6,039 research outputs found

    Adaptive Communication for Mobile Multi-Robot Systems

    Full text link
    Mobile multi-robot systems can be immensely powerful, serving as force multipliers for human operators in search-and-rescue operations, urban reconnaissance missions, and more. Key to fulfilling this potential is robust communication, which allows robots to share sensor data or inform others of their intentions. However, wireless communication is often unreliable for mobile multi-robot systems, exhibiting losses, delays, and outages as robots move through their environment. Furthermore, the wireless communication spectrum is a shared resource, and multi-robot systems must determine how to use its limited bandwidth in accomplishing their missions. This dissertation addresses the challenges of inter-robot communication in two thrusts. In the first thrust, we improve the reliability of such communication through the application of a technique we call Adaptive Erasure Coding (AEC). Erasure codes enable recovery from packet loss through the use of redundancy. Conditions in a mobile robotic network are continually changing, so AEC varies the amount of redundancy applied to achieve a probabilistic delivery guarantee. In the second thrust, we describe a mechanism by which robots can make communication decisions by considering the expected effect of a proposed communication action on team performance. We call this algorithm Optimizing Communication under Bandwidth Constraints (OCBC). Given a finite amount of available bandwidth, OCBC optimizes the contents of a message to respect the bandwidth constraint.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/149815/1/ryanjmar_1.pd

    Vehicle infrastructure cooperative localization using Factor Graphs

    Get PDF
    Highly assisted and Autonomous Driving is dependent on the accurate localization of both the vehicle and other targets within the environment. With increasing traffic on roads and wider proliferation of low cost sensors, a vehicle-infrastructure cooperative localization scenario can provide improved performance over traditional mono-platform localization. The paper highlights the various challenges in the process and proposes a solution based on Factor Graphs which utilizes the concept of topology of vehicles. A Factor Graph represents probabilistic graphical model as a bipartite graph. It is used to add the inter-vehicle distance as constraints while localizing the vehicle. The proposed solution is easily scalable for many vehicles without increasing the execution complexity. Finally simulation indicates that incorporating the topology information as a state estimate can improve performance over the traditional Kalman Filter approac

    Joint Transmit Power and Placement Optimization for URLLC-enabled UAV Relay Systems

    Get PDF
    This letter considers an unmanned aerial vehicle (UAV)-enabled relay communication system for delivering latency-critical messages with ultra-high reliability, where the relay is operating under amplifier-and-forward (AF) mode. We aim to jointly optimize the UAV location and power to minimize decoding error probability while guaranteeing the latency constraints. Both the free-space channel model and three-dimensional (3-D) channel model are considered. For the first model, we propose a low-complexity iterative algorithm to solve the problem, while globally optimal solution is derived for the case when the signal-to-noise ratio (SNR) is extremely high. For the second model, we also propose a low-complexity iterative algorithm to solve the problem. Simulation results confirm the performance advantages of our proposed algorithms

    LQG Control and Sensing Co-Design

    Full text link
    We investigate a Linear-Quadratic-Gaussian (LQG) control and sensing co-design problem, where one jointly designs sensing and control policies. We focus on the realistic case where the sensing design is selected among a finite set of available sensors, where each sensor is associated with a different cost (e.g., power consumption). We consider two dual problem instances: sensing-constrained LQG control, where one maximizes control performance subject to a sensor cost budget, and minimum-sensing LQG control, where one minimizes sensor cost subject to performance constraints. We prove no polynomial time algorithm guarantees across all problem instances a constant approximation factor from the optimal. Nonetheless, we present the first polynomial time algorithms with per-instance suboptimality guarantees. To this end, we leverage a separation principle, that partially decouples the design of sensing and control. Then, we frame LQG co-design as the optimization of approximately supermodular set functions; we develop novel algorithms to solve the problems; and we prove original results on the performance of the algorithms, and establish connections between their suboptimality and control-theoretic quantities. We conclude the paper by discussing two applications, namely, sensing-constrained formation control and resource-constrained robot navigation.Comment: Accepted to IEEE TAC. Includes contributions to submodular function optimization literature, and extends conference paper arXiv:1709.0882
    • …
    corecore