2,545 research outputs found

    A Transdisciplinary Approach for the Design Optimization of Medical Simulations

    Get PDF
    Simulation in healthcare is rapidly replacing more traditional educational methods, becoming a fundamental step in the medical training path. Medical simulations have a remarkable impact not only on learners’ competencies and skills but also on their attitudes, behaviors, and emotions such as anxiety, stress, mental effort, and frustration. All these aspects are transferred to the real practice and reflected on patients’ safety and outcomes. The design of medical simulations passes through a careful analysis of learning objectives, technology to be used, instructor’s and learners’ roles, performance assessment, and so on. However, an overall methodology for the simulation assessment and consequent optimization is still lacking. The present work proposes a transdisciplinary framework for the analysis of simulation effectiveness in terms of learners’ performance, ergonomics conditions, and emotional states. It involves collaboration among different professional figures such as engineers, clinicians, specialized trainers, and human factors specialists. The aim is to define specific guidelines for the simulation optimization, to obtain enhanced learners’ performance, improved ergonomics, and consequently positively affect the patient treatment, leading to cost savings for the healthcare system. The proposed framework has been tested on a low-fidelity simulation for the training of rachicentesis and has allowed the definition of general rules for its enhancement

    Additional simulation training:does it affect students' knowledge acquisition and retention?

    Get PDF
    Introduction Teaching medical skills during clinical rotation is a complex challenge, which often does not allow students to practise their skills. Nowadays, the use of simulation training has increased to teach skills to medical students. However, transferring the learnt skills from one setting to the other is challenging. In this study, we investigated whether adding a simulation training before the clinical rotation would improve students’ acquisition and retention of knowledge.Methods Two subsequent cohorts were compared. Group A followed the traditional curriculum without additional simulation training. Group B attended an additional simulation training, in which history taking, physical examination and procedures for the primary survey in emergency situations were taught. Both groups answered the same knowledge test before entering their clinical rotation and after 6 months. To analyse students’ scores over time, we conducted a repeated measure analysis of variance. To investigate the difference between knowledge, we conducted a t-test.Results Group B scored significantly higher in both tests and all subscores, except in the Trauma topic in the first measurement point. Students in group A showed decay in knowledge whereas group B showed an increase in knowledge.Conclusions Adding a simulation training, before students entered their clinical rotation, improves students’ knowledge acquisition and retention compared with those who did not receive the additional simulation training

    Instructional Message Design: Theory, Research, and Practice (Volume 2)

    Get PDF
    Message design is all around us, from the presentations we see in meetings and classes, to the instructions that come with our latest tech gadgets, to multi-million-dollar training simulations. In short, instructional message design is the real-world application of instructional and learning theories to design the tools and technologies used to communicate and effectively convey information. This field of study pulls from many applied sciences including cognitive psychology, industrial design, graphic design, instructional design, information technology, and human performance technology to name just a few. In this book we will visit several foundational theories that guide our research, look at different real-world applications, and begin to discuss directions for future best practice. For instance, cognitive load and multimedia learning theories provide best practice, virtual reality and simulations are only a few of the multitude of applications. Special needs learners and designing for online, e-learning, and web conferencing are only some of many applied areas where effective message design can improve outcomes. Studying effective instructional message design tools and techniques has and will continue to be a critical aspect of the overall instructional design process. Hopefully, this book will serve as an introduction to these topics and inspire your curiosity to explore further

    Cognitive Decay And Memory Recall During Long Duration Spaceflight

    Get PDF
    This dissertation aims to advance the efficacy of Long-Duration Space Flight (LDSF) pre-flight and in-flight training programs, acknowledging existing knowledge gaps in NASA\u27s methodologies. The research\u27s objective is to optimize the cognitive workload of LDSF crew members, enhance their neurocognitive functionality, and provide more meaningful work experiences, particularly for Mars missions.The study addresses identified shortcomings in current training and learning strategies and simulation-based training systems, focusing on areas requiring quantitative measures for astronaut proficiency and training effectiveness assessment. The project centers on understanding cognitive decay and memory loss under LDSF-related stressors, seeking to establish when such cognitive decline exceeds acceptable performance levels throughout mission phases. The research acknowledges the limitations of creating a near-orbit environment due to resource constraints and the need to develop engaging tasks for test subjects. Nevertheless, it underscores the potential impact on future space mission training and other high-risk professions. The study further explores astronaut training complexities, the challenges encountered in LDSF missions, and the cognitive processes involved in such demanding environments. The research employs various cognitive and memory testing events, integrating neuroimaging techniques to understand cognition\u27s neural mechanisms and memory. It also explores Rasmussen\u27s S-R-K behaviors and Brain Network Theory’s (BNT) potential for measuring forgetting, cognition, and predicting training needs. The multidisciplinary approach of the study reinforces the importance of integrating insights from cognitive psychology, behavior analysis, and brain connectivity research. Research experiments were conducted at the University of North Dakota\u27s Integrated Lunar Mars Analog Habitat (ILMAH), gathering data from selected subjects via cognitive neuroscience tools and Electroencephalography (EEG) recordings to evaluate neurocognitive performance. The data analysis aimed to assess brain network activations during mentally demanding activities and compare EEG power spectra across various frequencies, latencies, and scalp locations. Despite facing certain challenges, including inadequacies of the current adapter boards leading to analysis failure, the study provides crucial lessons for future research endeavors. It highlights the need for swift adaptation, continual process refinement, and innovative solutions, like the redesign of adapter boards for high radio frequency noise environments, for the collection of high-quality EEG data. In conclusion, while the research did not reveal statistically significant differences between the experimental and control groups, it furnished valuable insights and underscored the need to optimize astronaut performance, well-being, and mission success. The study contributes to the ongoing evolution of training methodologies, with implications for future space exploration endeavors

    Instructional Message Design: Theory, Research, and Practice (Volume 2)

    Get PDF
    Message design is all around us, from the presentations we see in meetings and classes, to the instructions that come with our latest tech gadgets, to multi-million-dollar training simulations. In short, instructional message design is the real-world application of instructional and learning theories to design the tools and technologies used to communicate and effectively convey information. This field of study pulls from many applied sciences including cognitive psychology, industrial design, graphic design, instructional design, information technology, and human performance technology to name just a few. In this book we visit several foundational theories that guide our research, look at different real-world applications, and begin to discuss directions for future best practice. For instance, cognitive load and multimedia learning theories provide best practice, virtual reality and simulations are only a few of the multitude of applications. Special needs learners and designing for online, e-learning, and web conferencing are only some of many applied areas where effective message design can improve outcomes. Studying effective instructional message design tools and techniques has and will continue to be a critical aspect of the overall instructional design process. Hopefully, this book will serve as an introduction to these topics and inspire your curiosity to explore further!https://digitalcommons.odu.edu/distancelearning_books/1003/thumbnail.jp

    Comparing Training Effects of Virtual Reality Flight Simulation to Conventional PC-Based Flight Simulation

    Get PDF
    The purpose of the current project was to investigate the effect of utilizing Virtual Reality (VR) technologies for flight training by comparing the training results when using conventional desktop flight simulation versus VR flight simulation. Additionally, this project examined the user experience of VR flight simulation and how users’ motivation and satisfaction with VR simulations. This research employed a quasi-transfer of training experiment including 48 participants. Analyses indicated that VR group participants performed better in the post-training maneuver performance on an FTD than in the conventional desktop simulation group. Findings also supported that VR flight simulation could provide a better user experience and generate a higher motivation for usage. This work contributed positive evidence that VR flight simulation has a large potential to be an effective flight training and provided a foundation for future research to continue exploring the training effect of VR flight simulation. Keywords: virtual reality, flight training, user experience, self-efficac

    Marshall Space Flight Center Research and Technology Report 2019

    Get PDF
    Today, our calling to explore is greater than ever before, and here at Marshall Space Flight Centerwe make human deep space exploration possible. A key goal for Artemis is demonstrating and perfecting capabilities on the Moon for technologies needed for humans to get to Mars. This years report features 10 of the Agencys 16 Technology Areas, and I am proud of Marshalls role in creating solutions for so many of these daunting technical challenges. Many of these projects will lead to sustainable in-space architecture for human space exploration that will allow us to travel to the Moon, on to Mars, and beyond. Others are developing new scientific instruments capable of providing an unprecedented glimpse into our universe. NASA has led the charge in space exploration for more than six decades, and through the Artemis program we will help build on our work in low Earth orbit and pave the way to the Moon and Mars. At Marshall, we leverage the skills and interest of the international community to conduct scientific research, develop and demonstrate technology, and train international crews to operate further from Earth for longer periods of time than ever before first at the lunar surface, then on to our next giant leap, human exploration of Mars. While each project in this report seeks to advance new technology and challenge conventions, it is important to recognize the diversity of activities and people supporting our mission. This report not only showcases the Centers capabilities and our partnerships, it also highlights the progress our people have achieved in the past year. These scientists, researchers and innovators are why Marshall and NASA will continue to be a leader in innovation, exploration, and discovery for years to come

    Effectiveness analysis of traditional and mixed reality simulations in medical training: a methodological approach for the assessment of stress, cognitive load and performance

    Get PDF
    La simulazione nell'educazione in medicina è considerata un metodo di formazione in grado di migliorare le competenze cliniche e il comportamento degli operatori sanitari e, di conseguenza, la qualità dell'assistenza per il paziente. Inoltre, l'utilizzo di nuove tecnologie come la Realtà Aumentata, offre ai discenti l'opportunità di esercitarsi in un ambiente immersivo. L'opportunità di sperimentare questo innovativo metodo didattico è efficace non solo nel ridurre il rischio di errori e approcci sbagliati ma anche nel provare ansia e stress simili a quelli avvertiti nella pratica reale. La sfida sta nel trovare il giusto equilibrio. I discenti devono infatti provare lo stesso stress che avvertirebbero lavorando ad un vero caso clinico ma, allo stesso tempo, devono essere controllati ed evitati possibili disturbi da stress post-traumatico, verificabili soprattutto nel campo della gestione delle emergenze (pronto soccorso). Inoltre, è fondamentale anche ottenere alte prestazioni e un apprendimento adeguato, evitando sovraccarichi cognitivi che influenzerebbero negativamente l’apprendimento. Tuttavia, ad oggi mancano ancora studi approfonditi sull'impatto che le simulazioni mediche hanno su stress, frustrazione, carico cognitivo e apprendimento dei discenti. Per questo motivo, l'obiettivo principale di questo studio è valutare l'efficacia del training tramite simulazione, analizzando prestazioni, ansia, stress e carico cognitivo durante simulazioni cliniche tradizionali (con manichino) ed avanzate (in realtà mista). A questo scopo, è stato sviluppato un approccio metodologico strutturato e completo per valutare le prestazioni, le condizioni emotive e cognitive degli studenti. Questo comprende l'acquisizione e l'analisi di parametri psicologici (valutazione soggettiva), segnali biometrici (valutazione oggettiva) e prestazioni. Questa indagine consente di evidenziare i punti deboli delle simulazioni e offre l'opportunità di definire utili linee guida per la riprogettazione e l'ottimizzazione delle stesse. La metodologia è stata applicata su tre casi studio: il primo si riferisce a simulazioni ad alta fedeltà per la gestione del paziente in pronto soccorso, il secondo si riferisce a simulazioni a bassa fedeltà per la pratica della rachicentesi. Per il terzo caso studio, è stato progettato e sviluppato un prototipo di simulatore in realtà mista per la rachicentesi, con l'obiettivo di migliorare il senso di realismo e immersione della simulazione a bassa fedeltà. 148 studenti sono stati coinvolti nei primi due casi studio osservazionali, mentre soltanto 36 studenti hanno preso parte allo studio pilota sulla simulazione in realtà mista. In tutti i casi di studio sono state effettuate analisi descrittive delle prestazioni, degli stati cognitivi ed emotivi. Per le simulazioni ad alta e bassa fedeltà, le analisi di regressione statistica hanno evidenziato quali variabili influenzano le prestazioni, lo stress e il carico cognitivo degli studenti. Per lo studio pilota sulla realtà mista, l'analisi della user experience ha sottolineato i limiti tecnici della nuova tecnologia.Simulation in medical education is considered a training method capable of improving clinical competence and practitioners’ behaviour, and, consequently quality of care and patient’s outcome. Moreover, the use of new technologies, such as augmented reality, offers to the learners the opportunity to engage themselves in an immersive environment. The opportunity to experiment with this innovative instructional method is effective not only in reducing the risk of errors and wrong approaches but also in experiencing anxiety and stress as in real practice. The challenge is to find the right stress balance: learners have to feel as if they were practicing in the real stressful clinical case, and, at the same time, post-traumatic stress disorders, verifiable especially in the emergency field, must be controlled and avoided. Moreover, it is fundamental also to obtain high performance and learning, thus avoiding cognitive overloads. However, extensive researches about the impact of medical simulations on students’ stress, frustration, cognitive load, and learning are still lacking. For this reason, the main objective of this study is to assess simulation training effectiveness by analysing performance, anxiety, stress, and cognitive load during traditional (with manikin) and advanced (with augmented reality) clinical simulations. A structured and comprehensive methodological approach to assess performance, emotional and cognitive conditions of students has been developed. It includes the acquisition and analysis of psychological parameters (subjective assessment), biometric signals (objective assessment), and task performance. This investigation allows to point out simulations’ weaknesses and offers the opportunity to define useful optimisation guidelines. The methodology has been applied to three case studies: the first one refers to high-fidelity simulations, for the patient management in the emergency room, the second one refers to low-fidelity simulation for rachicentesis. For the third case study, a prototype of a mixed reality simulator for the rachicentesis practice has been designed and developed aiming at improving the sense of realism and immersion of the low-fidelity simulation. While 148 students have been enrolled in the first two case studies, only 36 students have taken part in the pilot study about mixed reality simulation. Descriptive analysis about performance, cognitive and emotional states have been done in all the case studies. For the high-fidelity and low-fidelity simulations, the statistical regression analysis has pointed out which variables affect students’ performance, stress, and cognitive load. For the pilot study about mixed reality, the user experience analysis highlighted the technical limitations of the new technology

    Learning While Using an Instructional Simulation

    Get PDF
    Learner control is thought to be valuable by some scholars who believe that it allows learners to adapt instructions to their needs while reducing cognitive load (Mayer & Moreno, 2003). Although learner control offers some advantages to the learner, the importance of an instructor cannot be denied. In instructor-controlled settings the instructor provides guidance to the learners. Direct instructional guidance provides information to the learner that explains the concepts and procedures that are to be learned along with the instructional strategy support that is compatible with human cognitive architecture (Kirschner, Sweller, & Clark, 2006). This study compared the effects of learner-controlled simulation to instructor-guided presentation of an instructional simulation. Outcome variables were achievement, cognitive load, time-on-task, instructional efficiency, perceptions of learner control, and attitude for future use. Results of the study indicated no significant differences between the learner-controlled and instructor-guided treatments for achievement, cognitive load, or instructional efficiency. A significant difference was found between the treatments for time-on-task and the perception of learner control where participants in the learner-controlled group spent significantly less time completing the instruction and reported significantly higher learner-control than those in the instructor guidance with activity group

    Simulation for Operational Readiness in a New Freestanding Emergency Department: Strategy and Tactics

    Get PDF
    © 2016 by the Society for Simulation in Healthcare. Statement Simulation in multiple contexts over the course of a 10-week period served as a core learning strategy to orient experienced clinicians before opening a large new urban freestanding emergency department. To ensure technical and procedural skills of all team members, who would provide care without on-site recourse to specialty backup, we designed a comprehensive interprofessional curriculum to verify and regularize a wide range of competencies and best practices for all clinicians. Formulated under the rubric of systems integration, simulation activities aimed to instill a shared culture of patient safety among the entire cohort of 43 experienced emergency physicians, physician assistants, nurses, and patient technicians, most newly hired to the health system, who had never before worked together. Methods throughout the preoperational term included predominantly hands-on skills review, high-fidelity simulation, and simulation with standardized patients. We also used simulation during instruction in disaster preparedness, sexual assault forensics, and community outreach. Our program culminated with 2 days of in-situ simulation deployed in simultaneous and overlapping timeframes to challenge system response capabilities, resilience, and flexibility; this work revealed latent safety threats, lapses in communication, issues of intake procedure and patient flow, and the persistence of inapt or inapplicable mental models in responding to clinical emergencies
    • …
    corecore