2,292 research outputs found

    An Efficient Automatic Mass Classification Method In Digitized Mammograms Using Artificial Neural Network

    Full text link
    In this paper we present an efficient computer aided mass classification method in digitized mammograms using Artificial Neural Network (ANN), which performs benign-malignant classification on region of interest (ROI) that contains mass. One of the major mammographic characteristics for mass classification is texture. ANN exploits this important factor to classify the mass into benign or malignant. The statistical textural features used in characterizing the masses are mean, standard deviation, entropy, skewness, kurtosis and uniformity. The main aim of the method is to increase the effectiveness and efficiency of the classification process in an objective manner to reduce the numbers of false-positive of malignancies. Three layers artificial neural network (ANN) with seven features was proposed for classifying the marked regions into benign and malignant and 90.91% sensitivity and 83.87% specificity is achieved that is very much promising compare to the radiologist's sensitivity 75%.Comment: 13 pages, 10 figure

    Analysis and Classification of Breast Cancer Disease Via Different Datasets and Classifier Models

    Get PDF
    Nowadays, Tumour is one of the important reasons of human death worldwide, producing about 9.6 million people in 2018. BC (breast cancer) is the common reason for cancer deaths in females. BC is a type of cancer that can be treated when detected early. The main motive of this analysis is to detect cancer early in life using ML (machine learning) techniques. The features of the people included in the WDBC (Wisconsin diagnostic breast cancer) and Coimbra BC datasets were classified by SVOF-KNN, KNN, and Naïve Bayes techniques. The pre-processing data phase was applied to the datasets before classification. After the data pre-processing steps, three classification methods were applied to the data. Specificity and Sensitivity rates were used to calculate the success of the techniques. As an outcome of the BC diagnosis classification, the SVOF-KNN technique was found with a 91 percent specificity rate and 90 percent sensitivity rate. When the outcomes attained from feature extraction and selection are calculated. It is seen that feature extraction, selection, and data pre-processing techniques improve the specificity and sensitivity rate of the detection system

    Radial Basis Function Neural Networks : A Review

    Get PDF
    Radial Basis Function neural networks (RBFNNs) represent an attractive alternative to other neural network models. One reason is that they form a unifying link between function approximation, regularization, noisy interpolation, classification and density estimation. It is also the case that training RBF neural networks is faster than training multi-layer perceptron networks. RBFNN learning is usually split into an unsupervised part, where center and widths of the Gaussian basis functions are set, and a linear supervised part for weight computation. This paper reviews various learning methods for determining centers, widths, and synaptic weights of RBFNN. In addition, we will point to some applications of RBFNN in various fields. In the end, we name software that can be used for implementing RBFNNs

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Feature Selection for Text and Image Data Using Differential Evolution with SVM and Naïve Bayes Classifiers

    Get PDF
    Classification problems are increasing in various important applications such as text categorization, images, medical imaging diagnosis and bimolecular analysis etc. due to large amount of attribute set. Feature extraction methods in case of large dataset play an important role to reduce the irrelevant feature and thereby increases the performance of classifier algorithm. There exist various methods based on machine learning for text and image classification. These approaches are utilized for dimensionality reduction which aims to filter less informative and outlier data. Therefore, these approaches provide compact representation and computationally better tractable accuracy. At the same time, these methods can be challenging if the search space is doubled multiple time. To optimize such challenges, a hybrid approach is suggested in this paper. The proposed approach uses differential evolution (DE) for feature selection with naïve bayes (NB) and support vector machine (SVM) classifiers to enhance the performance of selected classifier. The results are verified using text and image data which reflects improved accuracy compared with other conventional techniques. A 25 benchmark datasets (UCI) from different domains are considered to test the proposed algorithms.  A comparative study between proposed hybrid classification algorithms are presented in this work. Finally, the experimental result shows that the differential evolution with NB classifier outperforms and produces better estimation of probability terms. The proposed technique in terms of computational time is also feasible

    White learning methodology: a case study of cancer-related disease factors analysis in real-time PACS environment

    Get PDF
    Bayesian network is a probabilistic model of which the prediction accuracy may not be one of the highest in the machine learning family. Deep learning (DL) on the other hand possess of higher predictive power than many other models. How reliable the result is, how it is deduced, how interpretable the prediction by DL mean to users, remain obscure. DL functions like a black box. As a result, many medical practitioners are reductant to use deep learning as the only tool for critical machine learning application, such as aiding tool for cancer diagnosis. In this paper, a framework of white learning is being proposed which takes advantages of both black box learning and white box learning. Usually, black box learning will give a high standard of accuracy and white box learning will provide an explainable direct acyclic graph. According to our design, there are 3 stages of White Learning, loosely coupled WL, semi coupled WL and tightly coupled WL based on degree of fusion of the white box learning and black box learning. In our design, a case of loosely coupled WL is tested on breast cancer dataset. This approach uses deep learning and an incremental version of Naïve Bayes network. White learning is largely defied as a systemic fusion of machine learning models which result in an explainable Bayes network which could find out the hidden relations between features and class and deep learning which would give a higher accuracy of prediction than other algorithms. We designed a series of experiments for this loosely coupled WL model. The simulation results show that using WL compared to standard black-box deep learning, the levels of accuracy and kappa statistics could be enhanced up to 50%. The performance of WL seems more stable too in extreme conditions such as noise and high dimensional data. The relations by Bayesian network of WL are more concise and stronger in affinity too. The experiments results deliver positive signals that WL is possible to output both high classification accuracy and explainable relations graph between features and class. [Abstract copyright: Copyright © 2020. Published by Elsevier B.V.

    Breast cancer classification using machine learning techniques: a comparative study

    Get PDF
    Background: The second leading deadliest disease affecting women worldwide, after  lung cancer, is breast cancer. Traditional approaches for breast cancer diagnosis suffer from time consumption and some human errors in classification. To deal with this problems, many research works based on machine learning techniques are proposed.  These approaches show  their effectiveness in data classification in many fields, especially in healthcare.      Methods: In this cross sectional study, we conducted a practical comparison between the most used machine learning algorithms in the literature. We applied kernel and linear support vector machines, random forest, decision tree, multi-layer perceptron, logistic regression, and k-nearest neighbors for breast cancer tumors classification.  The used dataset is  Wisconsin diagnosis Breast Cancer. Results: After comparing the machine learning algorithms efficiency, we noticed that multilayer perceptron and logistic regression gave  the best results with an accuracy of 98% for breast cancer classification.       Conclusion: Machine learning approaches are extensively used in medical prediction and decision support systems. This study showed that multilayer perceptron and logistic regression algorithms are  performant  ( good accuracy specificity and sensitivity) compared to the  other evaluated algorithms

    Training artificial neural networks directly on the concordance index for censored data using genetic algorithms.

    Get PDF
    OBJECTIVE: The concordance index (c-index) is the standard way of evaluating the performance of prognostic models in the presence of censored data. Constructing prognostic models using artificial neural networks (ANNs) is commonly done by training on error functions which are modified versions of the c-index. Our objective was to demonstrate the capability of training directly on the c-index and to evaluate our approach compared to the Cox proportional hazards model. METHOD: We constructed a prognostic model using an ensemble of ANNs which were trained using a genetic algorithm. The individual networks were trained on a non-linear artificial data set divided into a training and test set both of size 2000, where 50% of the data was censored. The ANNs were also trained on a data set consisting of 4042 patients treated for breast cancer spread over five different medical studies, 2/3 used for training and 1/3 used as a test set. A Cox model was also constructed on the same data in both cases. The two models' c-indices on the test sets were then compared. The ranking performance of the models is additionally presented visually using modified scatter plots. RESULTS: Cross validation on the cancer training set did not indicate any non-linear effects between the covariates. An ensemble of 30 ANNs with one hidden neuron was therefore used. The ANN model had almost the same c-index score as the Cox model (c-index=0.70 and 0.71, respectively) on the cancer test set. Both models identified similarly sized low risk groups with at most 10% false positives, 49 for the ANN model and 60 for the Cox model, but repeated bootstrap runs indicate that the difference was not significant. A significant difference could however be seen when applied on the non-linear synthetic data set. In that case the ANN ensemble managed to achieve a c-index score of 0.90 whereas the Cox model failed to distinguish itself from the random case (c-index=0.49). CONCLUSIONS: We have found empirical evidence that ensembles of ANN models can be optimized directly on the c-index. Comparison with a Cox model indicates that near identical performance is achieved on a real cancer data set while on a non-linear data set the ANN model is clearly superior
    • …
    corecore