38 research outputs found

    Optimizing source and receiver placement in multistatic sonar networks to monitor fixed targets

    Get PDF
    17 USC 105 interim-entered record; under review.The article of record as published may be found at https://doi.org/10.1016/j.ejor.2018.02.006Multistatic sonar networks consisting of non-collocated sources and receivers are a promising develop ment in sonar systems, but they present distinct mathematical challenges compared to the monostatic case in which each source is collocated with a receiver. This paper is the first to consider the optimal placement of both sources and receivers to monitor a given set of target locations. Prior publications have only considered optimal placement of one type of sensor, given a fixed placement of the other type. We first develop two integer linear programs capable of optimally placing both sources and receivers within a discrete set of locations. Although these models are capable of placing both sources and receivers to any degree of optimality desired by the user, their computation times may be unacceptably long for some applications. To address this issue, we then develop a two-step heuristic process, Adapt-LOC, that quickly selects positions for both sources and receivers, but with no guarantee of optimality. Based on this, we also create an iterative approach, Iter-LOC, which leads to a locally optimal placement of both sources and receivers, at the cost of larger computation times relative to Adapt-LOC. Finally, we perform compu tational experiments demonstrating that the newly developed algorithms constitute a powerful portfolio of tools, enabling the user to slect an appropriate level of solution quality, given the available time to perform computations. Our experiments include three real-world case studies.Office of Naval Research

    Optimizing source and receiver placement in multistatic sonar

    Get PDF
    17 USC 105 interim-entered record; under review.Multistatic sonar networks consisting of non-collocated sources and receivers are a promising development in sonar systems, but they present distinct mathematical challenges compared to the monostatic case in which each source is collocated with a receiver. This paper is the first to consider the optimal placement of both sources and receivers to monitor a given set of target locations. Prior publications have only considered optimal placement of one type of sensor, given a fixed placement of the other type. We first develop two integer linear programs capable of optimally placing both sources and receivers within a discrete set of locations. Although these models are capable of placing both sources and receivers to any degree of optimality desired by the user, their computation times may be unacceptably long for some applications. To address this issue, we then develop a two-step heuristic process, Adapt-LOC, that quickly selects positions for both sources and receivers, but with no guarantee of optimality. Based on this, we also create an iterative approach, Iter-LOC, which leads to a locally optimal placement of both sources and receivers, at the cost of larger computation times relative to Adapt-LOC. Finally, we perform computational experiments demonstrating that the newly developed algorithms constitute a powerful portfolio of tools, enabling the user to slect an appropriate level of solution quality, given the available time to perform computations. Our experiments include three real-world case studies.Dr. Craparo is funded by the Office of Naval Research

    Drones Detection Using Smart Sensors

    Get PDF
    Drones are modern and sophisticated technology that have been used in numerous fields. Nowadays, many countries use them in exploration, reconnaissance operations, and espionage in military operations. Drones also have many uses that are not limited to only daily life. For example, drones are used for home delivery, safety monitoring, and others. However, the use of drones is a double-edged sword. Drones can be used for positive purposes to improve the quality of human lives, but they can also be used for criminal purposes and other detrimental purposes. In fact, many countries have been attacked by terrorists using smart drones. Hence, drone detection is an active area of research and it receives the attention of many scholars. Advanced drones are, many times, difficult to detect, and hence they, sometimes, can be life threatening. Currently, most detection methods are based on video, sound, radar, temperature, radio frequency (RF), or Wi-Fi techniques. However, each detection method has several flaws that make them imperfect choices for drone detection in sensitive areas. Our aim is to overcome the challenges that most existing drone detection techniques face. In this thesis, we propose two modeling techniques and compare them to produce an efficient system for drone detection. Specifically, we compare the two proposed models by investigating the risk assessments and the probability of success for each model

    Intelligent deployment strategies for passive underwater sensor networks

    Get PDF
    Passive underwater sensor networks are often used to monitor a general area of the ocean, a port or military installation, or to detect underwater vehicles near a high value unit at sea, such as a fuel ship or aircraft carrier. Deploying an underwater sensor network across a large area of interest (AOI), for military surveillance purposes, is a significant challenge due to the inherent difficulties posed by the underwater channel in terms of sensing and communications between sensors. Moreover, monetary constraints, arising from the high cost of these sensors and their deployment, limit the number of available sensors. As a result, sensor deployment must be done as efficiently as possible. The objective of this work is to develop a deployment strategy for passive underwater sensors in an area clearance scenario, where there is no apparent target for an adversary to gravitate towards, such as a ship or a port, while considering all factors pertinent to underwater sensor deployment. These factors include sensing range, communications range, monetary costs, link redundancy, range dependence, and probabilistic visitation. A complete treatment of the underwater sensor deployment problem is presented in this work from determining the purpose of the sensor field to physically deploying the sensors. Assuming a field designer is given a suboptimal number of sensors, they must be methodically allocated across an AOI. The Game Theory Field Design (GTFD) model, proposed in this work, is able to accomplish this task by evaluating the acoustic characteristics across the AOI and allocating sensors accordingly. Since GTFD considers only circular sensing coverage regions, an extension is proposed to consider irregularly shaped regions. Sensor deployment locations are planned using a proposed evolutionary approach, called the Underwater Sensor Deployment Evolutionary Algorithm, which utilizes two suitable network topologies, mesh and cluster. The effects of these topologies, and a sensor\u27s communications range, on the sensing capabilities of a sensor field, are also investigated. Lastly, the impact of deployment imprecision on the connectivity of an underwater sensor field, using a mesh topology, is analyzed, for cases where sensor locations after deployment do not exactly coincide with planned sensor locations

    Boundary influences In high frequency, shallow water acoustics

    Get PDF

    The perceptual flow of phonetic feature processing

    Get PDF

    Across frequency processes involved in auditory detection of coloration

    Get PDF
    corecore