1

σ22
− 1

σ21
). (4.41)

Which can only occur if σ1 > σ2.

Combination 4: {u∗
1,u

∗
2} = {ũ−, ũ−}

As in case 1, u∗
1 − u∗

2 = ±kπ, k = 0, 1, 2, . . . so

∂2Jc(u1 ,u2 )
∂ui

2

∣
∣
∣
{ũ−,ũ−}

= 2
σ2

1σ
2
2

∂2Jc(u1 ,u2 )
∂u1∂u2

∣
∣
∣
{ũ−,ũ−}

= ∂2Jc(u1 ,u2 )
∂u2∂u1

∣
∣
∣
{ũ−,ũ−}

= − 2
σ2

1σ
2
2

.

Condition 4.38 becomes

√

(Yx −Yy)2 + 4Y
2
xy +

1

σ21σ
2
2

< 0.

Which can never happen.

4.5.5 Summary of Problem Solution

In addition to the requirement for a proper prior, the developments in Section 4.5.4 lead

to three conditions where the global optimal is a combination of the local extremum.

These conditions are now summarised:
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if 4Y2
xy + (Yx −Yx)

2 ≥ ( 1
σ2

1

+ 1
σ2

2

)

The globally optimal actions are the actions that maximise local partial utility.

This situation is not fully cooperative. The decision makers do not influence

each others’ actions at the optimum solution. Utility of the group action is not

changed by team members knowing other decsion makers exist. However, the

individual partial utilities are unconservative due to the information common

to the group observations.

arg max
{u1,u2}

J(u1,u2) ≡ arg{max
u1

J̃1(u1),max
u2

J̃2(u2)}

else if σ1 < σ2 and 4Y
2
xy + (Yx −Yx)

2 ≤ ( 1
σ2

1

− 1
σ2

2

)

The globally optimal actions are for the first sensor to maximise its local partial

utility and the second sensor to minimise its local partial utility. The decision

makers must cooperate to realise the optimum group utility.

max
{u1,u2}

J(u1,u2) ≡ arg{max
u1

J̃1(u1),min
u2

J̃2(u2)}

else if σ1 > σ2 and 4Y
2
xy + (Yx −Yx)

2 ≤ ( 1
σ2

2

− 1
σ2

1

)

The globally optimal actions are for the first sensor to minimise its local partial

utility and the second sensor to maximise its local partial utility. The decision

makers must cooperate to realise the optimum group utility.

max
{u1,u2}

J(u1,u2) ≡ arg{min
u1

J̃1(u1),max
u2

J̃2(u2)}

else

Coupling in utility has shifted the global maxima away from the partial utility

stationay points. {ũ+, ũ+}, {ũ+, ũ−} and {ũ−, ũ+} are global saddle points.
Alternative maxima must lie between pairs of them. The decision makers must

cooperate to achive the optimum group utility
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Example solutions are considered to illustrate how the stucture of the utility and optimal

decisions varies with the prior feature location information. Figure 4.18 indicates the

details of seven cases along with the cooperation boundaries for the situation correspond-

ing to σ1 = 1.5, σ2 = 2 and Yx=.75 fixed while varying Yy and Yxy. For each case,

Figures 4.19 to 4.25 detail the utility topology over the range of sensing actions and the

geometry of the optimal solution in terms of the prior and posterior feature location con-

fidence. The utility topology is indicated by four sets of contours. The contours of global

utility Jc(u1,u2), contours where the elements of the Jacobians ∇u1
J(u1,u2) = 0 and

∇u2
J(u1,u2) = 0 equal zero and a contour of zero Gaussian curvature | ∇2uJ(u1,u2) | = 0.

Figure 4.18: Boundaries for cooperative solution type in the two range-only feature localisation
problem for varied prior information. The cases detailed in Figures 4.19 to 4.25 are indicated.
Bifurcation in the structure of the optimal solution occurs at these boundaries. In ‘zone 1’ the
optimum group solution is for the 1st sensor to maximise and the 2nd sensor to minimise their
local partial utility measures. This changes in ‘zone 2’ and the maximising solutions move away
from the partial utility stationary points. In ‘zone 3’ the group optimal actions are the maximum
solutions to the partial utility measures.
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Figure 4.19: Utility contours for case 1. Note case 1 corresponds to the situation where the prior
distribution confidence is circular. There are no unique local or global solutions. The global
solution is the condition that the sensor actions differ by 90 degrees.

4.5.6 Cooperative Solution by Negotiation

Iterative solutions to team decision problems were discussed in section 2.5. Better-

Response negotiation was highlighted as a mechanism for finding pure Nash equilibria.

This method is now applied to the two sensor localisation problem under consideration.

Recall that the global utility 4.18 for this problem is the determinant of the sum of

the prior information and the conditional observation information

J(u1, . . . ,un) = | Y(k | k − 1) +
∑n

i=1 Ii(k | k − 1,ui) |

Observe that the observation information of the other decision makers is additive and

associative with the prior information. In effect, the other decision makers create a modi-

fied prior conditional on their actions. Hence, the optimal decision rule for a single sensor

to a given prior is the best response function to the other team members given the prior
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Figure 4.20: Utility contours and solution geometry (b) for case 2. (a) shows the contours in
global utility (solid), along with zero contours of the Jacobian (dotted) and curvature (dashed).
In this case the optimal global action corresponds to sensor 1 maximising local utility and sensor
2 minimising its local utility.
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Figure 4.21: Utility contours and solution geometry (b) for case 3. (a) shows the contours in
global utility (solid), along with zero contours of the Jacobian (dotted) and curvature (dashed).
In this case the optimal global action corresponds to sensor 1 maximising local utility and sensor
2 minimising its local utility.
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Figure 4.22: Utility contours and solution geometry (b) for case 4. (a) shows the contours in
global utility (solid), along with zero contours of the Jacobian (dotted) and curvature (dashed).
In this case the optimal global actions have moved away from the stationary solutions of the
partial local problems.
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Figure 4.23: Utility contours and solution geometry (b) for case 5. (a) shows the contours in
global utility (solid), along with zero contours of the Jacobian (dotted) and curvature (dashed).
In this case the optimal global action corresponds to both sensors maximising partial local utility.
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Figure 4.24: Utility contours and solution geometry (b) for case 6. (a) shows the contours in
global utility (solid), along with zero contours of the Jacobian (dotted) and curvature (dashed).
In this case the optimal global action corresponds to both sensors maximising partial local utility.
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Figure 4.25: Utility contours and solution geometry (b) for case 7. (a) shows the contours in
global utility (solid), along with zero contours of the Jacobian (dotted) and curvature (dashed).
In this case the optimal global action corresponds to both sensors maximising partial local utility.
Note, although utility is varied, the optimal actions are unchanged in Figures 4.23 to 4.25
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accounting for their actions. The prior information available to the ith decision maker is

Y(k | {k − 1, ū}) =




Ȳx Ȳxy

Ȳxy Ȳy



 = Y(k | k − 1) +
n∑

j=1,j 6=i

Ij(k | k − 1, ūj).

The optimal action conditional on the other team members or best response function is

given by equation 4.33

u∗
i = Bi(ū) = argmax

ui
J(ui, ū)

= arctan

( −1
2Ȳxy

(Ȳx − Ȳy +
√

(Ȳx − Ȳy)2 + 4Ȳxy)

)

. (4.42)

This can be verified through observation of the solution geometry in figures 4.20 to

4.25. These figures show the optimal sensor actions along with confidence ellipses asso-

ciated with the probability densities. Ellipses are shown for the prior distribution, the

distribution after each individual action and posterior after both sensor actions. In each

case, optimal sensor action lies along the direction of most uncertainty after the prior is

combined with the other sensors’ observation information. This action corresponds to the

solution given by equation 4.42.

This best response function has been used to implement a decentralised solution to

the two sensor localisation problem. Two example solution sequences are shown in figures

4.26 and 4.27. Figure 4.26 examines case 3 where the optimal solution is for sensor 1

to maximise and for sensor 2 to minimise their local partial utility. In this case the

solution is a singular stationary point with zero curvature. Gradient or better response

iterative procedures suffer extremely poor convergence rates. This situation highlights

the benefit of applying a line search technique to accelerate the convergence. Figure 4.27

examines case 4 where the optimal solution has moved away from the local stationary

solutions. In this case the utility topology provides rapid convergence. However, the

situation highlights a weakness with using the synchronous better response procedure.
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Figure 4.26: Comparison of three negotiated solution techniques for problem 4.5 for case 3. In
this case the optimal solution is for sensor 1 to maximise and for sensor 2 to minimise their
local partial utility. The initial actions are a small random distance from the local maximising
solutions. Both the simultaneous Jacobi and sequential Gauss-Seidel best response methods
converge to a global maximising solution. Significant improvement in solution time is achieved
by combining the sequential best response with a quadratic line search.
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Figure 4.27: Negotiated solution to problem 4.5 for case 4. In this case the optimal solution
has moved away from the stationary solutions to local partial utilities. The initial actions
are a small random distance from the local maximising solutions. The sequential best response
method always converges to a global maximising solution. While the simultaneous best response
converges for one set of initial conditions, another highlights susceptibility to oscillations about
symmetries in the stationary solutions. This problem for synchronous schemes is resolved by
reducing γk and/or perturbing the updates βk 6= 0.
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Solution sequences are shown for two different initial actions. The synchronous best

response converges for one set of initial conditions. For the other, the procedure oscillates

about symmetries in the global stationary solutions. This symmetry can be broken by

reducing γk and/or perturbing the updates βk 6= 0. This is a significant advantage of the
sequential or randomised sequential approaches over synchronous methods.

4.6 Summary

Information gathering was presented as an optimal control problem. Modelling of the en-

vironment, vehicles and sensors was combined with utility based on entropic information.

The appropriateness of this method in active sensing was demonstrated by generating op-

timal information seeking trajectories for a single sensor platform. Attention was focused

on the team utility structure and its role in cooperation among multiple sensor platforms.

A proposed decomposition of the team utility was used to explore the influence of cou-

pled utility on the optimal member decisions. This investigation and application to a two

sensor range-localisation example established:

1. The conditions when the global solution is composed from stationary solutions to

utilities that only consider local information and influence.

2. Situations exist where the worst possible action for a particular decision maker based

on local partial information is the global optimal solution.

3. Locally optimal actions may be globally optimal regardless of coupled utility.

4. The better-response iterative procedure provides a decentralised mechanism for de-

cision makers to reach the global solution without knowledge of their fellow team

members strategy or utility.

5. Globlal analysis may reveal the team solution to be simply maximising independent

local utility. But this violates the decentralised philosophy. The better-response

method initialised with local solutions will identify this without global knowledge.



Chapter 5

Endogeneous Algorithms and

Decentralised Architectures

5.1 Introduction

The goal of a decentralised control algorithm is to exert coordinated control over a scalable

number of sensors and platforms, through the exchange of information and local decisions,

without the need for a central arbiter. For example, in a multiple-platform surveillance

task, each sensor and platform must make its own decision about where and what to

sense, but by coordinating these decisions with other sensors and platforms must also

arrive at a globally-optimal control for the system as a whole.

This chapter explores communication and coupled utility between decision makers as

fundamental mechanisms underlying coordination and cooperation. Section 5.2 identifies

the form of the information structure as critical to enabling coordination and cooperation.

The implications of various information structures of practical interest are considered in

Section 5.3. This leads to the coordinated and cooperative solution methods presented

in Section 5.4. Section 5.5 applies information-theoretic modelling to an area exploration

task and demonstrates a coordinated multi-vehicle solution. Coordinated and coopera-

120
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tive solutions to a multi-platform bearings-only localisation problem are investigated in

Section 5.6. These solutions provide insight into a more general approach to decentralised

cooperative control. In Section 5.7, all the elements considered through this thesis are

brought together in the form of a general architecture for decentralised coordinated control

of multi-sensor information gathering systems.

The required architecture must exchange information and decisions seamlessly across

networks of inter-operating systems. The origin, state and physical nature and value

of the information source is abstracted into the utility and information structures of the

system architecture. Sub-systems may be added or removed dynamically. The information

structure provides a means to propagate and fuse information from disparate sources.

The utility structure values the actions of the individual systems with regard to mission

objectives. Propagation of information through the network couples the value of the

system actions. A decentralised decision making mechanism optimises the actions leading

to coordinated interactions and potentially synergistic inter-operation of the component

systems.

To fully realise the benefits of this approach, the architecture must adhere to the strict

definition of decentralised systems. The means of interpreting, encoding, estimating,

valuing and fusing information, states and actions must be internal to the individual

systems. The use of the term Endogeneous in describing these systems is intended to

emphasise that this functionality lies within each sub-system.

5.2 The Mechanisms Underlying Coordination and

Cooperation

This section addresses the underlying mechanisms that give rise to coordinated and co-

operative solutions to problems involving multiple decision makers. Coupled utility plays

a fundamental role. The decision makers are informed of the variables on which their
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utility depends through observation and communication. Coupled utility is investigated

with specific interest in the role played by prior information, locally observed informa-

tion and communicated information. The dependence of coordination and cooperation on

communication results in the leading role played by the information structure.

Coordination can occur through coupled system dynamics, constraints or coupled

utility. The focus of this study is on coupled utility as the basis for coordination and

cooperation. Coupled system dynamics may lead to a requirement for tightly coupled

low level control. This is not addressed here. The work of Mutambara in decentralised

vehicle control [58, 59], provides an example of coordinated control through distributed

dynamic models and constraints. An alternative to treating constraints in the solution

method directly is to incorporate them into the utility by means of penalty functions.

Problems involving decision makers with decoupled physical dynamics and coupled

dynamic utility represent a wide range of practical situations. This motivates the following

scrutiny of coupled utility as the basis for coordination and cooperation.

5.2.1 Coordination Through Coupled Utility

Fundamentally, coupled utility or value results in coordination between decision makers.

The effect one decision maker has on another is captured through its influence on local

utility. Given knowledge of this influence, it is possible to capture the effect of system-

wide actions on the utility of individual decision makers. Thus utility and the coupling

between utilities provides the underlying mechanism for coordination.

One approach to coordinated control is the behaviour-based method of Mataric [49]

and the DAMN architecture of Rosenblatt [78]. These methods generate controllers based

on utilities associated with individual objectives. A composite controller arises from the

individual controller objectives by means of weighting or arbitration, to execute missions

comprising multiple objectives. In many instances, the resulting controller exhibits inter-

esting and useful behaviours. However, these behaviours are simply a consequence of the
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interaction between the dynamics of the component controllers. The arbitrator takes no

account of the fundamental fact that the underlying utilities for the component controllers

are coupled. Consequently, these ‘group’ controllers avoid and obscure the basic issue of

interaction between utility measures in coordinated and cooperative decision making.

An alternative is to seek a globally optimal solution using parallel decentralised opti-

misation of a set of decomposed but coupled sub-problems. Such decomposition is the key

to overcoming the “Curse of Dimensionality”[83]. This has been applied to multi-vehicle

coordinated and cooperative control problems by McLain [52, 53]. This situation consid-

ers the rendezvous of multiple UAVs while minimising risk and fuel use. Coordination

variables and coordination functions are introduced to enable a distributed solution. The

functions and variables are communicated to inform the individual vehicle sub-problems

of their interrelation. For the task considered, the coordination variable is time of ren-

dezvous. The coordination functions relate variations in the rendezvous time to variation

in individual vehicle fuel costs and risk. Communication of these allow each vehicle to

determine the team optimal rendezvous time in a decentralised manner. The struc-

Arbiter

JJ
11

JJ
ii

JJ
NN

Actions

?? ??

Objective Utilities

JJ
ii

max JJ
NN

maxJJ
11max

... ...

(a)

ηη
c,i

JJ
c,i

((ηη
c,i 

))

^̂

max ΣΣ
Joint problem

^̂

^̂ Coordination Functions

ηη
c,j

Coordination Variables

max
uu

jj

JJ
jj
((uu

jj
,,ηη

  
))

Sub−Problem   jj

JJ
c,i

ii==11

JJ
c,j

max
uu

ii

JJ
ii
((uu

ii
,,ηη

  
))

Sub−Problem  ii

NN

(b)

Figure 5.1: Two approaches to coordinated control. (a) Arbitration of controllers based on
independent objectives. (b) Decomposition into coupled sub-problems.

ture of the arbitrator and decomposition approaches are summarised in Figure 5.1. The
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decomposition approach of Sobieski [84, 1, 82] and McLain [52, 53] is closely related to

the team decision framework described in Section 2.3. A key issue in the formulation of

such problems is to elucidate what information needs to be communicated between team

members to capture the coupling between decision processes.

5.2.2 The Role of Prior, Local and Communicated Information

In sensing tasks; prior, local observation and communicated information can be combined

to provide effective measures of information-based utility and coupling between sensing

actions. The DDF information fusion algorithms suggest a particularly simple additive

form for information-based utilities as

Prior Local Communicated

Ji(u1, . . . ,un) ∝ Y(k | k − 1) + Ii(k) +
n∑

j=1

j 6=i

Ij(k)

In this utility function, prior and communicated information is additive and thus

associative. Communicated information may include current observations, delayed infor-

mation or future expected observation information. Current or delayed information will

not affect the current local optimal action but will alter the prior information on which

subsequent decisions are made.

Future expected information is fused in the prediction process for determining the

current locally optimal action plan. As communicated information simply adds to the

local prior at each stage, a control law or decision rule developed based only on prior and

local information is the individual’s best response to the communicating decision makers.

A global equilibrium between decision makers can then be obtained by iteration.

An individual decision maker must understand how its local utility is influenced by

information communicated from other decision makers. In information fusion problems,

this requires that communicated information be associated with the local model of un-

certainty. As this is a requirement for the underlying sensor fusion process, it must be
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implemented directly in the communications protocol for the DDF system.

5.2.3 Propagating Observation Information Leads to Coordina-

tion

It has been noted that current observation or delayed information does not alter the

current local optimal action. The local control law or decision rule remains unchanged.

Current or delayed communicated observation information will be fused with the local

prior and observations. This alters the prior from which subsequent local decisions are

generated and consequently the decision processes are coordinated over time. This process

is illustrated in Figure 5.2. The DDF process propagates current and delayed information

throughout the sensor and vehicle system network. Consequently, simply activating DDF

with independent control rules on each sensor and vehicle leads to a coordinated solution.
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Figure 5.2: Coordination through propagated observation information

5.2.4 Exchanging Predicted Information Leads to Cooperation

Communicated predicted observation information does influence the current local opti-

mal action. This has significant consequences. The local decision procedures and optimal
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actions of the communicating decision makers are coupled. This coupling occurs through

exchange and evaluation of a priori information on individual utility functions. Commu-

nicating observation information predictions gives rise to coordinated actions.

A negotiation or bargaining procedure is required to reach the joint optimal solution.

The exchanging and evaluation of a priori observation information, when combined with

a negotiation procedure, is a coordination mechanism that leads to cooperation. This

process is illustrated in Figure 5.3.
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Figure 5.3: Negotiated cooperation based on exchanging a priori observation information.

5.2.5 Incentive to Cooperate

The incentive to cooperative arises when more information can be gained by coordinating

a sensing action, then by simple exchange of information. Cooperation, while ultimately

resulting in greater global reward, may involve a reduction in local utility. Simple exam-

ples of this particularly occur with sensing agents that have exactly the same capabilities.

In these circumstances, each agent (being identical) will resolve on exactly the same course

of action. However, having all sensors take the same action is unlikely to be globally opti-
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mal. Rather, observation of different aspects of the feature or target under consideration

will give greater information to the group.

Accepting a lower individual reward in anticipation of receiving a higher global reward

from the team is the essence of cooperation. Practically, in terms of information gain,

the incentive to cooperate is captured by the increase in information hypothesised from

a candidate’s predicted observation.

5.3 Practical Information Structures

The information structure is one of the five key elements in the team decision problem

identified in Section 2.3. It specifies the information available to a decision maker and

the exchange of information among team members. Designing the system information

structure is a critical task requiring a trade-off between system performance, scalabil-

ity, computation and communication. The role of coupled utility and of communication

are key elements in this design. Practical information structures must enable effective

coordination and cooperation.

Recall that an information structure is referred to as static if communicated informa-

tion does not influence the immediate decision processes and dynamic otherwise. Accept-

ing the distinction between cooperation and coordination made in Section 2.4.1, static in-

formation structures preclude the possibility of cooperation. Yet, they are of considerable

practical interest as they provide a scalable implementation of coordination with limited

computational and communication costs. Thus, an application and situation dependent

performance penalty may be justifiable. Dynamic information structures are coupled at a

decision making level. This provides the potential to seek cooperative solutions through

negotiation. The price is a potentially intensive and time consuming iterative procedure.
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5.3.1 Static Information Structures

Imposing a static information structure on a team allows coordination through information

exchange. A number of static information structures are possible, these include:

1. Open loop multistage look ahead with communicated observations:

Decision makers plan local optimal actions n stages ahead, n ≥ 1. The plan is

developed based on local prior knowledge and local conditional sensor information.

Information is communicated as observations are made during the execution of the

sensing plan.

2. Closed loop multistage look ahead with communicated observations:

As for the open loop multistage structure, but the local control plan is updated as

information becomes available through the DDF process.

3. Instant communication and action with zero look ahead:

This is a special case of the multistage structures. With zero look ahead, decision

makers are not influenced by the action of others or their own dynamics. This signif-

icantly simplifies the coordination problem, offering a useful approximate solution.

4. Any of these with delayed communication:

The DDF process allows for fusion of delayed information. Thus, any of these infor-

mation structures can be implemented with communication of delayed information.

5.3.2 Dynamic Information Structures

Dynamic information structures permit coupled decision making. This allows improved

solutions over static structures with respect to joint team optimality. The system designer

has control over the level of optimality and solution process complexity. In the limit, the

global Nash cooperative solution is sought through negotiation. Dynamic information

structures of practical interest include:
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1. Sequential fixed shot multistage look ahead:

Decision makers plan n stages ahead, n ≥ 1. The local decision process incorporates
local prior knowledge, local conditional sensor information and conditional obser-

vation information communicated from other decision makers. On convergence, the

conditional observation information associated with the sensing plan is communi-

cated to the other decision makers. This process is repeated for a fixed number of

iterations.

2. Negotiated multistage look ahead:

As for the sequential fixed shot procedure, except the iterations are repeated until

convergence criteria is met. This permits a multistage better response negotiation

method to find an ε-optimal cooperative solution.

3. Adaptive multistage structure:

The nature of the information structure becomes part of the decision problem. Util-

ity measures incorporate rewards and costs associated with exchange of information.

The information structure varies dynamically across the network of decision mak-

ers. Features of any previously mentioned information structures may be activated

among sub-groups of the decision making team.

5.4 Solution Approaches

Consideration of the role of the information structure and coupled utility in decision mak-

ing suggests two decentralised solution approaches: coordinated methods based on static

information structures; and cooperative implementations based on dynamic information

structures. Coordinated and cooperative approaches are presented. A special coordinated

case corresponding to zero look-ahead is presented and its interpretation as a potential

field method discussed.
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5.4.1 Coordinated Solution Procedure

The coordinated solution procedure is illustrated in Figure 5.5. Local decision making is

implemented in addition to the decentralised data fusion algorithm. This local control

algorithm is the same as the single decision maker case. The information on which the

actions are based is coupled through a static information structure. It should be empha-

sised that this solution approach is fully decentralised. The static information structure

consists of a communications network, a communications protocol and an interface for

each decision maker. The decision making and communications management mechanisms

are internal to each team member. The only component external to the decision making

nodes is the medium and protocol through which they communicate.
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Figure 5.4: Multi-platform coordinated decision making with a static information structure.
The information structure is formed through an interface on each decision maker. This allows
the individual decision maker to incorporate the influence of other team members’ observations
over time, and inform the team of their own observations.
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5.4.2 Cooperative Solution Procedure

A dynamic information structure allows coupling between the individual decision pro-

cesses. This permits the propagation of each decision makers predicted observation in-

formation throughout the team. Each decision maker couples its individual solution pro-

cedure to the team observation information structure in an iterative loop. Negotiating

towards the team solution. The solution procedure is illustrated in Figure 5.5. The

coordinated solution structure of Figure 5.4 is a sub-set of this implementation.
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Figure 5.5: The role of the dynamic information structure in cooperative multi-platform decision
making. The information structure is formed through an interface on each decision maker.
This allows the individual decision maker to incorporate the influence of other team members
predicted observations and in turn, inform the team of their own effect. This is combined with
the better-response negotiation procedure to determine the cooperative solution.
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5.4.3 Information Dynamics as a Potential Field

Planning with zero look ahead provides a special case in coordinated multi vehicle control.

It will be shown how this can be used to form simple approximate solutions to coordinated

sensing problems. The sensor platforms are directed by the dynamics of the mutual

information rate gradient field.

The Fisher information evolution in continuous linearised filtering is given by the

information form of the Kalman filter Ricatti equation [63].

Ẏ
︸︷︷︸

= −FY − FTY
︸ ︷︷ ︸

−YGQGTY
︸ ︷︷ ︸

+
n∑

i=1

HT
i R

−1
i Hi

︸ ︷︷ ︸

Information Loss or Gain Loss Through Gain Through

Rate System Dynamics Process Noise Observations

(5.1)

Where Ẏ, F, G, Q, R and Hi are functions of time with time index suppressed for

notational clarity. F, G, Q, R andHi are all also potentially functions of the system state

x, and the control inputs u. Using matrix calculus identities from [42], the instantaneous

rate of change of entropy, or mutual information rate is

I(t) = 1
2

d

dt
log | Y(t) | = 1

2
trace

(

Y−1(t)Ẏ(t)
)

. (5.2)

Equation 5.2 represents a dynamic vector field I(x,u, t). It shows that the mutual infor-
mation rate is determined by the current solution Equation 5.1. This relates the system

state and control to the instantaneous rate of change of entropic information. Its gradient

relates changes in the system state and control to changes in the rate of change of entropic

information. Since Y(t) is not an explicit function of x or u; the gradient field is given

by

∇xI(t) =
1

2
trace

(

Y−1(t)∇xẎ(t)
)

(5.3)

∇uI(t) =
1

2
trace

(

Y−1(t)∇uẎ(t)
)

.
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This allows evaluation of the gradient field in terms of the current Fisher information and

the partial derivatives of Equation 5.1. Control actions can be scheduled according to

the direction and magnitude of the local gradient field. For example, considering the the

constant velocity vehicle model Equation 5.4

x(t) =




x(t)

y(t)



 , ẋ(t) =




V cos(u(t))

V sin(u(t))



 . (5.4)

The best control with zero look ahead is the direction of the gradient vector of information

rate with respect to the vehicle state {x, y}.

u(t) = arctan

(∇yI(t)
∇xI(t)

)

(5.5)

The concept of using information gain as a field for sensor platform control is related

to other approaches in robotics. For example, Payton [69] uses artificial “pheromones”

as a potential field for generating paths for platoons of robots. A possible weakness in

potential field approaches is ad hoc methods for designing the fields. This is avoided in

the information gain based approach. The field is formed directly from the models of the

environment, vehicles and sensors.

5.5 Application to Area Exploration

To illustrate the applicability of the decentralised information-theoretic approach to gen-

eral problems, an area exploration example is constructed. This problem represents the

abstract task of estimating the value of some multi-variate characteristic distributed over

a surface. The estimate of the characteristic and its associated uncertainty are now

functions defined over an area. Entropy provides a time varying scalar measure of the

information at a location on the surface. This can be used to construct utility measures
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by considering information and the information gain associated with sensing actions over

an area. A multi-vehicle example is constructed to illustrate this.

5.5.1 Problem Formulation

A team of vehicles i = 1, . . . , n are exploring a terrain characteristic T(x, y) defined over

area S on the (x, y) plane. For this example, the area is generalised to the unit square.

The (two-dimensional) trajectory for the ith vehicle is defined by xi = [xi(k), yi(k)]
T , k =

1, . . . , N . Each vehicle makes observations zi(k) of the terrain according to

zi(k) = T(x, y) + vi(k), (5.6)

where vi(k) is taken to be a zero-mean uncorrelated Gaussian sequence with a variance

that is a function of the range between the vehicle and terrain feature

E{vi(k)v
T
i (k)} = RS,i(k) = fn (r) ,

where r =
√

(xz(k)− xi(k))2 + (yz(k)− yi(k))2 is the distance to the true terrain loca-

tions being observed {xz, yz}. The subscript ‘S’ is used to emphasise that these observa-
tions, estimates and information measures are quantities defined at every point x, y over

S.

It is required to generate estimates for the terrain characteristic T(x, y) over S. The

states of the vehicle trajectories are known exactly and the kinematics of the terrain are

stationary. The observation model Equation 5.6, is an uncertain measurement of the

true state. There is no transformation between the spaces of the measurement and state

estimate. In this case, the state transition and observation Jacobian matrices are simply

the identity matrix; F(k) = 1 and H(k) = 1. Thus, the observation information is simply

the inverse of the observation variance, IS,i(k) = R−1
S,i(k). So, the prediction and update
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stages of the information filter reduce to;

Prediction:

YS,i(k | k − 1) = YS,i(k − 1 | k − 1)

Update:

YS(k | k) = YS(k | k − 1) +
n∑

i=1

R−1
S,i(k)

Each vehicle maintains a local estimate of T(x, y) and propagates observation information

through the team information structure.

5.5.2 Observation Model

Due to their underlying physical mechanisms, real world sensors typically exhibit expo-

nential or quadratic variation in measurement uncertainty up to some finite range. A

Gaussian function is used throughout this example.

RS,i = σ20,i exp

(

4.6(
r

rmax,i

)2
)

(5.7)

where σ0,i and rmax,i are the observation standard deviation at zero range and the max-

imum range of the sensor. The maximum range is taken to be the distance where the

observation information is one percent of its maximum value. Examples of simple yet re-

alistic models of sensor observation information are shown in Figure 5.6. It is important

to note that this methodology places no restrictions on the usable sensor representations.
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suitable approximation for a wide range of realistic sensors. Four representative models are
shown to illustrate the associated spatial dependence of observation information:
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5.5.3 Exploration Utility Metric

For the ith sensor platform, its expected posterior Fisher information given the imple-

mented information structure is

YS,i(k | k) = YS,i(k | k − 1) +R−1
S,i(k) +

n∑

j=1

j 6=i

δjR
−1
S,j(k).

The posterior entropic information contained in the estimate of T(x, y) over S is given by

iS,i(k) =
1

2
log [2πeYS,i(k | k)] .

The mutual information gain expected for an observation zi(k) of a terrain elementT(x, y)

is

IS,i(k) =
1

2
log

[
YS,i(k | k)

YS,i(k | k − 1)

]

.
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This information measure is a function over S. Mutual information gives an expected

utility measure for an observation made at xi(k)

U(xi(k), k) =

∫ ∫

IS(xi(k))dxdy.

This can now be employed to generate a performance metric to determine the trajectory

of each vehicle to maximise the total information over the whole area for a number N , of

observation stages. The trajectory utility is

J(xi) =
N∑

k=1

U(xi(k), k). (5.8)

Note, maximising final entropic information is equivalent to maximising the utility given

by 5.8. The mutual information formulation is preferred as it captures the value of each

observation stage. This allows for combination with other cost criteria such as the required

energy associated with the sensing action.

5.5.4 Visualisation of Information in Exploration

Two vehicles flying deliberately chosen non-optimal trajectories are used to illustrate the

manner by which this information based utility formulation captures the exploration task.

Figure 5.7 shows snapshots of the information measures over time. The vehicles start on

opposite sides of the region. They travel at constant velocity over the indicated trajec-

tories. The last leg of the first vehicle’s path overlaps the first leg of the second vehicle’s

path. Plots (a, d, g, j) show the entropic information over the area. Plots (b, e, h, k) indi-

cate the current observation information in the Fisher sense. Plots (c, f, i, l) indicate the

mutual information gain for the current observation.

Mutual information gain is higher in locations with lower prior information. Vehicles

are attracted to regions with low information. The value of future observations from the
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Figure 5.7: Snapshots of information measures for an area exploration example over time. Plots
(a, d, g, j) show information iS(k) (as negative entropy) over the area, (b, e, h, k) indicate the
observation information for the current sensor actions IS,1(k) + IS,2(k) and (c, f, i, l) display
the mutual information gain IS,{1,2}(k) associated with the current observations. Note that the
mutual information gain is not centred at the maximum sensor observation information.
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current location is reduced through the sensing action. Hence, vehicles are drawn away

from regions they have explored so ensuring coverage. This highlights that the value

of making observations at a location is time dependent and that the value of vehicle

trajectories are coupled. Entropic information is revealed to provide a most suitable

utility formulation for exploration. These metrics can be combined with other constraints,

objectives and costs to form an optimal area exploration control problem and solution.

5.5.5 A Coordinated Team Solution

The area exploration utility measures can be included in the decentralised team archi-

tecture of Section 5.7 to develop a solution with the desired level of coordination and

cooperation. A non-negotiated coordinated solution is pursued here.

The control and estimation process is conducted in discrete time with time step ∆T .

Each vehicle moves at constant velocity Vi with its heading rate as the decision variable

ui(k). The decision is constrained by | ui(k) |< ui,Max. The vehicle state is governed by








∆xi(k)

∆yi(k)

∆ψi(k)







=








Vi cosψi(k)

Vi sinψi(k)

ui(k)







∆T. (5.9)

Each vehicles sensor observation information is modelled by

R−1
S,i = σ20,i exp

(

−4.6( r

rmax,i

)2
)

. (5.10)

An information threshold iThresh, is introduced to specify that the exploration require-

ments have been met at a location. The task is completed when entropic information is

higher than this over the entire area S. Each vehicle’s action is decided based on max-

imising utility given by the instant mutual information gain with zero look-ahead. Under

this approximation, the sensor platforms’ decisions are decoupled. The global solution is
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to maximise individual mutual information gain.

Ji(k) =

∫ ∫

S

δS,i(k)IS,i(k)dxdy

=
1

2

∫ ∫

S

δS,i(k)Y
−1
S,i(k)R

−1
S,i(k)dxdy (5.11)

Where δS,i(k) captures the explored region δS,i(k) =







1 if iS,i(k) < iThresh

0 if iS,i(k) ≥ iThresh

The vehicle heading and control that maximises the instant mutual information gain is

ψ?
i (k) = arctan

∇yiJi(k)

∇xiJi(k)
, u?

i (k) =
ψ?

i (k)− ψi(k − 1)
∆T

(5.12)

Where,

∇xiJi(k) =
1

2

∫ ∫

S

δS,i(k)Y
−1
S,i(k)∇xiR

−1
S,i(k)dxdy

∇yiJi(k) =
1

2

∫ ∫

S

δS,i(k)Y
−1
S,i(k)∇yiR

−1
S,i(k)dxdy

∇xiR
−1
S,i(k) =

9.2

σ20,ir
2
max,i

(xz − xi(k)) exp

[

−4.6
(

r

rmax,i

)2
]

∇yiR
−1
S,i(k) =

9.2

σ20,ir
2
max,i

(yz − yi(k)) exp

[

−4.6
(

r

rmax,i

)2
]

The constrained individual decision is

ui(k) =







ui,Max if u?
i (k) ≥ ui,Max

u?
i (k) if − ui,Max < u

?
i (k) < ui,Max

−ui,Max if u?
i (k) ≤ −ui,Max

(5.13)
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5.5.6 Implementation Results

Figure 5.8 displays stages of an example solution to this exploration problem. Four

vehicles seek information about the scalar characteristic. Equations 5.9 to 5.13 govern this

process. The vehicles start from random initial conditions and have no initial information

about the characteristic they are estimating. The task is terminated when the entropic

information is above a specified threshold over the entire area. At each displayed solution

stage, four plots indicate the various information measures, the history of the vehicle

trajectories and the extent of the area explored. The unexplored portion of the area is

indicated by the shaded region. The information measures shown are the current entropic

information iS(k), mutual information IS(k) and observation information IS(k).
This solution rationale provides the least complex coordinated outcome with regard

to associated numerical effort. The vehicle trajectories indicate that the vehicle sensor

platform decisions are indeed coordinated. The paths overlap as in this situation a single

pass is not sufficient to fully explore the over flown region. A criticism of this solution

would be that more information than required is gathered over some regions. This could

be considered inefficient. Allowing the sensor platforms to plan their actions ahead in

time and negotiate a cooperative solution would reduce this, at the cost of the associated

computation and communication overhead. Without planning to the final time of task

completion, it is not possible to ensure that increasing the planning horizon will ensure

an improved solution.

In this static case it is possible to solve a priori for the entire cooperative team

open-loop actions to final time. This becomes a daunting problem for exploring dynamic

characteristics over arbitrary and dynamic shaped areas. The attraction of this approach

is the relative ease with which these attributes can be handled.

The information-theoretic methodology achieves this solution to the exploration prob-

lem without imposing ad hoc rules. The attraction to unexplored regions is captured by

the problem modelling and entropic utility, and discovered by the solution procedure.
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Figure 5.8: Four stages of an example coordinated team solution to an area exploration problem
are shown. At each stage, four plots indicate the various information measures, the history of
the vehicle trajectories and the extent of the area explored. A region is considered explored
when the entropic information is above a threshold. The information measures shown are the
current entropic information, mutual information and observation information
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Figure 5.8: (continued)
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5.6 Multi-Vehicle Multi-Feature Localisation: An Ex-

ample

The feature localisation example of Section 4.3 is now extended to multiple features and

multiple sensor platforms. This more complex example allows exploration and illustration

of the issues raised in Section 5.2, regarding mechanisms underlying coordination and

control, and in Section 5.3, regarding the role of different information structures.

5.6.1 Problem Formulation

x
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Figure 5.9: 2D Multi-Vehicle Multi-Feature Localisation Problem

The problem consists of n sensor platforms i = 1, . . . , n, localising m point features

j = 1, . . . ,m. The modelling of each individual vehicle, sensor and feature is the same as

in the single vehicle example of Section 4.3. The global system equations are composed
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from these individual models. The global state consists of the current sensor platform

locations and headings, feature location estimates and feature error covariance. Each ve-

hicle maintains a local estimate of the feature states and a map of the feature information

given by

x̂f (t) =








x̂f,1(t)

...

x̂f,m(t)







= Y−1

f (t)ŷf (t), Yf (t) =












Yf,1(t) 0 . . . 0

0 Yf,2(t)
...

...
. . . 0

0 . . . 0 Yf,m(t)












.(5.14)

The local information dynamics for utility prediction is

Ẏf,j(t) = Ii,j(t) +
n∑

k=1
k 6=i

δk,jIk,j(t) (5.15)

where δi,j allows for incorporation of different information structures. δi,j = 1 if condi-

tional observation information from sensor i regarding feature j is available, else δi,j = 0.

Each feature and observation Fisher information is a 2× 2 block diagonal element

Yf,j(t) =




Yx,j(t) Yxy,j(t)

Yxy,j(t) Yy,j(t)



 , Ii,j(t) =




Ix,i,j(t) Ixy,i,j(t)

Ixy,i,j(t) Iy,i,j(t)





The state vector of each sensor platform is now the stacked vehicle state and feature

location Fisher information.

xi(t) =












xs,i(t)

xf,1(t)

...

xf,m(t)












, Where, xs,i(t) =








xi(t)

yi(t)

ψi(t)







, and xf,j(t) =








Yx,j(t)

Yxy,j(t)

Yy,j(t)







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The combined state dynamics for the ith sensor platform is

ẋi(t) =































V cos(ψi(t))

V sin(ψi(t))
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∑n

i=1 Ix,i,1(t)
∑n

i=1 Ixy,i,1(t)
∑n

i=1 Iy,i,1(t)
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
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


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=
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






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
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



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


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θ
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−1
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θ
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As in the single vehicle case it is desired to maximise the feature estimate entropic

information at the final time of the stage tf .

Ji(ui, tf ) = log | Yf (tf ) |

=
m∑

j=1

log | Yf,j(tf ) | (5.16)

5.6.2 Coordinated Solutions

Coordinated solutions to the multi-feature multi-sensor localisation problem are used to

investigate properties of static information structures. Four coordinated solution imple-

mentations with different static information structures were explored:

1. Coordinated control can be achieved simply by employing the DDF algorithm among

decision makers with local information seeking controllers. This is shown in Figure

5.10. Trajectories are shown for the same local controllers with and without the

underlying DDF process activated.
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2. Communication can be reduced and still result in an acceptable coordinated solu-

tion. Figure 5.11 shows an example of the variation in platform trajectories when

the propagation of consolidated observation information is delayed in the DDF pro-

cess. The impact on actions and performance reduces as uncertainty is decreased.

This indicates that the value of communicating observations is determined by their

mutual information gain.

3. The interpretation of information seeking as a dynamic potential field is illustrated

in Figure 5.12. Six snapshots of the mutual information field are displayed of three

bearings-only platforms localising four features. The field represents the information

gain associated with an observation made at that location. As observations are

made, the information propagates through the platforms via DDF. This process

dynamically alters the field.

4. A claimed advantage of decentralised systems is tolerance to failure and addition

of sub-systems. Figure 5.13 indicates how platform failure and addition is handled

seamlessly through the definition of and interface to the team information structure.

On failure, a platform ceases to contribute information. New members receive infor-

mation through the DDF process and commence communicating their own expected

and actual observation information. The remaining team members continue their

individual decision making based on whatever information is available to them.

5.6.3 Comparative Cooperative and Coordinated Solutions

The cooperative and coordinated solution procedures from Section 5.4 are used to compare

two solutions to a two platform, single feature bearings only localisation problem. Both

solutions determine multistage open loop control sequences over a fixed time horizon. The

two solutions differ in their information structure:
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Figure 5.10: Illustration of coordinated control arising through decentralised data fusion (DDF).
Feature information over time is shown along with five snapshots of the locally optimal trajec-
tories, with and without DDF active. Both vehicles implement local control laws that maximise
their individual information gain from bearings-only observations given local prior knowledge.
Coordination results from the DDF process updating local prior knowledge from which the
optimal action is generated. There is no change to the control laws between cases.
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Figure 5.11: Illustration of the effect of delayed communication. The observation information of
each sensor is consolidated and communicated every 15 solution steps. The trajectories are only
significantly affected when the feature information is low. This offers significant communication
savings with only a relatively small increase in the time required to perform the task. It also
suggests that the communication rate can be varied according to the mutual information gain
associated with the observations.
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Figure 5.12: Interpretation (of mutual information gain) as a potential field. Six snapshots
of the mutual information field as three bearings-only platforms localise four point features.
The vehicles “surf” along the local gradient of this dynamic field. As observations are made,
the information propagates through the platforms via DDF altering the field. This approach
provides scalable coordinated control with very low computational requirements.
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Figure 5.13: Six stages of a coordinated feature localisation solution. At stage k = 25, platform
1 fails. At stage k = 45, a fourth platform joins the sensing team. Each decision maker’s
interface to the team information structure facilitates seamless handling of platform failure and
addition. Team members make decisions based on the information available to them through
this structure. On failure, a platform ceases to contribute information. New members receive
information through the DDF process and commence communicating their own expected and
actual observation information.
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1. Coordinated solution: A static information structure is implemented. Infor-

mation is communicated as observations are made, but no predicted observation

information is exchanged. The actions over each horizon are determined without

accounting for the immediate influence of the other platform. The feature location is

estimated by the DDF algorithm while the plan is executing. Subsequent horizons

are based on information from this DDF process. This incorporates observation

information from the other platform, resulting in a coordinated solution.

2. Cooperative solution: A dynamic information structure informs each sensor plat-

form of the future expected observation information associated with the other plat-

forms intended sensing plan. Each vehicle in turn, re-plans its open loop control

sequence and communicates its new expected observation information. This itera-

tive process is terminated when changes in each sensor platforms intended actions

are below a convergence tolerance.

Results for the comparative solutions are presented in Figures 5.14 and 5.15. Figure

5.14 shows the platform trajectories along with the predicted and actual feature entropic

information. Figure 5.15 indicates the state and observation innovations in the DDF

process along with the control actions and vehicle headings. The platforms move with

velocity 1m/s and make bearing observations at 10Hz with standard deviation σ = 2.5o.

The open loop plans are made over 4 second time horizons. The control is parameterised

by 1Hz zero order stages.

The cooperative solution achieves higher information gain over time by jointly opti-

mising the coupled team objective.

5.6.4 Influence of the Information Structure

This example highlights the importance of the form of the information structure. The

coordinated and cooperative solutions indicated in Figure 5.14 are both optimal with
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respect to the available information. The information structure in the cooperative case

allows the decision makers to reach a jointly optimal solution through exchange of pre-

dicted information. The degree to which choice of information structure influences sensor

platform actions reduces with reduction in uncertainty.

The information structure clearly influences the performance and decisions made by

the team. Information shared through the information structure enables coordination and

cooperation between decision makers. The value of sharing information among decision

makers is dynamic and depends both on observed and predicted information. Extend-

ing the planning horizon, using predicted information and seeking a negotiated solution

increases the value of cooperation but incurs a cost in increased communication and com-

putation. Design of the information structure is a trade-off between the attainable level

of optimality and the required system resources.

5.7 Towards A General Active Sensor System Archi-

tecture

Decentralised team decision making and control is a logical extension of decentralised and

information-theoretic modelling and fusion. Once information is made available locally,

in a decentralised form, and information based utility functions have been defined, then

it is possible to implement a decentralised team decision process.

Information-theoretic models offer a uniquely powerful method of mathematically

modelling large-scale systems. Decentralised methods allow information gathering and

decision making systems to be described in a mathematically rigorous and modular man-

ner. The global system can be considered as a system of interacting systems or ‘Systems

of Systems’.

Information-theoretic methods provide three essential ingredients necessary to develop

a usable ‘theory’ for such systems:
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1. Analytic: Decentralised and information-theoretic methods provide an ability to

analyse and reason about a system and its information gathering or decision making

role. In particular, the process of local information formation, communication and

assimilation, and decision making are well formulated.

2. Composable and dynamically configurable: Decentralised methods also pro-

vide an ability to compose mathematical descriptions of larger systems from descrip-

tions of component sub-systems. Significantly this is a consequence of the inherent

modularity and scalability of decentralised system algorithms.

3. Predictive: Information-theoretic methods provide a natural and powerful ability

to predict expected “information” rewards associated with an action sequence.

The basis for this is provided by the Decentralised Data Fusion (DDF) architecture,

Team Decision Theory, Information-Theoretic Utility and the Best-Response negotiation

procedure. The amalgam of these ingredients offers a general methodology for the decen-

tralised control of active sensor teams. A node based non-hierarchical system architecture

is proposed and discussed.

Decentralised
Data Fusion
Architecture

Predictive
Infomation−Theoretic

Utility Measures

Better Response
Negotiation
Procedure

Team Decision
Problem

Formulation

Generic
Decentralised
Information
Gathering

System

Figure 5.16: A generic sensor team architecture based on information theoretic utility, DDF,
team decision theory and better response solution procedures
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5.7.1 Extending the Decentralised Sensor Fusion Architecture

The key to scalable, decentralised data fusion is the additive and associative property of

information. All system nodes can be made aware of global information through propa-

gation of inter-node information differences through a communication network. This is

studied in detail by Grime [28]. A channel filter at each fusion node manages the accu-

mulation and communication of information. Regardless of the physical connectivity, the

communications layer data can be routed in a virtual tree network. Dismissing arbitrary

network topologies greatly simplifies the formulation of the channel filter algorithms. The

inter-node communications requirement for this architecture is independent of the num-

ber of fusion nodes. Orgaisation and management of communication in sensor networks

is addressed in detail by Ho [32] and Utete [91, 93, 94, 92, 95]

Communication of predicted observation information has been identified as the mecha-

nism that enables cooperation between sensing team members. The channel filter concept

in DDF methods can be extended to include propagation of predicted information. Infor-

mation prediction propagation is simplified by the fact that the conditional observation

information has not yet been fused with other knowledge. This alleviates the problem of

identifying common information between nodes which pervades the DDF problem. Coop-

erative solutions involve an iterated negotiation procedure. At each iteration stage, the

node negotiation manager simply propagates the difference between its current and last

predicted information added to the predicted information it receives.

5.7.2 An Endogeneous Sensor Node

To realise decentralised decision making, an additional layer is added to the DDF ar-

chitecture at each sensing node. The additional functionality comprises the individual

decision process and a predictive channel filter. Better response negotiation and propa-

gation of predicted observation information enable this node to participate in cooperative
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Figure 5.17: Channel filter algorithms implemented at each node manage accumulation and
communication of information. Differences in information between nodes is transmitted and
assimilated simply through summation. This ensures propagation of information through the
tree networked team of sensing decision makers. The established DDF node structure is extended
to include propagation of future expected observation information.

solutions to team decision problems. The internal components are illustrated in Figure

5.18. This structure is termed Endogeneous to emphasise that the enabling mechanisms

reside internal to the nodes.

Figure 5.18 describes a generic architecture for a decision making node within a sens-

ing team. Teams of inter-operating, coordinated or cooperative sensors and vehicles can

be composed from elements engineered with this nodal structure. This deceptively simple

architecture possesses a number of important properties. Each team member can inter-

nally measure the value of its observations and actions with respect to the team. This

is achieved by comparing accumulated actual and predicted team information with local

observation information. In combination with the information from other team mem-

bers, communication of these observations can be included in the node decision process.

Internally, nodes can decide what information about the environment is maintained lo-
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Figure 5.18: Structure of an Endogeneous Decentralised Decision Making Team Member. The
DDF node is augmented with components to enable a decentralised solution to coordinated or
cooperative control among team members. Two additional components are added. Firstly, a
control solution that optimises individual actions accounting for available information. Secondly,
a manager for communication of predicted observation information. This node structure allows
for distributed decision makers to find the negotiated cooperative team solution.
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cally. Information of no local interest is simply communicated. Through communication,

nodes can be made aware of information they have never sensed or can not physically

sense. Node plans can therefore involve intent to sense objects not currently seen and to

incorporate the effects of capabilities the node itself does not possess.

5.7.3 Advantages of Cooperative Endogeneous Solutions

In this architecture, coordination and cooperation arise from propagation of anonymous

information. Decision makers can account for and influence each other through trans-

mitting and receiving information. Importantly, there is no knowledge of structure, state

or size of the team other than of connections to adjacent nodes in the network. This

has advantageous consequences when implementing coordinated or cooperative control

policies and provides insight into why the decentralised architecture captures the essence

of the global team control problem.

A non-hierarchical structure avoids the overheads, bottlenecks or catastrophic failure

points associated with hierarchical or centralised arbitration. Hierarchical decomposition

increases communication and computation requirements at points in the system. This also

increases vulnerability of the system to failure. In the proposed approach, the solution

process are made internal to each decision maker. The channel filter concept provides

scalable communication and a means of recovery from component failure.

This architecture automatically takes advantage of natural sparsity in the utility and

action coupling. If communicated information does not influence a decision makers ac-

tion, they do not participate in the negotiation process. They simply act to propagate

information through the team network.

Coalition formation is transparent. Multiple independent anonymous coalitions of

negotiating cooperative decision makers can form, exist and dissipate. This approach

completely avoids the intractable problem of trying to design coalitions through testing

combinations of team members. The requirement and decision to cooperate is internal to
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the team member node. There is no specific physical knowledge of whom or with what

they are cooperating.

There is no imposed solution structure. No imposed dependency exists between actions

of individual team members. Decision making dependencies form and disperse dynami-

cally from the interaction between system elements. If the right team action is to ‘flock’

or follow an individuals lead, this architecture allows that solution without imposing any

situation specific structure or dependencies.

Figure 5.19: Decentralised team decision makers coordinate and cooperated through propaga-
tion of anonymous information. There is no knowledge of the physical nature of the information
sources. Information-theoretic representations provide transparent inter-operation of decen-
tralised decision making subsystems. This occurs between all system components within and
across sensor platforms.

5.7.4 Advantages for Systems Engineering

Modelling of the vehicle, sensors, and environment encapsulates the relationship between

component systems. A sensor model relates the sensor’s observations to the estimated

state of the environment, vehicles and sensors. Different sensors possess different charac-

teristics and associated modelling. Information-theoretic representations allow abstrac-

tion of an information source’s physical nature and state. In this form, communicated
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information can be interpreted and fused without any knowledge of its source. Decision

makers can seamlessly understand, account for and influence each other. This provides

transparent inter-operation between decentralised sensing and control sub-systems.

This has significant consequences for system functionality and systems engineering.

Heterogeneity does not alter the architecture, but may yield significant performance ben-

efits. Systems composed from heterogeneous sensors and vehicles are handled transpar-

ently by this approach. The same is true for redundancy. Combining redundant elements

will likely improve accuracy and fault tolerance of the resulting system. It does not require

changing the internal structure of the decision making systems.

A demonstration by Vaughan of an autonomous helicopter cooperating with ground

vehicles to perform a localisation task illustrates the clear benefit of heterogeneity [97].

However, the proposed decentralised information-theoretic methodology suggests hetero-

geneity is not fundamental to the system architecture. This is a significantly different

approach to that of Parker [67] and Sukhatme [87, 18].

From a systems engineering viewpoint, the decentralised paradigm greatly reduces the

complexity of designing and combining subsystems. An interface to the communications

protocol in information form is all that is required to allow incorporation of an additional

system into this architecture. Different capabilities and characteristics can be configured

through composition of existing complementary or redundant subsystems. Reconfigu-

ration simply amounts to connecting or removing components having this decentralised

interface.

5.8 Summary

This chapter presented a general architecture for decentralised coordinated control of

multi-sensor information gathering systems. This endogeneous sensor architecture is an

extension of the established decentralised data fusion methods. The term ‘endogeneous’
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emphasises that the functionality enabling team decision making is internal. Each node

is augmented with an individual distributed decision making procedure and a communi-

cation manager. This architecture is the key to achieving synergistic cooperation among

decision makers.

Investigation of the mechanisms underlying coordination and cooperation demon-

strated that the form of the information structure is crucial. Communication of ob-

served information through a static information structure couples future decisions leading

to coordinated actions. A dynamic information structure permitting communication of

expected observation information couples the individual decision making processes. Ne-

gotiation through exchange of expected observation information allows decision makers

to account for and influence each other leading to cooperation. Thus, coordinated or

cooperative outcomes are determined through the design of the information structure.

Significant outcomes from this analysis are:

• Demonstration of the use of static information structures to achieve scalable coor-
dinated control of multiple sensor platforms.

• Showing that information seeking control based on zero look ahead provides useful
and numerically simple solution with interpretation as a dynamic potential field.

• Demonstration of cooperative control by combining a dynamic team information

structure with negotiation.

• Identification of components that extend the established data fusion architecture to
decentralised cooperative multi-sensor control.



Chapter 6

Conclusion

6.1 Introduction

The objective of this thesis was to describe and explain the development of a consistent

information-theoretic framework for engineering decentralised multi-sensor multi-vehicle

systems. This chapter summarises the contributions of this thesis. Section 6.2 illuminates

the major theoretical and practical solutions it has offered. Section 6.3 suggests areas of

future work in this compelling field of research.

6.2 Summary of Contributions

The major contributions arise from the information-theoretic problem formulation, inves-

tigation of the relationship between individual and team utility, analysis of coordination

and cooperation, and the development of a architecture for system implementation.

6.2.1 Information-Theoretic Approach to Control of Sensing

Information gathering is formulated and solved as an optimal control problem. The utility

associated with a planned sequence of control actions is determined a priori from the

164
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modelling of the vehicles, sensors and environment. The sensing task is converted into a

numerical representation suitable for systematic optimisation. Importantly, this approach

considers control of information over time. Steady state analysis loses temporal properties

critical to the information gathering problem. The information-theoretic methodology

provides straight forward generation of utility measures for sensing problems in terms of

entropic information.

6.2.2 Utility in Team Decision Making

The utility of a team decision maker is considered from both an individual and a team

perspective. This establishes the relationship between the individual and team optimal

actions, and the complexity of possible cooperation. Cooperation is only beneficial when

coupling in utility results in team optimal actions that differ from the individual actions

determined in isolation. It is observed that coupled utility does not necessarily alter the

individual actions. A situation is demonstrated where the action associated with absolute

minimum individual utility is team optimal.

6.2.3 Coordination Versus Cooperation

A distinction is made between coordination and cooperation. Coordination is considered

to occur when a mechanism coupling the actions of the system gives rise to an increase

in the utility of the system. The cooperative solution is taken to be the negotiated

equilibrium between sensor action plans. This distinction permits a range of practically

useful coordinated solutions without the effort associated with seeking cooperation.

Investigation of the mechanisms underlying coordination and cooperation revealed the

form of the information structure and utility structure to be crucial. Communication of

observed information through a static information structure couples future actions leading

to coordinated actions. A dynamic information structure permitting communication of
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expected observation information couples the individual decision making processes. Ne-

gotiation through exchange of expected observation information allows decision makers to

account for and influence each other leading to a cooperative solution. Hence, coordinated

or cooperative outcomes are selected through the design of the information structure.

6.2.4 Scalable Coordinated Sensing

Scalable coordinated decision making is realised by addition of a local information seeking

control layer to the established decentralised data fusion architecture. The decentralised

data fusion network implements a static information structure that propagates observed

information influencing subsequent locally optimised sensing plans. Benefits in lower com-

putational and communication requirements are obtained by not seeking the cooperative

solution. A special case is obtained when the decisions are made without looking ahead

in time. This requires extremely low solution effort and can be interpreted as ‘surfing’

the mutual information vector field.

6.2.5 Endogeneous Cooperative Sensing

Decentralised cooperative sensing is achieved through a proposed endogeneous node based

system architecture. This is an extension of the established decentralised data fusion

node. The innovation is that the functionality enabling team decision making is internal

to each node. An individual distributed decision making procedure with negotiation

enabled through an interface to a dynamic information structure is added to each node.

This architecture is the key to elegantly achieving transparent synergistic inter-operation

among decision making elements of sensor teams.
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6.3 Directions for Future Work

The research described in this thesis provides a quantitative and extensible basis for

the discipline of cooperative, multi-robot systems. The work has immediate practical

implications in addition to opening many rich avenues of future research.

6.3.1 Application to Practical Multi-Robot Missions

The methods developed in this thesis would find immediate application in multi-vehicle

implementations of a number of practical robotics problems involving sensing and explo-

ration. There is significant interest in the development of vehicles capable of autonomous

navigation and exploration, In particular, Thrun, Fox and Burgard present a probabilis-

tic approach to navigation based on Sequential Monte Carlo methods [19, 10], Leonard,

Newman and Fenwick [23] and research at the ACFR [88] employ feature-based Kalman

filtering approaches to localisation and mapping problems. The information-theoretic

basis of the work described in this thesis is immediately extensible to multiple-platform

versions of such probabilistic navigation and mapping methods.

The bearings-only localisation problem considered in Section 5.6is, in effect, the ‘struc-

ture from motion’ problem in computer vision [81]. A camera can be considered as a sensor

providing bearings-only measurements. A multi-camera implementation of such a system

could be composed in the proposed team decision structure. Each individual camera sub-

system would then be capable of local control subject to some global objective in tracking

image features.

6.3.2 Extensions to the Endogeneous Approach

The endogenous sensing and estimation approach can be extended to incorporate elements

such as active feature classification, sensor data association and fault detection. Elfes [22]

has applied information theoretic methods to single vehicle trajectory planning for target
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identification. Application of decentralised multi-vehicle systems to feature classification

and data association is a logical and practical extension. Within this decentralised frame-

work, all the information required to detect faults is available. If a fault is detectable in

the equivalent global system, it is detectable in the decentralised architecture. Individuals

can internally validate team information through checking the consistency between the es-

timate and observation information. Fault isolation is more difficult. Due to the summing

of anonymous information contributions, an individual can not identify which teammate

is at fault. A decision maker can however detect if they themselves are responsible for

the fault. This offers an alternative approach to fault detection.

In addition, elements of the system design, such as parameterisation of the world and

actions, can be incorporated into the decision problem. Overly complex representations

are likely to incur significant solution effort for modest performance improvements. Deci-

sion making may be augmented to include consideration of the parametric representation

of the environment and member actions.

6.3.3 Consideration of Tasks Other Than Sensing

The information-theoretic analysis extends to any quantifiable probabilistic characteris-

tics. This include risk, energy and general commodities. In general, any problem involving

allocation of limited resources with quantifiable rewards and costs can be treated within

the team decision problem framework. Tasks of significant interest include:

• Pursuit and evasion between cooperative teams.

• Logistical problems such as transportation and mining.

• Risk management in resource allocation.

The robotics field provides structured problems and environments for experimental eval-

uation of theoretical developments. Analysis of cooperative robotic systems is likely to

provide insight to other application domains.
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6.4 Summary

Finally, this thesis provides a significant contribution to the realisation of cooperative

control of multi-sensor teams through a consistent information theoretic framework. It

is the implementation of the innovative endogeneous node based architecture which will

achieve transparent synergistic inter-operation among decision making elements of sensor

teams.



Appendix A

Numerical Solution Approach

A.1 Optimal Control

The problems considered in this thesis are not linear set point regulation or trajectory

tracking problems. Linear quadratic solution forms do not exist. This leads to a require-

ment for nonlinear control approaches. The general problem formulation as specified by

Bryson [9] follows. The solution is an open-loop, feed-forward action sequence u(t) ∈ Rr

that minimises the performance index J(x(t),u(t)), where x(t) ∈ Rn, t ∈ [t0, tf ].

Given initial conditions:
x(0) = x(t0)

System Equations:
ẋ(t) = f(x(t),u(t)) (A.1)

Subject to constraints:
ψ(x(t),u(t)) = 0
g(x(t),u(t)) ≤ 0

With scalar final and path cost:

J(x(t),u(t)) = φ(x(tf )) +

∫ tf

t0

L(x(t),u(t))dt (A.2)

A solution u(t) is sought to:
argmin

u(t)
J(x(t),u(t)) (A.3)
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This is a difficult problem in functional analysis. The problem requires solution to a

multi-point boundary value problem. A wide variety of numerical approaches to optimal

control problems exist. Reviews of methods are provided by Bryson [9] and Pesch [70].

A.1.1 Parameterised Solution by Mathematical Programming

Accepting that most optimal control problems require numerical solution, an approxi-

mate solution to the functional optimisation problem A.3 can be sought through suitable

discreteisation or parameterisation of the control vector u(t)

ui(t) =
m∑

j=1

pijχj(t), i = 1, . . . , r. (A.4)

This approach is described by Sargent [79] and Goh and Teo [27]. The simplest practical

scheme involves holding the control values constant over m equal time partitions ∆tu. In

this case the basis function χj(t) is given by

χj(t) =







1 if(j − 1)∆tu ≤ t ≤ j∆tu

0 otherwise
, ∆tu =

tf − t0
m

. (A.5)

An example of a more advanced parameterisation is provided by Bindera [89]. The

tu
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Figure A.1: Control parameterisation and time discreteisation.

system state and performance index may now be evaluated from equations A.1 and A.2
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using standard solution techniques for ordinary differential equations. If a Heun inte-

gration scheme is used, the optimal control problem A.3 is converted into the nonlinear

programming problem:

min
p

J(p) = φ(xtf ) +
1

2
∆tx

m.nsteps∑

i=1

(Li(xi,uk) +Li−1(xi−1,uk)). (A.6)

Where the parameter vector is p = vec ([u1, . . . ,um])r.mx1. The state is evaluated on a

possibly finer partition with time step ∆tx =
∆tu

nsteps
, {nsteps ∈ Z : nsteps ≥ 1} and the

control index is k = floor(i∆tu
∆tx
). The minimisation is conducted subject to:

the system algebraic constraints:

xi = xi−1 +
1

2
∆tx[f i(xi,uk) + f i−1(xi−1,uk)], i = 1, . . . , nsteps.m, (A.7)

control parameter bounds:

[umin]k ≤ uk ≤ [umax]k , k = 1, . . . ,m, (A.8)

and state constraints:
ψi(xi) = 0
gi(xi) ≤ 0. (A.9)

This original optimal control problem A.3, is now in the form of a mathematical

programing problem. The routine used throughout this thesis is fmincon from the Matlab

Optimization Toolbox [8]. This implements the sequential quadratic programming method

(SQP) see Gill [26, 2].

A.1.2 Gradient Determination

The efficiency and reliability of solving this nonlinear programming problem is aided by

knowledge of the gradient of the cost with respect to the solution parameters∇pJ. Knowl-

edge of the Hessian ∇2pJ is required by routines such as Newton’s exact method, hovever
an alternative is to update an approximation from the gradient over sucessive iterations.
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Three methods general techniqes exist for the calculation of the partial derivatives.

1. Numerical calulation by finite differences

2. Numerical approxiation of the gradient by integration of the adjoint (dual or costate)

equation. See Sargent [79], Goh and Teo [27] or Roemisch [77]

3. Numerical integration of an enlarged system of ordinary differential equations, solv-

ing for the state xi and derivatives
∂xi
∂p
and ∂2xi

∂p2 simultaneously. As described by

Vassiliadis et. al. [96]

Method 1 is the simplest requiring no knowledge of the partial derivatives of the system

equations with respect to state and control vectors. The drawback is the heavy compu-

tational load associated with integrating the purtubed system equations with sufficient

accuracy. Method 2 is an elegant technique most suitable for problems with low state

dimension and a large number of parameters. Method 3 is suited to the complemen-

tary situation. The implementation details of method 3, referred to a forward sensitivity

analysis, follow. Differentiating A.6 with respect to p gives the gradient as

(∇pJ)m.r×1 =
∂φ(xtf )

∂xtf

∂xtf

∂p
+
1

2
∆tx

m.nsteps∑

i=1

(
∂Li

∂xi

∂xi

∂p
+

∂Li

∂uk

∂uk

∂p
+
∂Li−1

∂xi−1

∂xi−1

∂p
+
∂Li−1

∂uk

∂uk

∂p

)

. (A.10)

Differentiating once more gives the Hessian

(
∇2pJ

)

m.r×m.r
=

[

Im.r ⊗
∂φ(xtf )

∂xtf

]
∂2xtf

∂p2
+

(
∂xtf

∂p

)T ∂2φ(xtf )

∂xtf
2

∂xtf

∂p
+

1

2
∆tx

m.nsteps∑

i=1

{[

Im.r ⊗
∂Li

∂xi

]
∂2xi

∂p2
+

(
∂xi

∂p

)T [
∂2Li

∂xi
2

∂xi

∂p
+

∂2Li

∂xi∂uk

∂uk

∂p

]

+

(
∂uk

∂p

)T [
∂2Li

∂uk∂xi

∂xi

∂p
+
∂2Li

∂uk
2

∂uk

∂p

]

+

[

Im.r ⊗
∂Li−1

∂xi−1

]
∂2xi−1

∂p2
+

(
∂xi−1

∂p

)T [
∂2Li−1

∂xi−1
2

∂xi−1

∂p
+

∂2Li−1

∂xi−1∂uk

∂uk

∂p

]

+

(
∂uk

∂p

)T [
∂2Li−1

∂uk∂xi−1

∂xi−1

∂p
+
∂2Li−1

∂uk
2

∂uk

∂p

]}

. (A.11)
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Applying the chain rule to the system equation A.1 gives

d

dt

∂x

∂p
=

∂f

∂x

∂x

∂p
+
∂f

∂u

∂u

∂p
, with

∂x

∂p

∣
∣
∣
∣
t=t0

=
∂x0

∂p
. (A.12)

From which the first order parametric sensitivities are computed, e.g. by Heun scheme.

∂xi

∂p
=

[

In − 1
2
∆tx

∂f i

∂xi

]−1 [[

In +
1

2
∆tx

∂f i−1

∂xi−1

]

+
1

2
∆tx

(
∂f i

∂uk

+
∂f i−1

∂uk

)
∂uk

∂p

]

. (A.13)

Diffentiating the forward sensitivity equation A.12 once again with respect to p leads to

d

dt

∂2x

∂p2
=

[

Im.r ⊗
∂f

∂x

]
∂2x

∂p2
+

[

In ⊗
(
∂x

∂p

)T
] [

∂2f

∂x2
∂x

∂p
+

∂2f

∂x∂u

∂u

∂p
+

∂2f

∂x∂p

]

+

[

Im.r ⊗
∂f

∂u

]
∂2u

∂p2
+

[

In ⊗
(
∂u

∂p

)T
] [

∂2f

∂u∂x

∂x

∂p
+
∂2f

∂u2
∂u

∂p
+

∂2f

∂u∂p

]

+

∂2f

∂p∂x

∂x

∂p
+

∂2f

∂p∂u

∂u

∂p
+
∂2f

∂p2
, with

∂2x

∂p2

∣
∣
∣
∣
t=t0

=
∂2x0

∂p2
. (A.14)

For the cases considered, the system equations are not an explicit function of the

parameters and the control is linear in the parameters. So ∂2f

∂p∂(·)
= 0 and ∂2u

∂p2 = 0. From

A.14, the second order parametric sensitivities can be computed recursively, e.g. by Heun

scheme.

∂2xi

∂p2
=

[

In.m.r −
1

2
∆tx

[

Im.r ⊗
∂f i

∂xi

]]−1{[

In.m.r +
1

2
∆tx

[

Im.r ⊗
∂f i−1

∂xi−1

]]

+

1

2
∆tx

{[

In ⊗
(
∂xi

∂p

)T
] [

∂2f i

∂xi
2

∂xi

∂p
+

∂2f i

∂xi∂uk

∂uk

∂p
+

∂2f i

∂xi∂p

]

+

[

In ⊗
(
∂uk

∂p

)T
] [

∂2f i

∂uk∂xi

∂xi

∂p
+

∂2f i

∂uk
2

∂uk

∂p
+

∂2f i

∂uk∂p

]

+

[

In ⊗
(
∂xi−1

∂p

)T
] [

∂2f i−1

∂xi−1
2

∂xi−1

∂p
+

∂2f i−1

∂xi−1∂uk

∂uk

∂p
+

∂2f i−1

∂xi−1∂p

]

+

[

In ⊗
(
∂uk

∂p

)T
] [

∂2f i−1

∂uk∂xi−1

∂xi−1

∂p
+
∂2f i−1

∂uk
2

∂uk

∂p
+
∂2f i−1

∂uk∂p

]}}

. (A.15)
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A.1.3 Example Solution

A simple example is presented to demonstrated the parameterised control solution. The

example is from the textbook by Lewis [40]. Let a system obey Newton’s law so that

ẏ = v (A.16)

v̇ = u (A.17)

with y the position, v the velocity and u the acceleration control input. The system state

is x = [y,v]T . Select the performance index at final time T to be

J =
wy

2
(y(T )− ry)

2 +
wv

2
(v(T )− rv)

2 +
1

2

∫ T

0

u2(t)dt (A.18)

where ry and rv are desired reference values for y and v at final time T . wy and wv

are weighting factors that adjust the trade-of between required control energy and the

terminal state errors. Lewis finds a sample solution for y(0) = v(0) = 1, ry(T ) = rv(T ) =

0, wy = wv = 100 and T = 10 seconds to be

u?(t) = −.4594 + .0718t

Tis is compared to a solution parameterised by eight control steps in Figure A.2.
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Appendix B

Decentralised Data Fusion

B.1 The Information Filter

A key tool in decentralised data fusion systems is the information filter. The information

filter allows standard continuous estimation and control functions to be decentralised.

The information filter is summarised in this section.

Consider a system described in standard linear form

x(k) = F(k)x(k − 1) +B(k)u(k) +G(k)w(k), (B.1)

where x(j) is the state of interest at time j, F(k) is the state transition matrix from time

k − 1 to k, B(k) and G(k) the control input and noise input transition matrices, and

where u(k) and w(k) are the associated control input and process noise input modeled as

an uncorrelated white sequence with E{w(i)wT (j)} = δijQ(i). The system is observed

by a sensor according to the linear equation

z(k) = H(k)x(k) + v(k) (B.2)

where z(k) is the vector of observations made at time k, H(k) the observation matrix or
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model, and where v(k) is the associated observation noise modeled as an uncorrelated

white sequence with E{v(i)vT (j)} = δijR(i).

The conventional Kalman filter algorithm generates estimates for the state x̂(k | k)
at a time k given all observations up to time k, together with a corresponding estimate

covariance P(k | k) as:

x̂(k | k) = x̂(k | k − 1) +W(k) [z(k) +H(k)x̂(k | k − 1)] (B.3)

P(k | k) = P(k | k − 1)−W(k)S(k)WT (k) (B.4)

whereW(k) is the gain matrix, S(k) the innovation covariance. The information form of

the Kalman filter is obtained by re-writing the state estimate and covariance in terms of

two new variables

ŷ(i | j) 4
= P−1(i | j)x̂(i | j), Y(i | j) 4

= P−1(i | j), (B.5)

and also the information associated with an observation in the form

i(k)
4
= HT (k)R−1(k)z(k), I(k)

4
= HT (k)R−1(k)H(k) (B.6)

With these definitions, the information filter can be summarised

Prediction:

ŷ(k | k − 1) =
[
1−Ω(k)GT (k)

]
F−T (k)ŷ(k − 1 | k − 1) +

+Y(k | k − 1)B(k)u(k) (B.7)

Y(k | k − 1) =M(k)−Ω(k)Σ(k)ΩT (k) (B.8)
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where

M(k) = F−T (k)P−1(k − 1 | k − 1)F−1(k), (B.9)

Ω(k) =M(k)G(k)Σ−1(k), (B.10)

and

Σ(k) =
[
GT (k)M(k)G(k) +Q−1(k)

]
. (B.11)

Estimate:

ŷ(k | k) = ŷ(k | k − 1) + i(k) (B.12)

Y(k | k) = Y(k | k − 1) + I(k). (B.13)

The information-filter form has the advantage that the update Equations B.12 and B.13

for the estimator are computationally simpler than the equations for the Kalman Filter, at

the cost of increased complexity in prediction. The value of this in decentralized sensing is

that estimation occurs locally at each node, requiring partition of the estimation equations

which are simpler in their information form. Prediction, which is more complex in this

form, relies on a propagation coefficient which is independent of the observations made

and so is again simpler to decouple and decentralize amongst a network of sensor nodes.

The information form of the Kalman filter, while widely known, is not commonly used

because the update terms are of dimension the state, whereas in the distributed Kalman

filter updates are of dimension the observation. For single sensor estimation problems, this

argues for the use of the Kalman filter over the information filter. However, in multiple

sensor problems, the opposite is true. The reason is that with multiple sensor observations

zi(k) = Hi(k)x(k) + vi(k), i = 1, · · · , N

the estimate can not be constructed from a simple linear combination of contributions
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from individual sensors

x̂(k | k) 6= x̂(k | k − 1) +
N∑

i=1

Wi(k) [zi(k)−Hi(k)x̂(k | k − 1)] ,

as the innovation zi(k) −Hi(k)x̂(k | k − 1) generated from each sensor is correlated be-
cause they share common information through the prediction x̂(k | k − 1). However, in
information form, estimates can be constructed from linear combinations of observation

information

ŷ(k | k) = ŷ(k | k − 1) +
N∑

i=1

ii(k),

as the information terms ii(k) from each sensor are uncorrelated. Once the update equa-

tions have been written in this simple additive form, it is straight-forward to distribute

the data fusion problem (unlike for a Kalman filter); each sensor node simply generates

the information terms ii(k), and these are summed at the fusion center to produce a global

information estimate.
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Figure B.1: Algorithmic structure of a decentralised sensing node.

To decentralise the information filter all that is necessary is to replicate the central

fusion algorithm (summation) at each sensor node and simplify the result. This yields

a surprisingly simple nodal fusion algorithm. The algorithm is described graphically in

Figure B.1. Essentially, local estimates are first generated at each node by fusing (adding)

locally available observation information ii(k) with locally available prior information

ŷi(k | k − 1). This yields a local information estimate ỹi(k | k). The difference between
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this local estimate and prediction (corresponding to new information gained) is then

transmitted to other nodes in the network. In a fully connected or broadcast network,

this results in every sensing node getting all new information. Communicated information

is then assimilated simply by summing with the local information. An important point

to note is that, after this, the locally available estimates are exactly the same as if the

data fusion problem had been solved on a single central processor using a monolithic

formulation of the conventional Kalman filter.

It is also worth noting the manner in which the control input enters the prediction

stage of the information form; through the term Y(k | k − 1)B(k)u(k). In general Hi(k)

is a function of state which is dependent on control action. Thus, the control input also

influences the observed information update.
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