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a b s t r a c t 

Multistatic sonar networks consisting of non-collocated sources and receivers are a promising develop- 

ment in sonar systems, but they present distinct mathematical challenges compared to the monostatic 

case in which each source is collocated with a receiver. This paper is the first to consider the optimal 

placement of both sources and receivers to monitor a given set of target locations. Prior publications have 

only considered optimal placement of one type of sensor, given a fixed placement of the other type. We 

first develop two integer linear programs capable of optimally placing both sources and receivers within a 

discrete set of locations. Although these models are capable of placing both sources and receivers to any 

degree of optimality desired by the user, their computation times may be unacceptably long for some 

applications. To address this issue, we then develop a two-step heuristic process, Adapt-LOC, that quickly 

selects positions for both sources and receivers, but with no guarantee of optimality. Based on this, we 

also create an iterative approach, Iter-LOC, which leads to a locally optimal placement of both sources 

and receivers, at the cost of larger computation times relative to Adapt-LOC. Finally, we perform compu- 

tational experiments demonstrating that the newly developed algorithms constitute a powerful portfolio 

of tools, enabling the user to slect an appropriate level of solution quality, given the available time to 

perform computations. Our experiments include three real-world case studies. 

Published by Elsevier B.V. 
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1. Introduction 

Sonar systems have been in use in undersea and antisubma-

rine warfare for decades. During this time, they have evolved and

found application in non-military fields, such as depth-finding, po-

sition marking, communication and telemetry, and aiding fisher-

men, divers, and conservationists ( Urick, 1983 ). Researchers and

practitioners distinguish between active and passive sonar systems

as well as between monostatic and multistatic systems. A passive

sonar system consists solely of receivers that “listen” for objects

in the environment. An active sonar system contains at least one

source and receiver. The source sends out a pulse of underwa-

ter sound, called a ping, which is reflected by objects in the un-

derwater environment. The reflected signal is detected by a re-

ceiver, and using this signal it is possible to determine informa-
∗ Corresponding author. 
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ion about the objects in the vicinity, including their locations. A

onostatic sonar system consists of sensors called posts; each post

ontains both a source and receiver ( Ozols & Fewell, 2011 ). This

rinciple is illustrated in Fig. 1 (left). In a multistatic sonar net-

ork (MSN), 3 sources and receivers are not necessarily collocated;

ee Fig. 1 (right). In the multistatic case, sources and receivers

an consist of free-floating sonobuoys, or they can be mounted

n ships or dipped by helicopters. A MSN has numerous advan-

ages compared to a monostatic system. These advantages include

educed cost, more complicated countermeasures, increased flex-

bility, and higher precision with fewer pings. However, these ad-

antages come at the cost of increased mathematical complexity in

valuating MSN system performance. The complications with MSNs

rise due to the different geometry in comparison to the monos-

atic case. In the monostatic case the detection probability depends

argely on the distance between post and target. In case of a mul-

istatic constellation, the distances between target and source as

ell as target and receiver are relevant ( Fewell & Ozols, 2011 ). As
3 All acronyms used in this paper appear in Table 4 in the appendix . 

https://doi.org/10.1016/j.ejor.2018.02.006
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Fig. 1. Geometry of sonar detection for the monostatic case (left) and multistatic 

case (right). 

a  

s

 

a  

(  

c  

l  

r  

F  

p  

l  

l  

l

 

l  

a  

O  

t  

a  

t  

g  

S  

s  

t  

m  

i  

M  

u  

e  

o  

t  

s  

a  

a  

e  

(  

l  

c  

C  

o  

t

 

p  

g  

a  

a  

a  

t  

F  

t  

m  

t  

o  

S  

s  

g  

c  

t  

K  

b  

s  

l  

t  

p  

i  

a  

i  

m  

t  

(  

M  

u  

g  

B  

d  

p  

s  

t  

s  

l  

M  

t  

G  

e  

i  

t  

(

 

b  

C  

w  

a  

fi  

i  

b  

c  

b  

a  

t  

a  

s  

a  

s  

t  

o  

t  

t  

o

 

t  

c  

c  
 result, it is considerably more difficult to determine optimal po-

itions for sources and receivers than for monostatic posts. 

The problem of determining optimal positions for sensors in

 MSN is also closely connected with facility location problems

FLPs), in particular with planar location or continuous facility lo-

ation problems (CFLPs). In a CFLP, facilities are allowed to be

ocated anywhere in an area of interest, as opposed to being

estricted to a finite set of pre-identified locations ( Arabani &

arahani, 2012; Carlo, Aldarondo, Saavedra, & Torres, 2012 ). Some

roblems that have been modeled as CFLPs include determining

ocations for Wi-Fi access points at airports, recreational areas, pol-

ution sensors for environmental monitoring, and military surveil-

ance devices ( Revelle, Eiselt, & Daskin, 2008 ). 

The literature on CFLPs is abundant and several models and so-

ution techniques have been developed to address particular vari-

nts of the CFLP. For example, Redondo, Fernández, García, and

rtigosa (2009) study the CFLP problem in a competitive set-

ing, where other facilities offering the same product or service

lready exist in the area. The authors solve the problem with

hree different heuristics approaches: a simulated annealing al-

orithm and two variants of evolutionary algorithms. Wong and

un (2001) consider a heterogeneous continuous space with a

et of competitive facilities and incorporate congested transporta-

ion costs between demand and facility nodes. They formulate the

odel as a combined distribution and assignment model and solve

t with an iterative algorithm. On the other hand, Matisziw and

urray (2009) consider the problem of siting a facility in contin-

ous non-convex space to maximize coverage. In contrast, Carlo

t al. (2012) consider determining both the number and location

f new facilities simultaneously with the objective of minimizing

he total cost of interacting with a set of existing facilities. The re-

earchers develop a nonlinear mixed integer mathematical model,

 brute-force algorithm, and four heuristics, and they show that

 greedy search heuristic outperforms all other heuristics consid-

red. In a more recent study, Brimberg, Juel, Körner, and Schöbel

2015) study the CFLP under the assumption that a facility is al-

owed to cover a demand point partially. Although our problem

an be considered to be a CFLP, it is clearly different from the other

FLP variants previously studied due to the presence of two types

f “facilities” and the particular way these facilities interact in de-

ermining the objective value. 

Despite the widespread use of multistatic sonar systems in

ractice, the literature contains relatively few analytical results to

uide practitioners. Most of the existing studies present heuristic

pproaches or seek to evaluate a rule-of-thumb approach. For ex-

mple, George and DelBalzo (2007) and Tharmarasa, Kirubarajan,
nd Lang (2009) use genetic algorithms to select locations for mul-

istatic sensors for area coverage and tracking purposes. Ngatchou,

ox, El-Sharkawi et al. (2006) develop a particle swarm method

o determine the number and placement of multistatic sensors to

aximize area coverage. Similarly, Ozols and Fewell (2011) study

he area coverage problem and analyze the coverage performance

f 27 MSN layouts to determine the most cost effective pattern.

trode (2011) uses game theory to select multistatic sensor po-

itions in order to detect a transiting intelligent underwater tar-

et; he then integrates this approach into the Multistatic Tacti-

al Planning Aid (MSTPA), a decision support tool developed at

he Centre for Maritime Research and Experimentation (CMRE).

alkuhl, Wiechert, Nies, and Loffeld (2008) develop a simulation-

ased methodology for planning multistatic search and rescue mis-

ions. Casbeer, Swindlehurst, and Beard (2006) study the prob-

em of connectivity in a mobile multistatic radar network con-

aining unmanned air vehicles (UAVs). They develop a metric that

rovides for a balance between the performance and connectiv-

ty of the network. Gong, Zhang, Cochran, and Xing (2013) study

nother type of coverage problem: the barrier coverage problem,

n which sensors are deployed on a line segment. They deter-

ine a placement order and spacing of sensors which minimizes

he vulnerability of the network to intruders. Incze and Dasinger

2006) analyze the performance of a MSN by using a combined

onte Carlo simulation and Bayesian integration technique. They

se this methodology to account for uncertainties such as tar-

et behavior and target probability distribution. In another study,

owen and Mitnick (1999) develop a multistatic performance pre-

iction methodology which can be used to assess the detection

erformance of a MSN as a function of source and receiver den-

ities. Walsh, Wettergren et al. (2008) compute the expected de-

ection probability of a given target track in a MSN field where all

ources and receivers are distributed uniformly at random. Simi-

arly, Washburn and Karatas (2015) consider a randomly deployed

SN and develop an analytic theory that measures the coverage of

he network as a function of source and receiver densities. Karatas,

unal, and Craparo (2016) use simulation to investigate the cov-

rage performance of a mobile source performing parallel sweeps

n a field of stationary receivers, and they compare their results by

hose of the analytic formulae developed by Washburn and Karatas

2015) . 

The aforementioned studies only consider the area coverage,

arrier coverage, and tracking performance of a MSN. In contrast,

raparo and Karatas (2018) study the point coverage problem, in

hich the goal is to position sources in such a way as to cover

s many of a finite number of target locations as possible, given

xed receiver locations. Their approach begins with a preprocess-

ng algorithm that determines a polynomially-sized set of possi-

le source locations guaranteed to contain the optimal source lo-

ations. Once this preprocessing is finished, source locations must

e selected from among the set of candidate locations. Craparo

nd Karatas (2018) formulate an integer linear program that op-

imally selects source locations, and they also describe an efficient

pproximation algorithm for selecting source locations. In another

tudy considering the point coverage problem, Craparo, Karatas,

nd Kuhn (2017) derive various results useful for excluding some

uboptimal sensor locations, and they describe the Divide Best Sec-

or (DiBS) algorithm for optimally placing a single source in a field

f fixed receivers under a diffuse sensor model. In our computa-

ional experiments, we compare our algorithms’ performance to

hat of Craparo and Karatas (2018) , since their assumptions and

verall problem setup most closely match our own. 

Currently, no algorithm exists for selecting optimal sensor loca-

ions for both types of sensors (sources and receivers) for the point

overage problem. This capability is clearly desirable for practi-

al multistatic operations, as in the case of a maritime patrol
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Fig. 2. Geometry of multistatic sonar detection: the signal is sent by the sources 

( s 1 and s 2 ), reflected by the targets ( t 1 and t 2 ) and sensed by the receivers ( r 1 , r 2 
and r 3 ). 
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aircraft deploying multistatic active (source) and passive (receiver)

sonobuoys in an area of interest, with the goal of protecting the

high value assets in the area. In this paper, we seek the optimal

placement of a limited number of sources and receivers in a mul-

tistatic point coverage scenario. To accomplish this, we first de-

velop an integer linear program, DISC-LOC-M, capable of optimally

solving a discretized version of the problem. We then refine our

model using an enumeration-based technique; this improves its

computation time substantially. Our enumeration-based approach

is denoted as DISC-LOC-enum. Although DISC-LOC-enum’s compu-

tation time is preferable to that of DISC-LOC-M, it nevertheless

may be unacceptably long for some applications. Thus, we develop

two heuristic algorithms: Adapt-LOC performs a two-step process

to very rapidly determine positions for both sources and receivers,

while Iter-LOC extends the approach of Adapt-LOC to generate a

locally optimal placement of sources and receivers. 

2. Assumptions and preliminaries 

Our goal is to place a limited number of multistatic sonobuoys

so as to observe as many target locations as possible from a given

set T . We have available a set of sources, S and a set of receivers,

R . For simplicity, we assume the following: 

• Targets are stationary points that we wish to observe, and their

locations are specified. 
• The sensors have definite range (“cookie-cutter”) detection

curves, with perfect detection within the curve and no detec-

tion outside. 
• The range of the day (RoD, ρ0 ) is a known value representing

the maximum distance from which a monostatic sensor could

detect a target. 
• The direct blast effect is negligible (see Cox, 1989; Fewell &

Ozols, 2011; Karatas & Craparo, 2015 for details). 

2.1. Multistatic detection theory 

Detection in a monostatic sonar system depends on the dis-

tance between the target and the sensor, d . Under our assump-

tions, the probability of detection p detection is given by Eq. (1) . (For

additional background on detection theory and mathematical de-

duction of this equation, see Craparo & Karatas, 2018; Urick, 1983;

Washburn & Karatas, 2015 , or Ozols & Fewell, 2011 .) 

p detection = 

{
1 if d ≤ ρ0 , 

0 otherwise 
(1)

In the multistatic case, the geometry of the detection problem be-

comes more complex, as shown in Fig. 2 for a configuration with

two sources, two targets, and three receivers. 

The probability that source s and receiver r will detect target t ,

p t , s , r , depends on the distance between target and source ( d t , s ) as

well as target and receiver ( d t , r ) and can be calculated via Eq. (2) , 

p t,s,r = 

{
1 if d t,s d t,r = ρ2 

t,s,r ≤ ρ2 
0 , 

0 otherwise. 
(2)

Multiple sources and receivers result in different combinations

of the distances to detect a target. However, note that for a defi-

nite range sensor model, it is sufficient that the product of the two

shortest distances fulfill the condition in Eq. (2) . 

3. Enhanced sensor placement 

We now describe new approaches for placing multistatic

sources and receivers. 
.1. Optimized sensor placement using mathematical programming 

Our first two approaches consist of mathematical programming

odels. Both models select optimal locations for sources and re-

eivers from within a discrete set of candidate locations G . This set

f candidate locations may be derived using operational require-

ents, or it may simply represent discretization of the target space

sing a uniform grid structure. Each model provides an exact solu-

ion to this discrete approximation of the sensor placement prob-

em. This approximation can be made arbitrarily good by increas-

ng the number of candidate locations for sensors, at the cost of

ncreased computational effort. 

The two models differ in how they compute the coverage

chieved by a given sensor placement. Our first model, DISC-LOC-

, uses a big-M approach to determining target coverage. Our sec-

nd model, DISC-LOC-enum, uses an enumeration-based approach

nstead. We conclude this section by conducting computational ex-

eriments to compare the two approaches. 

.1.1. DISC-LOC-M 

DISC-LOC-M linearizes Eq. (2) by taking the logarithm of both

ides of the detection requirement. Where before we had 

p t,s,r = 

{
1 if d t,s d t,r ≤ ρ2 

0 , 

0 otherwise, 
(3)

e now state that 

p t,s,r = 

{
1 if ˜ d t,s + 

˜ d t,r ≤ 2 ˜ ρ0 , 

0 otherwise, 
(4)

here ˜ d t,s , ˜ d t,r , and ˜ ρ0 are the log-transformed versions of d t , s , d t , r ,

nd ρ0 : 

˜ d t,s = log d t,s 

˜ 
 t,r = log d t,r 

˜ ρ0 = log ρ0 . 

his linearization yields the following model: 

Model DISC-LOC-M: 

Sets and indices: 
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g, g ′ ∈ G : set of candidate locations for sensors 
t ∈ T : set of targets 

Parameters: 

M t,g,g ′ : a large number used for relaxing a constraint 
˜ d g,t : log-transformed distance between candidate 

location g and 

target t 
| R | : number of receivers 

| S | : number of sources 
˜ ρ0 : log-transformed range of the day. 

Binary variables: 

s g : 1 if a source is located on candidate location g
r g : 1 if a receiver is located on candidate location g
h t,g,g ′ : 1 if target t is covered by a source located at 

candidate location g and a receiver located at 

candidate location g ′ 
c t : 1 if target t is covered by at least one pair of source 

and receiver 

Formulation:

ax z = 

∑ 

t∈ T 
c t (5) 

.t. 

˜ 
 g,t s g + 

˜ d g ′ ,t r g ′ ≤ 2 ˜ ρ0 + 

(
1 − h t,g,g ′ 

)
M t,g,g ′ ∀ t ∈ T , ∀ g, g ′ ∈ G (6)

 t,g,g ′ ≤ s g ∀ t ∈ T , ∀ g, g ′ ∈ G (7)

 t,g,g ′ ≤ r g ′ ∀ t ∈ T , ∀ g, g ′ ∈ G (8)

 t ≤
∑ 

g∈ G 

∑ 

g ′ ∈ G 
h t,g,g ′ ∀ t ∈ T (9) 

 S| ≥ ∑ 

g∈ G 
s g (10) 

 R | ≥ ∑ 

g∈ G 
r g (11) 

 g , r g ∈ { 0 , 1 } ∀ g ∈ G (12)

 t ∈ { 0 , 1 } ∀ t ∈ T (13)

 t,g,g ′ ∈ { 0 , 1 } ∀ t ∈ T , ∀ g, g ′ ∈ G (14)

The objective function (5) expresses the total number of

argets covered. Constraints (6), (7) , and (8) ensure that the

ultistatic detection criterion is satisfied if target t is covered

 h t,g,g ′ = 1 ) by a source and receiver located on candidate locations

 and g ′ , respectively. If target t is not covered ( h t,g,g ′ = 0 ), then a

arge number M is added to the right hand side of the constraint

 6 ), thus relaxing it. Constraint (9) ensures that each target t is cov-

red only if the detection criterion is met for at least one pair of

rid points. Constraints (10) and (11) ensure that the total allocated

ensors do not exceed the sensors available. Constraints (12) –(14)

eclare variable types. 

.1.2. DISC-LOC-enum 

As an alternative to DISC-LOC-M’s big-M approach, DISC-LOC-

num performs a preprocessing step to evaluate which pairs of

rid points ( g , g ′ ) ∈ G × G are capable of covering each target t when

opulated with a source and receiver. By performing this evalua-

ion in preprocessing, we avoid the need to evaluate Eq. (2) within

he model. This can substantially reduce computation time, since a

ig-M approach often leads to poor linear program relaxations. 
Model DISC-LOC-enum: 

Sets and indices: 

g, g ′ ∈ G : set of candidate locations for sensors 
t ∈ T : set of targets 

(t, g, g ′ ) ∈ 

D 

: set of triples such that target t is detectable by a 

source and receiver placed at locations g and g ′ : 
D := { (t, g, g ′ ) ∈ T × G × G | P t,g,g ′ = 1 } 

Parameters: 

| S | : number of sources available 
| R | : number of receivers available 

Binary variables: 

s g : 1 if a source is located in candidate location g
r g : 1 if a receiver is located in candidate location g
h g,g ′ : 1 if a source is located at candidate location g and a 

receiver is located at candidate location g ′ 
c t : 1 if target t is covered by at least one pair of source 

and receiver 

Formulation:

ax z = 

∑ 

t∈ T 
c t (15) 

.t. 

 g,g ′ ≤ s g ∀ g, g ′ ∈ G (16) 

 g,g ′ ≤ r g ′ ∀ g, g ′ ∈ G (17)

 t ≤
∑ 

(g,g ′ ):(t,g,g ′ ) ∈ D 
h g,g ′ ∀ t ∈ T (18)

 S| ≥ ∑ 

g∈ G 
s g (19) 

 R | ≥ ∑ 

g∈ G 
r g (20) 

 g , r g ∈ { 0 , 1 } ∀ g ∈ G (21)

 t ∈ { 0 , 1 } ∀ t ∈ T (22)

 g,g ′ ∈ { 0 , 1 } ∀ g, g ′ ∈ G (23)

The objective function ( 15 ) expresses the total number of tar-

ets covered. Constraints ( 16 ) and ( 17 ) ensure that the multistatic

etection criterion is satisfied if target t is covered by a source and

eceiver located on candidate locations g and g ′ , respectively. Con-

traint ( 18 ) ensures that each target t is covered only if the detec-

ion criterion is met for at least one pair of grid points. Constraints

 19 ) and ( 20 ) ensure that the total allocated sensors do not exceed

he sensors available. Constraints ( 21 )–( 23 ) declare variable types. 

.1.3. Computational performance of DISC-LOC-M and 

ISC-LOC-enum 

To compare the performance of DISC-LOC-M and DISC-LOC-

num, we perform computational experiments on problems of

arying sizes. For simplicity, each of our problem instances con-

ists of a uniform grid of points, where each point acts as both a

arget to be covered and a candidate sensor location. We consider

 number of problem sizes and sensor mixes, and we record the

ime taken for DISC-LOC-M and DISC-LOC-enum to solve each in-

tance. (Because both models solve the same problem to proven

lobal optimality, they achieve identical coverage performance. We

ompare this coverage performance to that of other approaches in

ection 4 .) Fig. 3 displays the results of our experiments. As the

gure indicates, DISC-LOC-M requires substantially more compu-

ation time across all problem sizes and sensor mixes. On aver-

ge, DISC-LOC-M requires 15.7 times as much computation time

s DISC-LOC-enum. 
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Fig. 3. Computational performance of DISC-LOC-M and DISC-LOC-enum, for varying problem instances. In each instance, we consider a uniform grid of points, where each 

point is both a candidate sensor location and a target to be covered. The grid dimensions are indicated in the figure legend. For each grid configuration, we consider a variety 

of sensor mixes, as indicated on the circumferential axis. The radial axis indicates the computation time in seconds. 
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Although DISC-LOC-enum substantially outperforms DISC-LOC-

M, its computation times may nevertheless be too long for practi-

cal applications. Thus, we now turn our attention to the develop-

ment of heuristic algorithms capable of providing solutions more

quickly than DISC-LOC-enum for large problem instances, albeit

without guaranteed optimality. For the remainder of this paper, we

consider only DISC-LOC-enum in our computational experiments,

and we denote it simply as DISC-LOC. 

3.2. Detection discs 

In order to develop our heuristic approaches, we build upon

prior work that only considers optimal placement of sources in a

network of fixed targets and receivers. We also utilize geometric

constructs known as detection discs . The concept of detection discs

in multistatic systems is first introduced by Craparo and Karatas

(2018) . In general, a detection disc for a particular target is the

region in which a sensor can be placed that will detect that tar-

get. For the monostatic case, the boundary of a detection disc con-

sists of a circle around the target with radius ρ0 . A monostatic

sensor placed inside that region will detect the target. Regions in

which multiple detection discs overlap represent locations where

one sensor is able to detect more than one target. In Fig. 4 , for ex-

ample, three detection discs overlap at point p 2 , and so one mono-

static sensor at p 2 detects targets t 1 , t 2 , and t 3 . To detect all of the

rightmost group of targets, one could place sensors at any two of

the three locations in the set { p 5 , p 6 , p 7 }. Each of the points in

the set { p 1 , p 2 , p 3 , p 4 , p 5 , p 6 , p 7 } covers a maximal set of targets

that can be detected by a single monostatic sensor, meaning that

it is not possible to cover all of the relevant targets as well as at

least one other target with a single sensor. Following Craparo and
aratas (2018) , we refer to the discs that overlap at these points as

aximal sets of mutually overlapping detection discs . 

For the multistatic case in which receivers are already placed,

he detection disc for a target consists of those locations where a

ource can be placed that will detect that target. Given a target

 and receiver r separated by distance d t , r , a source placed within

adius 
ρ2 

0 
d t,r 

of the target allows detection. Since only one source–

eceiver pair is required for detection in a definite range sensor

odel, it is sufficient to consider only the closest receiver to each

arget. Thus, we obtain the probability of detecting target t , p t , as 

p t = 

{
1 if d t ,s ∗(t ) ≤ ρ2 

0 /d t ,r ∗(t ) 

0 otherwise 
∀ t ∈ T , (24)

here d t ,s ∗(t ) is the distance from target t to its nearest source, and

 t ,r ∗(t ) is the distance from target t to its nearest receiver ( Craparo

 Karatas, 2018 ). 

.3. Preprocessing and optimized source placement using detection 

iscs 

For the following, we assume a setting with known positions

f a set of targets t ∈ T and receivers r ∈ R . Targets and receivers

ccupy a square, two dimensional area of interest. Eq. (24) im-

lies the existence of circular detection discs around each target;

e denote target t ’s disc as δt . The detection discs comprise a set

 = 

{
δ1 , δ2 , . . . , δ| T | 

}
, and placement of sensors in overlapping re-

ions of these discs can lead to detection of multiple targets with

ne sensor. Using this insight, Craparo and Karatas (2018) deter-

ine optimal source positions by the following process: 

• Use detection discs to identify maximal subsets of targets de-

tectable by a single source. 
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Fig. 4. Detection disc example – detection discs for a set of several targets when using a monostatic sensor with detection radius ρ0 . . 

Fig. 5. Preprocessing algorithm LOC-GEN, which determines a polynomially sized set of candidate source locations C guaranteed to contain the optimal source locations 

( Craparo & Karatas, 2018 ). 
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• For each subset of targets, determine a location in which a

source could be placed and detect those targets. 
• From among the resulting set of candidate locations, determine

the best subset of location to place a limited number of avail-

able sources. 

The first two steps can be thought of as preprocessing steps,

hile the third involves optimization. This process is similar to

hat proposed by Church (1984) and later improved by He, Fan,

heng, Wang, and Tan (2016) in the context of the planar max-

mal covering location problem (PMCLP). In particular, the algo-

ithm developed by Church (1984) considers locating facilities on a

wo-dimensional continuous plane to cover a given set of demand

oints. The author shows that the circle intersect point set (CIPS),

 set which consists of all demand points plus all points in which

ome pair of circles intersect, is guaranteed to contain an optimal

et of facility locations. He et al. (2016) further develop the CIPS

oncept and propose a deterministic algorithm, called the mean-

hift based algorithm, for solving large-scale PMCLPs. 

Craparo and Karatas (2018) develop a polynomial-time prepro-

essing algorithm called LOC-GEN, the pseudo-code of which is de-

icted in Fig. 5 , to generate candidate source locations. This set

f candidate locations is guaranteed to contain an optimal set of

ource locations. They then develop two different approaches to

elect among these locations. One is an integer linear program

amed OPT-LOC, and the other is a polynomial-time approximation

lgorithm based on a greedy approach (Greedy-LOC). The pseudo-

ode of both algorithms appears in Craparo and Karatas (2018) .
he overall procedure allows the optimal or near-optimal place-

ent of sources for a given set of targets and receivers. In Hof

2015) , we enhance Craparo and Karatas ’s (2018) ) LOC-GEN algo-

ithm to improve its computational efficiency. Craparo and Karatas

2018) leverage the fact that optimal source locations are guar-

nteed to be contained in the set of all detection disc center

oints and the intersection points of the boundaries of detection

iscs. LOC-GEN then proceeds to eliminate any such points that are

dominated,” in the sense that at least one other point lies at the

ntersection of a superset of detection discs. Our new algorithm,

OC-GEN-II (see Fig. 6 ), improves computational efficiency in part

y not considering the center locations of any detection disc that

as at least one intersection point. The motivation for this modifi-

ation is described in Lemma 1 . LOC-GEN-II further improves LOC-

EN via various implementation techniques. For more information

bout LOC-GEN-II, see Hof (2015) . 

emma 1. For each target t whose detection disc boundary has

t least one intersection point with another target’s detection disc

oundary, the center point of the detection disc δt can be discarded

s an optimal source location. The center point of a detection disc

eed only be included in the set of candidate source locations if the

etection disc has no intersections. 

roof. Consider a maximal set of mutually overlapping detection

iscs D 0 that covers region R ( D 0 ) . As noted by Craparo and Karatas

2018) , the boundary of region R ( D 0 ) consists of portions of the

oundaries of detection discs in D . Suppose the boundary of
0 
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Fig. 6. Improved preprocessing algorithm LOC-GEN-II. 
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region R ( D 0 ) consists of the boundary of a single detection disc δt .

In this case, the boundary of disc δt cannot intersect another de-

tection disc δt ′ : such an intersection would imply that some areas

of the boundary are covered by δt ′ while others are not, contradict-

ing our statement that the boundary of detection disc δt encloses

a region R ( D 0 ) of mutually overlapping detection discs. As noted

by Craparo and Karatas (2018) , the center point of δt is sufficient

to characterize region R ( D 0 ) . 

Suppose now that the boundary of R ( D 0 ) consists of portions

of the boundaries of multiple detection discs. Craparo and Karatas

(2018) prove that in this case there always exist intersection points

I t ,t ′ ∈ R ( D 0 ) , and thus R ( D 0 ) need not be represented by a center

point. Thus, we need only consider center points of detection discs

that do not intersect with other detection discs, as such points may

(but need not) be required in order to characterize regions whose

boundaries consist of the boundaries of single detection discs. �

3.4. Heuristic approaches for sensor placement 

We now extend the work of Craparo and Karatas (2018) by de-

veloping two approaches for placing receivers and sources when

the locations of all targets are given. The pseudo-code for our first

approach, named Adapt-LOC, appears in Fig. 7 . 

Initially, only the target positions are given. Thus, we cannot

directly use the approach of Craparo and Karatas (2018) in deter-

mining detection discs, since receiver locations are unknown. As a

heuristic approach, we instead create a disc of fixed radius αρ0 

around each target, where α is a scalar of our choosing. Given

these discs, we then proceed with LOC-GEN-II as before, creating
 set of candidate locations for receivers by identifying maximal

ets of mutually overlapping discs of radius αρ0 . We use OPT-LOC

r Greedy-LOC to determine the | R | best of these locations. With

he receivers placed, we can now use a combination of LOC-GEN-II

nd OPT-LOC or Greedy-LOC to determine the optimal places for

 S | sources, given our heuristic placement of the receivers. 

Fig. 8 provides a comparison between a solution produced by

dapt-LOC and one produced by the algorithm of Craparo and

aratas (2018) , modified to include random placement of receivers.

This modified version of the algorithm of Craparo and Karatas

2018) henceforth be referred to as the C&K algorithm.) Qualitative

ifferences between the solutions produced by Adapt-LOC and the

&K algorithm, modified to include random placement of receivers,

an be seen in Fig. 8 . Given is a set of targets ( × ). In the leftmost

art of the figure we see the candidate positions ( ) and the best

ocations ( ) for the receivers as chosen by Adapt-LOC. The middle

lot shows the selected positions of the receivers ( ), the candidate

oints for the positions of the sources determined by LOC-GEN-II

 ), and the optimally placed sources ( ). The right plot shows the

argets ( × ) and randomly placed receivers ( ) and, for this config-

ration, the results for the optimal places of the sources ( and ).

dapt-LOC detects 80% of the targets in this example, compared to

0% for the C&K algorithm. Looking at the qualitative structure of

he solutions, we can see that Adapt-LOC provides a clustering of

ensors in those areas in which targets are most densely located,

n contrast to the C&K algorithm with randomly placed receivers. 

But Adapt-LOC also has disadvantages. For instance, its de-

ection performance is strongly dependent on the chosen value

or α, as well as the number of sources and receivers. Tests for
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Fig. 7. Adapt-LOC algorithm for selecting locations for sources and receivers given a set of targets. 

Fig. 8. Sensor placement using Adapt-LOC and the C&K algorithm: the left and middle figures show the solution selected by Adapt-LOC for | T | = 50 targets, | R | = 20 receivers, 

and | S| = 10 sources. The leftmost figure shows the receiver positions selected by Adapt-LOC using α = 0 . 5 ρ0 , while the middle figure shows the resulting sources positions. 

The rightmost figure shows the sensor layout resulting from random placement of the receivers and near-optimal placement of sources. In all cases, we use Greedy-LOC to 

select among candidate locations. In this particular example, Adapt-LOC allows detection of 80% of all targets, while the C&K algorithm detects 50%. Undetected targets are 

labeled with their number t n . 

Table 1 

Relationship between number of sensors, radius of target detection discs, and de- 

tection rate. 

# receivers # sources Radius of target detection discs Detection rate 

| R | | S | α # t detected / # t

High Low Low Very high 

Low High Low Low 

High Low High Very low 

Low High High High 
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ifferent configurations of the parameters show that values of

.25 ≤α ≤ 0.75 lead to the best results; the overall dependencies

re as shown in Table 1 . 

To address Adapt-LOC’s sensitivity to α, we extend Adapt-LOC

o produce locally optimal solutions using an iterative approach.

e denote this development as Iter-LOC; Fig. 9 shows its pseudo-

ode. As before, initially, only the positions of the targets are

nown. In the first step, Iter-LOC determines receiver positions for

ome value of α, as in Adapt-LOC. In the second step, Iter-LOC de-

ermines positions for the sources based on the current target and

eceiver positions. If OPT-LOC is used as a subroutine for selecting

ource positions, these positions are optimal. Otherwise, if Greedy-

OC is used (for instance), they may be suboptimal. In the third
tep, Iter-LOC determines receiver positions given the current tar-

et and source positions, and it proceeds to iterate in this man-

er, successively fixing either sources or receivers and determining

ocations for the other sensor type. This process can be repeated

ntil no further improvement is achieved (if OPT-LOC is used to

elect sensor locations), or until the improvement is sufficiently

mall. Using OPT-LOC as a subroutine results in a locally optimal

lacement of receivers and sources. 

. Results 

We now perform computational experiments to demonstrate

he benefits of our proposed algorithms. First, we perform random-

zed trials comparing our algorithms to other approaches from the

iterature. Then, we demonstrate the applicability of our algorithms

o practical instances. In all experiments, we use DISC-LOC-enum

ather than DISC-LOC-M, and we denote it simply as DISC-LOC. 

.1. Randomized experiments 

We now describe the results of computational experiments

omparing DISC-LOC, Adapt-LOC, and Iter-LOC with the C&K al-

orithm and the algorithm of Washburn and Karatas (2015) ,

enceforth referred to as the W&K algorithm. (Recall that
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Fig. 9. Iter-LOC algorithm for placing sources and receivers given a set of targets. 
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Washburn & Karatas, 2015 consider uniform random placement of

both sources and receivers.) We use the following computer con-

figuration: AMD K16 Mullins Processor (A4-6210) with four kernels

and 1800 megahertz clock frequency per kernel, 100 megahertz

BUS clock frequency, operating system Microsoft Windows 8.1 64-

Bit, 6144 megabytes DDR3 RAM with clock frequency 798.4 mega-

hertz. Software is MATLAB R2014b, version 8.4.0.150421, and GAMS

Release 24.2.1 r43572 and CPLEX version 12.2.0.2 for x86_64/MS

Windows. For each experiment and parameter configuration, we

compute 100 replications with 200 targets randomly placed in a

10 × 10 unit 2-dimensional area, and we fix ρ0 = 0 . 6 units. We

consider various sensor mixes, reflected by the number of receivers

(| R |) and sources (| S |). This configuration is similar to the setup

considered by Craparo and Karatas (2018) . 

Fig. 10 examines the performance of DISC-LOC at varying levels

of resolution. The goal is to maximize the number of targets de-

tected; a value of one reflects detection of all 200 targets. The top

portion of the figure shows the average fraction of targets detected,

while the bottom shows the average computation time for each

sensor mix. Note that although DISC-LOC solves very quickly at a

resolution of 4 × 4, its detection performance is quite poor at that

resolution. At a resolution of 20 × 20, we obtain excellent detection

performance at the cost of high computation times. The computa-

tion time results presented in Fig. 10 do not include preprocessing

time; the average preprocessing time ranged from 0.009 seconds

for a 4 × 4 resolution to 17 seconds for a 20 × 20 resolution. 

In Fig. 11 , we compare the detection performance of DISC-LOC

at its highest resolution (20 × 20) with Adapt-LOC, Iter-LOC, the

C&K algorithm, and the W&K algorithm. 

A few main trends are apparent: 

1. DISC-LOC’s detection performance exceeds that of all other ap-

proaches at a resolution of 20 × 20. 

2. Pure random sensor placement is always outperformed by the

C&K algorithm, which is in turn outperformed by Adapt-LOC for

all chosen values of α. 

3. We observe variations in Adapt-LOC’s performance with vary-

ing α. The best performance for our instances occurs with
α ≈ 0.5; this setting results in approximatly 2%–3% better detec-

tion performance than the other setting. Iter-LOC’s performance

is nearly identical for all values of α, and thus we show only

one value in the figure. 

The results of this experiment indicate that Adapt-LOC allows

p to 25% higher detection rates compared to the C&K algorithm.

his is a significant performance increase. On the other hand, Iter-

OC outperforms Adapt-LOC, and DISC-LOC outperforms all other

lgorithms at its highest resolution. Iter-LOC increases the detec-

ion rate by up to 13% compared to Adapt-LOC. Thus, Iter-LOC in-

reases the maximum performance gain in comparison to the C&K

lgorithm to 38%. DISC-LOC, in turn, outperforms Iter-LOC by an

verage of 2% higher detection rate. The maximum difference is

% when | R | = 30 , | S| = 20 . We also note that, for our problem in-

tances, an increase in the number of sensors leads nearly to the

ame gain in detection performance, regardless of sensor type. For

xample, take the starting point | R | = 10 , | S| = 10 with a detec-

ion probability of approximately 42%. An additional 10 receivers

 | R | = 20 , | S| = 10 ) lead to a detection probability of nearly 57%,

hile 10 additional sources ( | R | = 10 , | S| = 20 ) lead to approxi-

ately 56% detection probability. If this relation holds for all con-

gurations, it has fortunate implications for the practical aspects

f fielding MSNs. Using Iter-LOC different with values of α ∈ {0.25,

.5, 0.75} results in nearly identical detection performance. This

mplies that, as desired, the starting value of α has only a negligi-

le impact on the overall detection of targets when using Iter-LOC.

To investigate the effect of the different sensor placement sub-

outines, we compare the performance achieved when using the

reedy-LOC and OPT-LOC subroutines. The outcomes of these ex-

eriments appear in Fig. 12 . We see an average increase in de-

ection rate of around 5% using Iter-LOC as opposed to Adapt-

OC, regardless of whether Greedy-LOC or OPT-LOC is used. Thus,

or our problem instances, the use of OPT-LOC only leads to mi-

or improvement of detection probability, while the computational

ffort per iteration is high. However, we also observe that the

erformance of Greedy-LOC may not improve monotonically with

he iteration steps. This is because Greedy-LOC does not deliver
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Fig. 10. Performance on DISC-LOC for various grid resolutions. Although DISC-LOC is capable of achieving excellent detection performance at high resolutions (top, fraction 

of targets detected), it does so at the cost of rapidly increasing computation times (bottom; computation time is indicated in seconds). Note that the bottom figure uses an 

exponential scale on the radial axis. 
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ptimal solutions to the sensor placement problem, but only near-

ptimal solutions. In contrast, OPT-LOC’s solutions monotonically

mprove with the iteration steps. As a consequence, Iter-LOC may

equire significantly more iterations with Greedy-LOC than with

PT-LOC, depending on the termination criteria. In such a situa-

ion, the computation time using Iter-LOC with OPT-LOC may not

e significantly larger than that using Iter-LOC with Greedy-LOC.

hus, we henceforth use OPT-LOC as a subroutine when comparing

he computation times for different algorithms and configurations. 

Fig. 13 shows the computation times for DISC-LOC, Adapt-LOC,

ter-LOC, and the C&K algorithm. (The W&K algorithm’s computa-
ion time is negligible.) The C&K algorithm is the fastest method,

hile Adapt-LOC needs approximately ten times longer than the

&K algorithm to place both sources and receivers, and Iter-LOC

equires up to ten times longer than Adapt-LOC. For example, the

omputation time for problems with 200 targets and 50 sources

nd receivers can take up to 300 seconds to achieve a locally

ptimal solution compared to approximately 7 seconds with the

&K algorithm. Although DISC-LOC outperforms all other algo-

ithms in terms of detection rate, its computation times are ap-

roximately 770 times longer than Iter-LOC’s for all configurations

onsidered. 
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Fig. 11. Fraction of targets detected using DISC-LOC (20 × 20 resolution), Iter-LOC, Adapt-LOC, the C&K algorithm, and the W&K algorithm. 

Fig. 12. Impact of the selection subroutine: fraction of targets detected when using OPT-LOC and Greedy-LOC as subroutines for Adapt-LOC and Iter-LOC. The particular 

subroutine used makes little difference in the extent to which Adapt-LOC and Iter-LOC outperform the C&K algorithm. 
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Fig. 13. Mean computation time for | T | = 100 , 150 , 200 ; | R | , | S| = 10 , 20 , . . . 50 and α = 0 . 5 for DISC-LOC (20 × 20 resolution), Iter-LOC Adapt-LOC, and the C&K algorithm. 

Fig. 14. Performance comparison of DISC-LOC (20 × 20 resolution), Iter-LOC ( α= 0.5), Adapt-LOC ( α= 0.5), and the C&K algorithm in terms of objective function value and 

computation time. Each marker for a given solution method represents the average performance of that method over 100 randomly generated problem instances for a 

particular problem size. Although DISC-LOC achieves the best detection performance, it requires by far the most computation time (note that the vertical axis uses a 

logarithmic scale). In all instances, Iter-LOC and Adapt-LOC use the OPT-LOC subroutine. 
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Fig. 15. Performance comparison of DISC-LOC (20 × 20 resolution), Iter-LOC ( α= 0.5), Adapt-LOC ( α= 0.5) and the C&K algorithm in terms of computation time required per 

unit objective function value. The performance of each solution method in terms of computation time (seconds) required per fraction of targets detected for each problem 

size (averaged over 100 randomly generated problem instances). In terms of this metric, DISC-LOC is consistently outperformed by Iter-LOC, which is in turn outperformed 

by Adapt-LOC and the C&K algorithm. Again, the vertical axis uses a logarithmic scale. In all instances, Iter-LOC and Adapt-LOC use the OPT-LOC subroutine. 

Table 2 

Fraction of targets detected and computation times of DISC-LOC (20 × 20 resolution), Iter-LOC, Adapt-LOC, C&K algorithm and W&K al- 

gorithm averaged over 100 randomly generated problem instances for each problem size. The first two columns represent the number 

of receivers | R | and sources | S | in each instance. The next five columns show the average objective function value achieved by DISC-LOC, 

Iter-LOC, Adapt-LOC, the C&K algorithm, and the W&K algorithm across all problem instances. Finally, the remaining columns show the 

average computation times for DISC-LOC, Iter-LOC, Adapt-LOC, and the C&K algorithm. (Because the W&K algorithm places all sensors at 

random, its CPU time is negligible.) In all instances, Iter-LOC and Adapt-LOC use the OPT-LOC subroutine. 

Problem size Size fraction of targets detected CPU time (seconds) 

| R | | S | DISC-LOC Iter-LOC Adapt-LOC C&K W&K DISC-LOC Iter-LOC Adapt-LOC C&K 

(20 × 20) ( α = 0.5) ( α = 0.5) algorithm algorithm (20 × 20) ( α = 0.5) ( α= 0.5) algorithm 

10 10 0.47 0.42 0.40 0.28 0.04 12,124 70 10 2 

20 10 0.60 0.57 0.52 0.35 0.09 56,224 80 15 4.5 

30 10 0.68 0.69 0.60 0.39 0.13 26,407 100 25 6.5 

40 10 0.82 0.77 0.64 0.42 0.16 78,463 120 40 7.5 

50 10 0.85 0.83 0.69 0.45 0.17 51,378 150 45 8 

10 20 0.65 0.56 0.54 0.42 0.09 80,724 80 10 8 

20 20 0.75 0.71 0.67 0.52 0.15 80,249 80 15 3.5 

30 20 0.84 0.81 0.77 0.59 0.20 32,876 125 20 6 

40 20 0.95 0.90 0.83 0.63 0.23 23,331 150 30 8 

50 20 1.00 0.95 0.89 0.67 0.25 14,685 175 50 9 

10 30 0.72 0.66 0.63 0.54 0.11 32,329 90 10 2 

20 30 0.88 0.81 0.76 0.64 0.18 53,447 140 20 5 

30 30 0.92 0.90 0.85 0.71 0.24 47,033 200 25 7 

40 30 1.00 0.96 0.92 0.77 0.28 25,619 250 35 8 

50 30 1.00 0.98 0.96 0.80 0.32 49,851 180 40 8 

10 40 0.77 0.74 0.72 0.64 0.15 18,951 95 9 1.5 

20 40 0.98 0.90 0.85 0.73 0.23 20,314 150 15 3.5 

30 40 1.00 0.96 0.93 0.81 0.30 7846 250 25 6 

40 40 1.00 0.98 0.97 0.87 0.34 25,964 200 40 8 

50 40 1.00 1.00 0.99 0.90 0.38 993,427 250 60 9 

10 50 0.82 0.81 0.80 0.71 0.18 53,796 150 9 2 

20 50 1.00 0.95 0.91 0.82 0.26 55,024 150 15 4 

30 50 1.00 0.99 0.97 0.90 0.32 23,161 250 20 6 

40 50 1.00 1.00 0.99 0.93 0.39 134,047 100 20 7 

50 50 1.00 1.00 1.00 0.96 0.43 113,072 100 25 8.5 
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Table 2 summarizes the results of our computational experi-

ments, while Figs. 14 and 15 offer a graphical synopsis of our find-

ings. These figures reinforce our findings that DISC-LOC is capa-

ble of providing superior detection performance, but at the cost of

computation times that may be prohibitively high in some applica-

tions. Adapt-LOC, Iter-LOC, and the C&K algorithm all offer reason-

ably good performance in a fraction of the computation time, and

are often suitable for real-time applications. 
.2. Real-world case studies 

We now compare the performance of DISC-LOC(-enum) and

ter-LOC on a set of real-world examples. We consider three geo-

raphical locations: the Strait of Juan de Fuca, which lies between

ancouver Island, Canada, and the Olympic Peninsula in Washing-

on (USA); the ocean in the vicinity of Agadir, Morrocco; and Wac-

asassa Bay, Florida (USA). For each location, we obtain elevation
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Fig. 16. Test instance “Strait of Juan de Fuca”. 
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Table 3 

Performance of DISC-LOC and Iter-LOC on real-world cases. Clearly, Iter-LOC’s computation time is substantially lower 

than DISC-LOC’s. Moreover, its detection performance is the same or better than DISC-LOC’s for nearly all instances con- 

sidered. Although DISC-LOC solves to proven optimality, it is restricted to placing sensors on grid points, while Iter-LOC 

is able to place them in arbitrary locations. This additional flexibility proves to be beneficial in improving the detection 

performance. 

Problem size Fraction of targets detected CPU time (seconds) 

Case name | R | | S | | T | | D | DISC-LOC Iter-LOC DISC-LOC Iter-LOC 

Strait of Juan de Fuca 3 1 25 3662 0.80 0.84 1 0 

3 1 108 291.043 0.80 0.80 3358 17 

3 1 248 3,457,965 0.79 0.79 15,735 227 

3 I 456 21.259,512 No solution fount 0.76 > 6 hours 266 

Agadir 3 2 54 18,812 0.74 0.74 9464 4 

3 2 226 1.404,442 0.48 0.68 > 6 hours 116 

3 2 505 15,718,991 No solution found 0.61 > 6 hours 351 

Waccasassa Bay 5 2 72 30.953 0.72 0.71 1907 5 

5 2 269 1,893,528 0.43 0.67 > 6 hours 306 

5 2 599 21,352.801 No solution found 0.67 > 6 hours 3002 
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data from Ryan et al. (2009) . The raw data has a very fine reso-

lution, so we aggregate the raw input data into larger rectangular

areas (grid cells). Within each cell, we calculate the average eleva-

tion data over the pixels in the raw data and apply the resulting

elevation to the entire cell. The resulting cells that have negative

elevation are under water. The center point of each underwater

cell then becomes a target location, as well as a potential sensor

location for DISC-LOC, i.e., a member of set G . 

For each geographic location we create multiple instances

of varying resolutions. Fig. 16 shows an example of the raw

data and four problem instances for the Strait of Juan de Fuca.

Fig. 16 also shows the solutions obtained by Iter-LOC, where the

source is denoted by a triangle and the receivers are denoted by

circles. 

Table 3 contains the full results of our case study experiments.

We set a time limit of 6 hours for DISC-LOC, and we use the

greedy subroutine for Iter-LOC. As the table indicates, Iter-LOC’s

detection performance is comparable to or better than DISC-LOC’s

for all cases considered, and its computation time is substantially

lower. Indeed, Iter-LOC is able to solve all instances at speeds suit-

able for real-world application. Recall that Iter-LOC is able to place

sensors in arbitrary locations, while DISC-LOC is restricted to plac-

ing them in predetermined candidate locations. Our results indi-

cate that this additional flexibility allows Iter-LOC to outperform

DISC-LOC in terms of coverage, particularly at low resolutions. At

higher resolutions we again see Iter-LOC outperforming DISC-LOC

because DISC-LOC terminates upon reaching its time limit. As the

grid resolution increases, the number of triples ( t , g , g ′ ) ∈ D grows

so rapidly that the resulting DISC-LOC instances become computa-

tionally intractable. 

5. Discussion 

DISC-LOC, Adapt-LOC, and Iter-LOC are newly developed algo-

rithms that allow intelligent placement of multiple sources and

receivers in multistatic sonar environments. They lead to signifi-

cantly higher target detection results compared to existing algo-

rithms from the literature. Performance gains vary for different

mixes of sensors, and the new algorithms outperform the exist-

ing algorithms in all experiments with respect to target detection.

Although DISC-LOC is capable of the best detection performance,

this performance comes at the cost of substantial computation
imes. Adapt-LOC and Iter-LOC, on the other hand, are capable of

roducing good solutions much more quickly. The size of the tar-

et discs in the first step of Adapt-LOC is crucial for its perfor-

ance. Excessively large or small discs in the first step can lead

o reduced performance in the second step, and it is challenging

o determine a universally effective value for α. Fortunately, Iter-

OC eliminates the dependency between the final detection per-

ormance and α. Additionally, our experiments indicate that Iter-

OC enables a meaningful gain in target detection in comparison

o Adapt-LOC, regardless of the value of α chosen. 

Using Greedy-LOC as a subroutine leads to slightly reduced de-

ection rates in comparison to OPT-LOC. However, the fact that

reedy-LOC does not necessarily lead to monotonically increasing

etection performance results in a significantly higher number of

teration steps compared to OPT-LOC, depending on the termina-

ion criteria. Because of this, it may be simpler and faster to use

PT-LOC than Greedy-LOC. 

Compared to the C&K algorithm, Adapt-LOC and Iter-LOC re-

uire approximately 10 and 100 times more computation time, re-

pectively, in our experiments. However, they result in approxi-

ately 35% and 46% better detection performance, making these

wo new algorithms the methods of choice when sufficient com-

utational resources are available. DISC-LOC, on the other hand,

an provide even better performance at high resolutions. Thus, the

ser must consider how time-critical the application is, then de-

ide which method is most appropriate. 

. Conclusions 

We have described the DISC-LOC, Iter-LOC, and Adapt-LOC al-

orithms for placing multiple sources and receivers in multistatic

onar environments. Our computational experiments indicate that

hese algorithms constitute a powerful portfolio of sensor place-

ent techniques, enabling the user to select the most appropriate

alance of detection performance and computational speed for a

ariety of practical situations. 
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Appendix A 

Table 4 

Acronyms used in this paper. 

Acronym Meaning Remarks 

Adapt-LOC Adaptive location Heuristic for deciding source and receiver locations 

C&K Craparo and Karatas Determines optimal positions for one type of sensor after deploying the other type at random 

CFLP Continuous facility location problems 

CMRE Centre for Maritime Research and 

Experimentation 

DISC-LOC Discrete location Determines the best locations for sources and receivers from among a discrete set of candidate 

locations 

FLP Facility location problem 

Greedy-LOC Greedy location Greedily selects positions for one type of sensor, assuming the other type has already been placed 

Iter-LOC Iterative location Determines locally optimal positions for sources and receivers 

LOC-GEN Location generate Generates a set of candidate locations for one type of sensor, assuming the other type has already 

been placed 

LOC-GEN-II Location generate-II Performs the same function as LOC-GEN, but more efficiently 

MSN Multistatic sonar network 

MSTPA Multistatic tactical planning aid 

OPT-LOC Optimal location Determines optimal positions for one type of sensor, assuming the other type has already been 

placed 

RoD Range of the day 

UAV Unmanned air vehicle 

W&K Washburn and Karatas Deploys all sensors at random 
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