3 research outputs found

    Optimizing Partition Granularity, Membership Function Parameters, and Rule Bases of Fuzzy Classifiers for Big Data by a Multi-objective Evolutionary Approach

    No full text
    Classical data mining algorithms are considered inadequate to manage the volume, variety, velocity, and veracity aspects of big data. The advent of a number of open-source cluster-computing frameworks has opened new interesting perspectives for handling the volume and velocity features. In this context, thanks to their capability of coping with vague and imprecise information, distributed fuzzy models appear to be particularly suitable for handling the variety and veracity features of big data. Moreover, the interpretability of fuzzy models may assume a particular relevance in the context of big data mining. In this work, we propose a novel approach for generating, out of big data, a set of fuzzy rule–based classifiers characterized by different optimal trade-offs between accuracy and interpretability. We extend a state-of-the-art distributed multi-objective evolutionary learning scheme, implemented under the Apache Spark environment. In particular, we exploit a recently proposed distributed fuzzy decision tree learning approach for generating an initial rule base that serves as input to the evolutionary process. Furthermore, we integrate the evolutionary learning scheme with an ad hoc strategy for the granularity learning of the fuzzy partitions, along with the optimization of both the rule base and the fuzzy set parameters. Experimental investigations show that the proposed approach is able to generate fuzzy rule–based classifiers that are significantly less complex than the ones generated by the original multi-objective evolutionary learning scheme, while keeping the same accuracy levels

    6G Vision, Value, Use Cases and Technologies from European 6G Flagship Project Hexa-X

    Get PDF
    While 5G is being deployed and the economy and society begin to reap the associated benefits, the research and development community starts to focus on the next, 6th Generation (6G) of wireless communications. Although there are papers available in the literature on visions, requirements and technical enablers for 6G from various academic perspectives, there is a lack of joint industry and academic work towards 6G. In this paper a consolidated view on vision, values, use cases and key enabling technologies from leading industry stakeholders and academia is presented. The authors represent the mobile communications ecosystem with competences spanning hardware, link layer and networking aspects, as well as standardization and regulation. The second contribution of the paper is revisiting and analyzing the key concurrent initiatives on 6G. A third contribution of the paper is the identification and justification of six key 6G research challenges: (i) “connecting”, in the sense of empowering, exploiting and governing, intelligence; (ii) realizing a network of networks, i.e., leveraging on existing networks and investments, while reinventing roles and protocols where needed; (iii) delivering extreme experiences, when/where needed; (iv) (environmental, economic, social) sustainability to address the major challenges of current societies; (v) trustworthiness as an ingrained fundamental design principle; (vi) supporting cost-effective global service coverage. A fourth contribution is a comprehensive specification of a concrete first-set of industry and academia jointly defined use cases for 6G, e.g., massive twinning, cooperative robots, immersive telepresence, and others. Finally, the anticipated evolutions in the radio, network and management/orchestration domains are discussed
    corecore