532 research outputs found

    Growth of relational model: Interdependence and complementary to big data

    Get PDF
    A database management system is a constant application of science that provides a platform for the creation, movement, and use of voluminous data. The area has witnessed a series of developments and technological advancements from its conventional structured database to the recent buzzword, bigdata. This paper aims to provide a complete model of a relational database that is still being widely used because of its well known ACID properties namely, atomicity, consistency, integrity and durability. Specifically, the objective of this paper is to highlight the adoption of relational model approaches by bigdata techniques. Towards addressing the reason for this in corporation, this paper qualitatively studied the advancements done over a while on the relational data model. First, the variations in the data storage layout are illustrated based on the needs of the application. Second, quick data retrieval techniques like indexing, query processing and concurrency control methods are revealed. The paper provides vital insights to appraise the efficiency of the structured database in the unstructured environment, particularly when both consistency and scalability become an issue in the working of the hybrid transactional and analytical database management system

    Leveraging Non-Volatile Memory in Modern Storage Management Architectures

    Get PDF
    Non-volatile memory technologies (NVM) introduce a novel class of devices that combine characteristics of both storage and main memory. Like storage, NVM is not only persistent, but also denser and cheaper than DRAM. Like DRAM, NVM is byte-addressable and has lower access latency. In recent years, NVM has gained a lot of attention both in academia and in the data management industry, with views ranging from skepticism to over excitement. Some critics claim that NVM is not cheap enough to replace flash-based SSDs nor is it fast enough to replace DRAM, while others see it simply as a storage device. Supporters of NVM have observed that its low latency and byte-addressability requires radical changes and a complete rewrite of storage management architectures. This thesis takes a moderate stance between these two views. We consider that, while NVM might not replace flash-based SSD or DRAM in the near future, it has the potential to reduce the gap between them. Furthermore, treating NVM as a regular storage media does not fully leverage its byte-addressability and low latency. On the other hand, completely redesigning systems to be NVM-centric is impractical. Proposals that attempt to leverage NVM to simplify storage management result in completely new architectures that face the same challenges that are already well-understood and addressed by the traditional architectures. Therefore, we take three common storage management architectures as a starting point, and propose incremental changes to enable them to better leverage NVM. First, in the context of log-structured merge-trees, we investigate the impact of storing data in NVM, and devise methods to enable small granularity accesses and NVM-aware caching policies. Second, in the context of B+Trees, we propose to extend the buffer pool and describe a technique based on the concept of optimistic consistency to handle corrupted pages in NVM. Third, we employ NVM to enable larger capacity and reduced costs in a index+log key-value store, and combine it with other techniques to build a system that achieves low tail latency. This thesis aims to describe and evaluate these techniques in order to enable storage management architectures to leverage NVM and achieve increased performance and lower costs, without major architectural changes.:1 Introduction 1.1 Non-Volatile Memory 1.2 Challenges 1.3 Non-Volatile Memory & Database Systems 1.4 Contributions and Outline 2 Background 2.1 Non-Volatile Memory 2.1.1 Types of NVM 2.1.2 Access Modes 2.1.3 Byte-addressability and Persistency 2.1.4 Performance 2.2 Related Work 2.3 Case Study: Persistent Tree Structures 2.3.1 Persistent Trees 2.3.2 Evaluation 3 Log-Structured Merge-Trees 3.1 LSM and NVM 3.2 LSM Architecture 3.2.1 LevelDB 3.3 Persistent Memory Environment 3.4 2Q Cache Policy for NVM 3.5 Evaluation 3.5.1 Write Performance 3.5.2 Read Performance 3.5.3 Mixed Workloads 3.6 Additional Case Study: RocksDB 3.6.1 Evaluation 4 B+Trees 4.1 B+Tree and NVM 4.1.1 Category #1: Buffer Extension 4.1.2 Category #2: DRAM Buffered Access 4.1.3 Category #3: Persistent Trees 4.2 Persistent Buffer Pool with Optimistic Consistency 4.2.1 Architecture and Assumptions 4.2.2 Embracing Corruption 4.3 Detecting Corruption 4.3.1 Embracing Corruption 4.4 Repairing Corruptions 4.5 Performance Evaluation and Expectations 4.5.1 Checksums Overhead 4.5.2 Runtime and Recovery 4.6 Discussion 5 Index+Log Key-Value Stores 5.1 The Case for Tail Latency 5.2 Goals and Overview 5.3 Execution Model 5.3.1 Reactive Systems and Actor Model 5.3.2 Message-Passing Communication 5.3.3 Cooperative Multitasking 5.4 Log-Structured Storage 5.5 Networking 5.6 Implementation Details 5.6.1 NVM Allocation on RStore 5.6.2 Log-Structured Storage and Indexing 5.6.3 Garbage Collection 5.6.4 Logging and Recovery 5.7 Systems Operations 5.8 Evaluation 5.8.1 Methodology 5.8.2 Environment 5.8.3 Other Systems 5.8.4 Throughput Scalability 5.8.5 Tail Latency 5.8.6 Scans 5.8.7 Memory Consumption 5.9 Related Work 6 Conclusion Bibliography A PiBenc

    TRANSACTION MANAGEMENT IN MULTI-CORE MAIN-MEMORY DATABASE SYSTEMS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Cache craftiness for fast multicore key-value storage

    Get PDF
    We present Masstree, a fast key-value database designed for SMP machines. Masstree keeps all data in memory. Its main data structure is a trie-like concatenation of B+-trees, each of which handles a fixed-length slice of a variable-length key. This structure effectively handles arbitrary-length possiblybinary keys, including keys with long shared prefixes. [superscript +]-tree fanout was chosen to minimize total DRAM delay when descending the tree and prefetching each tree node. Lookups use optimistic concurrency control, a read-copy-update-like technique, and do not write shared data structures; updates lock only affected nodes. Logging and checkpointing provide consistency and durability. Though some of these ideas appear elsewhere, Masstree is the first to combine them. We discuss design variants and their consequences. On a 16-core machine, with logging enabled and queries arriving over a network, Masstree executes more than six million simple queries per second. This performance is comparable to that of memcached, a non-persistent hash table server, and higher (often much higher) than that of VoltDB, MongoDB, and Redis.National Science Foundation (U.S.). (Award 0834415)National Science Foundation (U.S.). (Award 0915164)Quanta Computer (Firm

    O2-tree: a shared memory resident index in multicore architectures

    Get PDF
    Shared memory multicore computer architectures are now commonplace in computing. These can be found in modern desktops and workstation computers and also in High Performance Computing (HPC) systems. Recent advances in memory architecture and in 64-bit addressing, allow such systems to have memory sizes of the order of hundreds of gigabytes and beyond. This now allows for realistic development of main memory resident database systems. This still requires the use of a memory resident index such as T-Tree, and the B+-Tree for fast access to the data items. This thesis proposes a new indexing structure, called the O2-Tree, which is essentially an augmented Red-Black Tree in which the leaf nodes are index data blocks that store multiple pairs of key and value referred to as \key-value" pairs. The value is either the entire record associated with the key or a pointer to the location of the record. The internal nodes contain copies of the keys that split blocks of the leaf nodes in a manner similar to the B+-Tree. O2-Tree structure has the advantage that: it can be easily reconstructed by reading only the lowest value of the key of each leaf node page. The size is su ciently small and thus can be dumped and restored much faster. Analysis and comparative experimental study show that the performance of the O2-Tree is superior to other tree-based index structures with respect to various query operations for large datasets. We also present results which indicate that the O2-Tree outperforms popular key-value stores such as BerkelyDB and TreeDB of Kyoto Cabinet for various workloads. The thesis addresses various concurrent access techniques for the O2-Tree for shared memory multicore architecture and gives analysis of the O2-Tree with respect to query operations, storage utilization, failover and recovery

    Dynamic re-optimization techniques for stream processing engines and object stores

    Get PDF
    Large scale data storage and processing systems are strongly motivated by the need to store and analyze massive datasets. The complexity of a large class of these systems is rooted in their distributed nature, extreme scale, need for real-time response, and streaming nature. The use of these systems on multi-tenant, cloud environments with potential resource interference necessitates fine-grained monitoring and control. In this dissertation, we present efficient, dynamic techniques for re-optimizing stream-processing systems and transactional object-storage systems.^ In the context of stream-processing systems, we present VAYU, a per-topology controller. VAYU uses novel methods and protocols for dynamic, network-aware tuple-routing in the dataflow. We show that the feedback-driven controller in VAYU helps achieve high pipeline throughput over long execution periods, as it dynamically detects and diagnoses any pipeline-bottlenecks. We present novel heuristics to optimize overlays for group communication operations in the streaming model.^ In the context of object-storage systems, we present M-Lock, a novel lock-localization service for distributed transaction protocols on scale-out object stores to increase transaction throughput. Lock localization refers to dynamic migration and partitioning of locks across nodes in the scale-out store to reduce cross-partition acquisition of locks. The service leverages the observed object-access patterns to achieve lock-clustering and deliver high performance. We also present TransMR, a framework that uses distributed, transactional object stores to orchestrate and execute asynchronous components in amorphous data-parallel applications on scale-out architectures

    Master of Science

    Get PDF
    thesisEfficient movement of massive amounts of data over high-speed networks at high throughput is essential for a modern-day in-memory storage system. In response to the growing needs of throughput and latency demands at scale, a new class of database systems was developed in recent years. The development of these systems was guided by increased access to high throughput, low latency network fabrics, and declining cost of Dynamic Random Access Memory (DRAM). These systems were designed with On-Line Transactional Processing (OLTP) workloads in mind, and, as a result, are optimized for fast dispatch and perform well under small request-response scenarios. However, massive server responses such as those for range queries and data migration for load balancing poses challenges for this design. This thesis analyzes the effects of large transfers on scale-out systems through the lens of a modern Network Interface Card (NIC). The present-day NIC offers new and exciting opportunities and challenges for large transfers, but using them efficiently requires smart data layout and concurrency control. We evaluated the impact of modern NICs in designing data layout by measuring transmit performance and full system impact by observing the effects of Direct Memory Access (DMA), Remote Direct Memory Access (RDMA), and caching improvements such as Intel® Data Direct I/O (DDIO). We discovered that use of techniques such as Zero Copy yield around 25% savings in CPU cycles and a 50% reduction in the memory bandwidth utilization on a server by using a client-assisted design with records that are not updated in place. We also set up experiments that underlined the bottlenecks in the current approach to data migration in RAMCloud and propose guidelines for a fast and efficient migration protocol for RAMCloud
    corecore