
Leveraging Non-Volatile Memory in Modern
Storage Management Architectures

Dissertation
zur Erlangung des akademischen GradesDoktoringenieur (Dr.-Ing.)

vorgelegt an derTechnischen Universität DresdenFakultät Informatik
eingereicht von

Lucas Lersch, M.Sc.geboren am 6. November 1990 in Porto Alegre, Brasilien

Gutachter: Prof. Dr.-Ing. Wolfgang Lehner
Technische Universität Dresden
Fakultät Informatik
Institut für Systemarchitektur
Lehrstuhl für Datenbanken
01062 Dresden

Prof. Dr.-Ing. Dr. h. c. Theo Härder
Technische Universität Kaiserslautern
Fachbereich Informatik
Lehrgebiet Informationssysteme
AG Datenbanken und Informationssysteme
67653 Kaiserslautern

Tag der Verteidigung: 30. Oktober 2020

Dresden, den 30. Oktober 2020

2

To my parents: Suzana and Nelson.

4

ABSTRACT

Non-volatile memory technologies (NVM) introduce a novel class of devices that com-bine characteristics of both storage and main memory. Like storage, NVM is not onlypersistent, but also denser and cheaper than DRAM. Like DRAM, NVM is byte-addressableand has lower access latency. In recent years, NVM has gained a lot of attention both inacademia and in the data management industry, with views ranging from skepticism toover excitement. Some critics claim that NVM is not cheap enough to replace flash-basedSSDs nor is it fast enough to replace DRAM, while others see it simply as a storage device.Supporters of NVM have observed that its low latency and byte-addressability requiresradical changes and a complete rewrite of storage management architectures.
This thesis takes a moderate stance between these two views. We consider that, whileNVM might not replace flash-based SSD or DRAM in the near future, it has the potential toreduce the gap between them. Furthermore, treating NVM as a regular storage media doesnot fully leverage its byte-addressability and low latency. On the other hand, completelyredesigning systems to be NVM-centric is impractical. Proposals that attempt to leverageNVM to simplify storage management result in completely new architectures that facethe same challenges that are already well-understood and addressed by the traditionalarchitectures. Therefore, we take three common storage management architectures as astarting point, and propose incremental changes to enable them to better leverage NVM.First, in the context of log-structured merge-trees, we investigate the impact of storing datain NVM, and devise methods to enable small granularity accesses and NVM-aware cachingpolicies. Second, in the context of B+Trees, we propose to extend the buffer pool anddescribe a technique based on the concept of optimistic consistency to handle corruptedpages in NVM. Third, we employ NVM to enable larger capacity and reduced costs in a
index+log key-value store, and combine it with other techniques to build a system thatachieves low tail latency. This thesis aims to describe and evaluate these techniques inorder to enable storagemanagement architectures to leverage NVM and achieve increasedperformance and lower costs, without major architectural changes.

5

6

ACKNOWLEDGMENTS

While this thesis carries a single name as its author, it is actually the result of the contribu-tions and support of many people during the years that led to it.
First and foremost, it has been a privilege to be mentored and supervised by Prof. Dr.-Ing.Wolfgang Lehner. Not only has Wolfgang contributed significantly to my professionalgrowth, but he has also been incredibly supportive on a personal level helping me to facethe challenges and get through the obstacles I have faced along the way. Furthermore, it istruly inspiring to witness the positive impact that Wolfgang has in the life of its students.
Second, I would like to thank Prof. Dr.-Ing. Dr. h. c Theo Härder for reviewing this thesis.Prof. Härder was one of the people who inspired me to pursue a PhD degree, by grantingme the opportunity to participate in his research group through an exchange program in2012 during my bachelor’s and later master’s degree programs.
I am also immensely grateful for the opportunity to conduct this work in close collaborationwith SAP, as part of the SAP HANA Database Campus. Ivan Schreter had a major role insupervising my work and teaching me a lot about software development. Arne Schwarzhas been fundamental in leading the SAP HANA Database Campus and ensuring thatthe other students and I had the necessary tools, equipment, and environment requiredfor us to focus on our research work. I would like to extend my gratitude to AlexanderBöhm and Norman May for helping making the goals of SAP HANA Database Campus areality. I would also like to thank the Intel colleagues Thomas Willhalm, Roman Dementiev,Otto Bruggeman and Heinrich Teiken for all of the support they provided me while I wasconducting my research.
I would specially like to express my gratitude to two colleagues whom I also have theprivilege of calling friends. First, it was while working with Caetano Sauer during mymaster’s degree program that I was inspired to pursue a PhD degree. Not only has hegraced me many times with insightful technical discussions, but Caetano has also beenthere to offer his support during my most difficult of times, to which I am most grateful. Mygratitude to Caetano is also extended to his wife Irina and daughter Aria, for always beingso kind and welcoming. Second, I would like to thank Ismail Oukid for enabling me to domy PhD as part of the SAP HANA Database Campus. Once I was given the opportunity, hecontinued to guide my work, even through our occasional heated debates. I look forwardto working with Ismail again in the future.
I am also grateful to my colleagues at SAP, who have not only taught me a lot on aprofessional level, but also made my PhD years a lot more fun. Although I have shared

7

a limited time with Iraklis, Marcus, Michael R., Robert, David, and Elena, they all servedas role models for ideal PhD candidates. I was privileged to start my PhD journey withGeorgios, who always contributed to the socialization of the group, and Frank, who alwayswas willing to help me by sharing his deep technical knowledge. Florian has shownme howimportant it is to insist on high standards. Matthias amazed me with his incredible broadknowledge of things. Thomas has supported me immensely not only on a professionallevel, but also personal one through engaging discussions. Stefan has been my favoriteperson to share both my frustrations and achievements during our daily afternoon breaks.Robin has made otherwise stressful days brighter with his sense of humor, good musictaste, and by surprising me on how much denial a person can sustain about “The LastJedi” being a horrible movie and a mistake in the “Star Wars” sequel trilogy. I also hadthe privilege to witness Tiemo and Michael B. transition from master’s students to PhDcandidates, and I look forward to seeing them achieve great things. It was also a pleasureto have met Mehdi and Jonas in the final months of my PhD and I wish them success.
On a personal level, I would like to thank my friends, both near and far, who have supportedme and gave me the strength to endure this journey. As a representative of these friends,Gilson was a always close and supportive one. In supply-chain management, it is oftensaid that the last mile is the most difficult one when delivering products. This seems toalso have been the case of my PhD time, not only due to its own challenges, but alsodue to external events. I am grateful to Diana for having made this last mile a lot easier.Finally, I would like to thank all my family members who have supported me unconditionallythroughout my whole life. I feel truly privileged to have had all the aforementioned peopleoffering their support and encouragement, not only while I conducted my research andwrote this dissertation, but in my personal life as well.

Lucas LerschHeidelberg, 23. April 2021

8

CONTENTS

1 INTRODUCTION 13

1.1 Non-Volatile Memory . 14

1.2 Challenges . 15

1.3 Non-Volatile Memory & Database Systems 16

1.4 Contributions and Outline . 17

2 BACKGROUND 19

2.1 Non-Volatile Memory . 19

2.1.1 Types of NVM . 19

2.1.2 Access Modes . 21

2.1.3 Byte-addressability and Persistency 22

2.1.4 Performance . 23

2.2 Related Work . 25

2.3 Case Study: Persistent Tree Structures . 30

2.3.1 Persistent Trees . 31

2.3.2 Evaluation . 34

3 LOG-STRUCTURED MERGE-TREES 45

3.1 LSM and NVM . 45

3.2 LSM Architecture . 46

3.2.1 LevelDB . 47

3.3 Persistent Memory Environment . 49

3.4 2Q Cache Policy for NVM . 51

3.5 Evaluation . 53

3.5.1 Write Performance . 53

3.5.2 Read Performance . 54

3.5.3 Mixed Workloads . 56

3.6 Additional Case Study: RocksDB . 57

3.6.1 Evaluation . 58

CONTENTS 9

4 B+TREES 61

4.1 B+Tree and NVM . 61

4.1.1 Category #1: Buffer Extension . 62

4.1.2 Category #2: DRAM Buffered Access 63

4.1.3 Category #3: Persistent Trees . 63

4.2 Persistent Buffer Pool with Optimistic Consistency 64

4.2.1 Architecture and Assumptions . 65

4.2.2 Embracing Corruption . 67

4.3 Detecting Corruptions . 69

4.3.1 Possible States . 70

4.4 Repairing Corruptions . 73

4.5 Performance Evaluation and Expectations 74

4.5.1 Checksum Overhead . 76

4.5.2 Runtime and Recovery . 79

4.6 Discussion . 80

5 INDEX+LOG KEY-VALUE STORES 83

5.1 The Case for Tail Latency . 84

5.2 Goals and Overview . 85

5.3 Execution Model . 85

5.3.1 Reactive Systems and Actor Model 85

5.3.2 Message-Passing Communication 86

5.3.3 Cooperative Multitasking . 87

5.4 Log-Structured Storage . 89

5.5 Networking . 90

5.6 Implementation Details . 91

5.6.1 NVM Allocation on RStore . 91

5.6.2 Log-Structured Storage and Indexing 92

5.6.3 Garbage Collection . 94

5.6.4 Logging and Recovery . 97

5.7 System Operations . 98

5.8 Evaluation . 99

5.8.1 Methodology . 99

5.8.2 Environment . 99

5.8.3 Other Systems . 100

5.8.4 Throughput Scalability . 101

10 CONTENTS

5.8.5 Tail Latency . 103

5.8.6 Scans . 104

5.8.7 Memory Consumption . 106

5.9 Related Work . 107

6 CONCLUSION 109

BIBLIOGRAPHY 113

A PIBENCH 125

CONTENTS 11

12 CONTENTS

1
INTRODUCTION

Storage managers are in the core of database systems. They are critical for achievinghigh performance in the overall system by enabling efficient access to slower storagedevices which usually become the bottleneck. Furthermore, storage managers are alsoresponsible for providing the A (atomicity) and D (durability) of the ACID properties [HR83],thus preventing data loss and corruption. As a consequence of being so critical, storagemanagement has to be constantly revisited in order to properly leverage modern hardwareand keep the pace with the ever growing data processing demands.
A good example of this constant revisit is the The Five-Minute Rule series, which surveysonce per decade the advances in modern hardware and their implications in databasesystems. In the original paper from 1987 [GP87], Jim Gray and Gianfranco Putzolu con-sidered metrics of DRAM and HDD, such as latency, bandwidth, and cost, to calculate thebreak-even point at which the cost of keeping a page in memory matches the cost of doingI/O to read the page from HDD. They introduced the rule of thumb that named the series:
“Pages referenced every five minutes should be memory resident”. In 1997, Jim Gray andGoetz Graefe revisited the work in view of technological improvements of HDDs: ten-foldincrease in access speeds, hundred-fold increase in capacity, and ten-thousand-fold de-crease in costs [GG97]. In 2007, Goetz Graefe investigated the impact of a novel technologyby the time: flash [Gra07]. While it was still in its early stages and many questions werestill open, it was a promising technology. The main take-away was the prediction thatflash would be used to fill the gap between DRAM and HDD, which has since been provencorrect. More recently, in 2017, Appuswamy et. al. revisited the discussion in view of nowwell-established NAND flash-based solid-state storage devices (SSD) [ABGA17]. The initialchallenges imposed by flash in 2007, namely reduced lifetime and higher costs, are longgone and, as a consequence, SSDs became the main storage device, thus relegating HDDsto a high-density storage medium for infrequently accessed data. The performance gapbetween DRAM and SSDs is reduced even further with the advent of PCIe NVMe SSDs,also referred to as enterprise SSDs. The work also scratches the surface of a novel storagetechnology rising on the horizon: non-volatile memory (NVM).
It is still too early to revisit the series in view of NVM. Even if the technology is currentlyavailable, it is not yet as established as DRAM, SSDs, or HDDs. Many works are exploringways to properly leverage NVM in the context of database systems and answering openquestions. The advancements made by these works will pave the way to the next chapterin the The Five-Minute Rule series. This dissertation aspires to be one of these works.

13

1.1 NON-VOLATILE MEMORY

Many different underlying technologies (PCM [PSU+70], carbon nanotubes [DVTBH13],ReRAM [Chu19], STT-MRAM [HYY+05, H+08], battery-backed DRAM) and names (non-volatile memory, NVRAM, storage class memory, persistent memory)1 belong to a novelclass of storage devices and are often used interchangeably. Although they might havedifferent properties, they all refer to byte-addressable persistent media that blurs theboundary between main memory and storage. This is the main reason why history will notsimply repeat itself with a faster media, as it was the case with flash-based SSDs. NVMhas a higher potential of disrupting modern software stacks.
Works dating from as early as the 1980s entertained the idea of such a technology and itsimpacts in system architectures [Zak81, Cha78, Wri83, DGS80]. However, the assumptionwas mostly theoretical [Chu71] or unpractical due to technological limitations or prohibitivecosts, existing only in the form of niche accelerators [Mic17, Tec18]. Recent technologi-cal advancements made this technology real and more accessible. More prominent isthe 3D XPoint technology2, developed by Intel and Micron [Mic20, Eva15]. Intel currentlycommercializes 3D XPoint both as regular Optane PCIe NVMe SSD [Int20b] and OptaneDC Persistent Memory Modules (DCPMM for short) [Int20c]. The latter is the one wefocus on in this work. As a result, there is renewed attention to this area of research asit promises to deliver the long-awaited features required to blur the boundaries betweenmemory and storage. But how are these boundaries blurred? Or in other words, what does
byte-addressable really mean? Since this term is often used with different meanings, it isappropriate to discuss and make explicit the definition used in this work.
Common consensus usually defines main memory (DRAM) as byte-addressable andstorage (HDD and SSD) as block-addressable. This definition is often based on the factthat the programmer can access a single byte in DRAM. However, from this point of view,common file system interfaces also allow the programmer to read a single byte from afile. It is true that the underlying file system is actually reading a whole block (usually 4 kB)from storage into memory in order to provide access to that single byte, but that is alsothe case in modern CPU architectures, in which a block (usually much smaller and referredto as cache line) is read from memory into the CPU caches. In other words, conceptuallythere is no difference, as in both cases data is always transferred at larger granularities,be it a block, page, or cache line. Therefore, this definition is too loose and consideredinadequate to define byte-addressability. Our definition focus more on the access pathrather than on the access granularity. Whenever we refer to byte-addressability, we meanthat NVM is attached directly to the same bus as regular DRAM and therefore it is alsoaccessed through the CPU caches and shares the same virtual memory space.
In addition to byte-addressability, NVM also introduces other attractive characteristics. Incomparison to modern DRAM, 3D XPoint is cheaper [Aco19] and prices are expected todrop within the next years. It is also denser, in the sense that the largest DRAM modulecommercially available is 128GB while Intel has already announced a single DCPMM ofup to 1 TB. The latency is higher than that of DRAM, but within the same order magnitudeand, therefore, lower than NAND flash. The bandwidth, is better than NAND flash, but stillfar from that of DRAM. Finally, 3D XPoint also has a higher write endurance than modernNAND flash. All these advantages, however, come at a cost.

1In this work we opted for using the term non-volatile memory, or NVM for short.2An analysis has shown that 3D XPoint is based on phase-change memory (PCM) [Cho17].

14 Chapter 1 Introduction

1.2 CHALLENGES

The opportunitiesmentioned also entail challenges, following the “no free lunch” conjecture.In the case of NVM, it is beneficial to consider the challenges under two different scopes:
reading from NVM and writing to NVM.
In terms of reading, the challenge lies in investigating NVM performance characteristics inorder to properly fit it into the storage hierarchy. For years, similar questions have beinginvestigated by many works in the context of tape, HDDs, SSDs, and DRAM. In the caseof byte-addressable NVM, these works only cover part of the problem. In the example ofthe The Five Minute Rule mentioned previously, the rule only dictates which pages shouldbe evicted from DRAM, but it does not focus so much on which pages should be movedto DRAM. Fair enough, before NVM this was never really a concern, since there was nochoice, as a page always had to be read from persistent storage to DRAM in order to beaccessed. Even if a decision was made to evict a page immediately after reading it fromstorage, the high I/O cost was already paid. In the case of NVM, pages can be directlyaccessed without any additional I/O. Therefore, NVM introduces a new dimension thatshould be considered when optimizing data placement and buffer policies.
Writing directly to NVM is hard. Database systems rely on persistent data to alwaysbe consistent in some way. To achieve a desired degree of consistency, it is requiredfull control of what and when is made persistent. For example, transactional recoveryalgorithms require log records to be persisted prior to the updated page (a.k.a. write-ahead
logging). The challenge comes from the fact that, while systems have full control overdata movement between memory and traditional storage, this is not the case with NVM.Since NVM can be accessed directly by the CPU, corruption and data loss may occur formany different reasons, such as updated data staying in the CPU cache and being lostat a power failure, or the CPU arbitrarily evicting (and therefore persisting) cache lines inthe wrong order. In other words, as opposed to the traditional memory-storage interaction,there is no way of pinning a cache line to prevent it from being evicted by the CPU.
Figure 1.1 better illustrates the challenge with an example. The left-hand side shows thememory layout of a sorted array in NVM that spans two cache lines (indicated by thedifferent shades of gray). The first position of the array indicates the current size, whileeach remaining record is represented by an integer. Three steps are required for insertinga new record 3: move records 4-9 one position to the right in order to make space, insertrecord 3 in the appropriate position, increment the size from 5 to 6. A failure might occurat any intermediate state of this operation and upon restart the sorted array may be foundin one of different states illustrated on the right-hand side. In state 1©, the operationcompleted successfully before the failure and the array is found in a consistent state. Allthe other states are inconsistent. In 2©, the records 9 and 7 were moved one position to theright, the CPU arbitrarily evicted the second cache line, and the failure occurred. In 3©, theinsertion completed, but the cache lines were evicted and the power failure occurred beforethe size was updated. Finally, in 4©, the insertion completed, the size was updated, but onlythe first cache line was evicted before the failure, while the second portion of the arrayremained in its original state. The example shows how such a simple and fundamentaloperation can easily lead to data being corrupted when NVM is used as persistent storage.To a certain extent, addressing this challenge is in the core of many modern works thatpropose architectures, data structures and algorithms in the context of NVM.

1.2 Challenges 15

Figure 1.1: Possible states if a failure occurs while inserting a record in a sorted array inNVM (figure inspired by [CJ15]).
1.3 NON-VOLATILE MEMORY & DATABASE SYSTEMS

Many works investigate NVM in the context of databases. They either focus on individualcomponents of the system, such as data structures [CJ15, OLN+16, ALML18], memoryallocators [CCA+11, BCB16, OBL+17], logging schemes [HSQ14, WJ14, APP16], or on thedatabase architecture as a whole. These works can also be categorized based on theirinitial assumptions and expectations regarding NVM. In this dimension, we observe thattwo categories can be identified: a conservative approach and a more radical approach.
Conservative approaches simply treat NVM as a faster SSD by accessing it through regularfile system interfaces [GXH+11, PWGB13, EGA+18]. These approaches are commonly seenin industry, under the consideration that NVM is not well-established enough to justifyexpensive re-architecting efforts. The main advantage is that NVM is used transparentlyas a caching layer between DRAM and SSD, thus leveraging all devices in the modernstorage hierarchy and avoiding the previously mentioned challenge of directly writing toNVM. Therefore, these systems are NVM-agnostic, as they behave exactly the same way,from an architectural point of view, both in the presence and absence of NVM.
On the other hand, radical approaches are NVM-centric, in the sense that they proposenovel techniques with the goal of fully leveraging NVM characteristics to achieve higherperformance. Recent works in the research community proposing novel database architec-tures fall in this category [Kim15, OBL+14, PAA+17]. Furthermore, an extreme assumptionis that NVM performance and cost will lead to the extinction of modern DRAM and storagetechnologies, and drive the adoption of what is known as single-level systems. The notionof single-level systems is not new [KELS62] and refers to the idea of having no separa-tion between volatile data and persistent data. While this assumption is far-fetched, it ismade by many works [YWC+15, CJ15, WLL18, ALML18], as it opens interesting researchquestions. However, both conservative and radical approaches have drawbacks.
Conservative approaches have two main disadvantages. First, the lower latency, one ofthe major selling points of NVM, might not be observed, as access to persistent mediamay be dominated by kernel and file system operations, which become relatively moreexpensive when compared to I/O costs on modern SSDs. Second, it does not leverage byte-addressability and still imposes unnecessary data movement between DRAM and NVM. Inthe case of radical approaches, the main disadvantage comes from the fact that they aretoo optimistic regarding a quick and wide adoption of NVM and therefore the proposedarchitectures are very different from traditional systems. As a consequence, there is no

16 Chapter 1 Introduction

obvious way to migrate from a well-established traditional architecture to NVM-centricapproaches, since they do not consider the modern storage hierarchy comprised of DRAM,SSD, HDD, and even tape. This becomes an issue since we consider that, as the time ofwriting and for the near future, NVM will not replace either DRAM or SSD, and thereforeit must coexist harmonically with these other devices. Furthermore, the alternative ofdeveloping a complete new system from scratch is often unfeasible in practice due to highdevelopment costs. Therefore, we argue that moderate approaches are required.
Twoprinciples should guidemoderate approaches. First, they should focus on transformingsystems designed for traditional devices (DRAM, SSD, HDD) into systems that leverage allaspects of NVM, mainly the byte-addressability and persistency. This is done to a certainextend by hybrid data-structures [OLN+16, XJXS17], which integrate NVM into regularmemory data structures in order to make them persistent. While these data structures areoften used as containers and building blocks, it is important to also look at this principlefrom the perspective of a more complete system. Second, the changes required shouldnot be so disruptive that the architectural behavior of the system is completely changed.In other words, the architecture should not become dependant on the presence of NVM.

1.4 CONTRIBUTIONS AND OUTLINE

As mentioned in the beginning of this chapter, storage management in database systemsis likely to be the area most impacted by the advent of NVM. Following the previouslymentioned moderate approach, we investigate the impact of NVM in the three mostcommonmodern architectures for storagemanagement: LSM, B+Tree and index+log [IC20].For each one of them, we take the current state-of-the-art architecture as a starting pointand explore potential use-cases, trade-offs, opportunities, and challenges in view of NVM.The goal is to leverage NVM as more than simply faster storage, while avoiding the, attimes prohibitive, effort to design and implement a completely new architecture. In thefollowing, we provide an overview of the organization of this dissertation by giving anoverview of each chapter and their respective contributions3:

• Chapter 2 lays the general technical background onNVM required for the understatingof the next chapters. We also cover related work and conclude with our case studyon persistent data structures [LHO+19], in which we revisit persistent tree structuresproposed by prior work. Since these persistent trees were originally evaluated onemulation platforms, we re-implement and re-evaluate them on real NVM hardware asa way of setting the expecations of its real performance and behavior. The requiredbackground specific to each following chapter is introduced in the chapter itself.
• Chapter 3 explores the synergy between NVM and log-structured merge-tree (LSM)systems [LOLS17, LOSL17]. We take LevelDB as a first case study and propose apersistent memory environment, Pmemenv, that enables LevelDB to directly accessNVM. We also analyze the caching behavior and propose a 2Q Cache Policy for NVMto better leverage the byte-addressability. Finally we complement with a more recentcase study on RocksDB (a more modern system) and on real DCPMM.

3Many of the contributions have been peer-reviewed and published in the referenced papers.

1.4 Contributions and Outline 17

• Chapter 4 investigates opportunities in the context of B+Tree architectures. We pro-pose an extended buffer pool with an optimistic consistency model [LLO19]. Theoptimistic consistency model relies on a checksum algorithm and recovery infras-tructure common to most database systems, therefore requiring minor architecturalmodifications. This introduces a knob that enables the system to choose a trade-offbetween more NVM (lower costs and faster recovery) or more DRAM (faster perfor-mance). We present our algorithm and discuss all possible corner cases, as well asempirically evaluate the overhead and discuss end-to-end performance expectations.
• Chapter 5 presents RStore, a multicore key-value store with an index+log architec-ture [LSOL20]. RStore focus on use-cases requiring low tail-latency, such as webcaching, real-time systems, and metadata management. We introduce the buildingblocks of RStore and how to integrate NVM in order to enable high performance andlower costs. We show results of isolated evaluations to back our design decisions,as well as an end-to-end evaluation and comparison with similar modern systems.
• Chapter 6 concludes our work by summarizing the key findings of each chapter andproviding directions for future work.

The author of this thesis is responsible for the conception, implementation, evaluation,analysis, and the interpretation of the results for each of the contributions presented. Theauthor is also the main author of the works upon which this dissertation is based on.Nevertheless, the author is thankful to all co-authors that contributed substantially to theseworks. Many of the ideas proposed had constant feedback and input through discussionswith Wolfgang Lehner, Ivan Schreter, and Ismail Oukid. Xiangpeng Hao and TianzhengWang contributed with the full implementation of BzTree and with partial implementationof the framework used for the persistent trees evaluation discussed in Section 2.3. ThomasWillhalm contributed with suggestions and analysis of the results collected through hard-ware counters. Caetano Sauer contributed with clarifications about transactional recoveryin the context of the buffer pool with optimistic consistency model in Chapter 4. ThomasBach contributed with discussions about the probability of data loss due to checksumcollisions, on that same chapter. The RStore system in Chapter 5 was built by the authoron top of the Reflex project at SAP, idealized and implemented by Ivan Schreter. Reflexprovides the following building blocks: message-passing communication, cooperativemultitasking, memory management, and networking. The author contribution lies on thedesign, implementation, and evaluation of NVM in that system.

18 Chapter 1 Introduction

2
BACKGROUND

In this chapter, we cover the background on NVM required for the understanding of thefollowing chapters. We also survey related work that has explored opportunities to leverageNVM in the context of database systems and storage management. Finally, we concludewith an empirical analysis of persistent data structures in order to better exemplify thechallenges of NVM and solutions proposed, as well as to set realistic expectations of theperformance of NVM.

2.1 NON-VOLATILE MEMORY

Non-volatile memory (NVM)1 is a novel class of technologies that has been regardedas the next evolution step for persistent storage. The technologies in this class exhibitcharacteristics of both storage and main memory. More precisely, they provide persistencyand high density while also being byte-addressable and offering a latency much closer tothat of modern DRAM (albeit often higher). While these characteristics are common tomost types of NVM technologies, they might vary slightly between them.

2.1.1 Types of NVM

There are two main groups of NVM technologies. The first group refers to technologiesbased on flash memory, commonly known as NVDIMMs. These devices are motivatedby the observation that the recent improvements in throughput and capacity of modernNAND-flash SSDs have shifted the bottleneck from the storage device itself to the PCIebus. Therefore, to avoid the high latency (tens of µs) and limited bandwidth (tens of GBps)of PCIe, these devices are interfaced via the same memory bus used for DRAM modules.The Storage Networking Industry Association (SNIA) currently standardize two types ofNVDIMM. The NVDIMM-F type defines a flash-only DIMM, similar to regular PCIe SSDs,but connected to the memory bus. The access latency of devices of this type is lower
1Also referred to as non-volatile RAM (NVRAM), storage class memory (SCM), or persistent memory (PM).

19

than that of PCIe NAND-flash SSDs, but still much higher that that of DRAM. They alsopresent capacity and cost similar to those of modern SSDs. The main disadvantage is thatNVDIMM-F devices are block-addressable rather than byte-addressable, which is one of themain advantages of other NVM devices. The second type is NVDIMM-N, which combinesboth DRAM and flash storage in a single module. Only the DRAM can be accessed duringnormal operation. With the aid of an on-chip battery or capacitor, the DRAM content iswritten to flash during a power failure, and restored during restart. NVDIMM-N deviceshave the advantage of achieving a performance similar to that of DRAM and of beingbyte-addressable, but have small capacities (in the tens of GB range) and high costs.Examples of these devices are the ones commercialized by Viking Technology [Tec18]and Micron [Mic18]. In general, NVDIMMs today are considered niche accelerators whencompared to PCIe NAND-flash SSDs.
The second group of NVM includes devices based on materials other than NAND-flash,with the most prominent being phase-change memory (PCM) [LZY+10, PSU+70], spin-
torque transfer magnetic RAM (STT-MRAM) [DWS+08, HYY+05, H+08], and resistive RAM(ReRAM) [GKC+11, SSSW08, Chu11]. PCM has its roots in research conducted in the1960s [Ovs68] and is based on the property of certain materials, such as germanium,antimony and tellurium, to persist a phase change when the right current is applied to them.In industry, PCM has been researched by IBM, HGST, Micron, and Intel. STT-MRAM makesuse of the spin property of electrons, as opposed to conventional semiconductor elec-tronics that make use of the charge property. It relies on the magnetic retention propertyof certain materials to store information. Reads rely on sensing the resistant differencebetween two states of this material, while writes are based on the spin-torque transfereffect to change the orientation of the magnetization. Companies like Samsung, Qual-comm, Crocus Technology, Everspin, and Intel have demonstrated works on STT-MRAMtechnologies. Finally, ReRAM relies on applying high enough voltage to materials that donot conduct electric current. This will force a phenomen called dielectric breakdown, whichdamages the material. In certain materials, this damage is reversible and the controlleddefects caused can be used to represent bits in a binary system. HP Labs is the maincompany researching ReRAM. Table 2.1 compares the performance characteristics ofsingle-level cell flash, DRAM, and the NVM technologies discussed2.
Recent technological advancements lead by Intel and Micron resulted in the developmentof 3D XPoint3 [Mic20]. 3D XPoint is based on PCM [Cho17] and is currently consideredthe NVM technology with the most potential to succeed and to be widely adopted. Intelcommercializes 3D XPoint under themarket name of Optane. Two lines of Optane productsexist. First, Optane is sold in PCIe SSD format, similar to the NAND-flash variant, but offerlatencies an order of magnitude lower. Second, Optane DC Persistent Memory Modules(DCPMM) are dual in-line memory modules (DIMMs) like DRAM, and thus are connecteddirectly to the memory bus. While Optane SSDs offer a much lower latency than NAND-flash SSDs, they are still interfaced with PCIe and are block-addressable, while DCPMMsare byte-addressable. Furthermore, DCPMM is the NVM technology more accessible inthe market and has received support both in Windows [Tob16] and Linux [Lin15] systems.For these reasons, in this work we focus on DCPMM and often use the more general term
“NVM” to refer to it. Nevertheless, our findings are not specific to DCPMM and can beapplied to other NVM technologies that exhibit access modes.

2In the real world, certain reported numbers might vary due format-specific functionalities, such as wear-leveling techniques employed in SSDs.3Pronounced “three dee cross point”.

20 Chapter 2 Background

Parameter SLC Flash DRAM PCM STT-MRAM ReRAM
Read Latency 25 µs 50ns 50ns 10 ns 10 nsWrite Latency 500µs 50ns 500ns 50ns 50nsByte-addressable No Yes Yes Yes YesEndurance 104-105 >1015 108-109 >1015 >1011Density High Low Medium Low HighCost $ $$$$ $$ $$$ $$$$

Table 2.1: Comparison of flash, DRAM, and modern NVM technologies.
2.1.2 Access Modes

Enabling modern systems to access NVM requires changes at different levels. At the
hardware level, Intel introduced support for DCPMM in the Cascade Lake processor family.
The DCPMM can be exposed in two different modes. In the memory mode, DCPMM
is treated as volatile memory. This mode has the benefit of significantly increasing the
perceived amount ofmemory available, while being completely transparent to the operating
system and applications. To amortize memory accesses due to the higher latency of
DCPMM, the DRAM present in the system is used as a cache. Therefore, NVM is not
treated as byte-addressable media as its contents must always be cached in DRAM instead
of being directly accessed by the CPU. Furthermore, in memory mode, data on DCPMM
becomes inaccessible after a restart, thus not leveraging the persistency of NVM.
In the app direct mode, DCPMM is exposed as a device, similar to a HDD or SSD. It then
can be formatted and mounted with a file system. At the software level, applications
have two ways of interacting with this file system. First, as shown on the left-hand side of
Figure 2.1, applications can manage files through the regular file system interfaces, such
as read() and write(). In this case, DCPMM is treated as a very fast block device and
has the advantage that no modifications to the software are required. Like other storage
devices, operations to files on DCPMM are done at a page granularity (usually 4 kB) and
buffered in DRAM. The second way is shown on the right-hand side of Figure 2.1. If the file
system is mounted with the special DAX flag, the application might map the file to its virtual
memory address space with mmap(). The DAX flag indicates that the DCPMM is directly
accessed and prevents intermediate buffering, such as the operating system page cache.
As a consequence, load and store instructions done to the mapped address space are
reflected directly to the DCPMM device. This has the advantages of avoiding expensive
system calls, of reducing the transfer granularity from pages to cache lines (64B), and
of requiring only a single copy of the data, since it is not buffered in DRAM. It is worth
noting that, while both DRAM and NVM share the same virtual memory address space, the
application can distinguish their respective memory regions, and therefore control where
to place data. Finally, while accessing persistent media through load and store instructions
introduce challenges that require the software to be properly adapted, we consider this to
be the only way to fully leverage NVM and achieve optimal performance. Therefore, in this
thesis we only assume the scenario in which DCPMM is configured in app direct mode and
files are mapped to the virtual memory address space of applications.

2.1 Non-Volatile Memory 21

Figure 2.1: NVM Access.
2.1.3 Byte-addressability and Persistency

As previously mentioned, when configuring the DCPMM in the app direct mode and man-aging it through a file system with the DAX flag enabled, applications are able to directlymap files in NVM to the virtual memory address space and access them through load andstore operations. The DAX flag guarantees that the operating system or file system willnot employ any intermediate buffering, thus ensuring that operations are always persistedin NVM. While the DAX flag removes the volatility from the access chain at the softwarelevel, there is still volatility to be considered at the hardware level, as the path from CPUregisters to NVM is long and mostly volatile.
As shown in Figure 2.2, Intel CPUs employ store buffers and three levels of caches tohide the latency of memory accesses. Each physical core has its own L1 and L2 caches,while the L3 cache is shared between all the cores. Accessing NVM through load andstore operations implies that data in NVM is transferred to the CPU caches, just like DRAM.This traffic happens in cache lines of 64B. This leads to three problems. First, the CPUcaches are volatile and therefore store operations are not guaranteed to be persistentafter they were executed. Second, since most CPUs employ out-of-order execution, storeoperations might be reordered. Third, from the software point of view, cache lines arearbitrarily evicted and, therefore, persisted back to NVM. Traditionally the software haslittle control over the CPU caches, and , in such scenario, it is impossible to enforce storeordering and data durability, which are the main requirements to ensure consistency.
To aid software developers, Intel has introduced the hardware instructions CLFLUSHOPTand CLWB, which, when combined with SFENCE, can provide memory ordering and durability.While it is not possible to prevent a cache line from being evicted from the CPU cache, the
CLFLUSHOPT and CLWB instructions eagerly force cache lines to be flushed and, therefore,persisted. While both instructions are used to flush cache lines, the only difference isthat CLFLUSHOPT will also evict it from the CPU cache and CLWB will retain the cache linein the CPU cache. The SFENCE instruction is a memory barrier that serializes all pending

22 Chapter 2 Background

Figure 2.2: The volatility chain from the CPU to NVM.
stores, thus preventing undesired reordering. Therefore, as seen in the left-hand side ofFigure 2.2, a typical pattern for persisting a store operation to NVM (represented by the MOVinstruction) is to explicitly follow it by three instructions: SFENCE, CLFLUSHOPT or CLWB, andanother SFENCE. The first SFENCE ensures that the stores completed, the CLFLUSHOPT or
CLWB will trigger a cache line flush to persist the store, and the last SFENCE will ensure theprevious CLFLUSHOPT or CLWB completed before resuming. In addition to these instructions,non-temporal stores (MOVNT) can also be used to bypass the cache by writing to a specialbuffer, which is evicted either when it is full, or when an SFENCE is issued. This is shown inthe right-hand side of Figure 2.2. Non-temporal stores are useful when the CPU is simplywriting to a newmemory location without previously reading the data and loading its cachelines, such as when streaming data in a log-structured manner.
Finally, it is worth noting that, while cache line transfers between CPU caches and NVMhappen in a granularity of 64B and are atomic, current x86 CPUs only guarantee that 8 Bstores are atomic, i.e., complete within a single CPU cycle4. While it is unlikely that a cacheline will be evicted during a store operation larger than 8B, algorithms and data structuresshould take that into consideration to avoid partial writes and guarantee correctness. Thisis usually achieved by atomically updating an 8B variable to reflect larger stores, such asa pointer (in the case of shadowing) or the tail of a log. In the context of NVM, this 8B unitis commonly referred to as p-atomic.

2.1.4 Performance

In order to give a good overview of the performance characteristics of DCPMM, we havemeasured its latency and bandwidth using Intel Memory Latency Checker(v3.9) [VKW+13].The hardware used for the measurements is shown in Table 2.2. We first compare thelatency of DCPMM to the latency of CPU caches and DRAM. The processor has 24 physical
4Not to be confused with atomic visibility, which can be achieved at larger sizes by the cache-coherencyprotocol when using hardware instructions such as compare-and-swap(CMPXCHG16B).

2.1 Non-Volatile Memory 23

Processor Intel Xeon Platinum 8260L CPU @2.40GHzMain Memory 96GiB DDR4 @2666MHz (6× 16GiB modules)NVM Intel Optane DCPMM 1.5 TiB (6× 256GiB modules)Operating System Linux 5.3.4-3
Table 2.2: Hardware used for measuring DCPMM performance characteristics.

Level Sequential Access Random Access
L1 1 ns 1 nsL2 7 ns 7 nsL3 20ns 20nsDRAM 75ns 85 nsDCPMM 175ns 300ns

Table 2.3: Latency for accessing different levels of the memory hierarchy.
cores and 48 logical cores. The L1 caches are divided in instruction cache and data
cache, each one having a capacity of 32 kB. Each L2 cache has a capacity of 1024 kBand the shared L3 cache has a capacity of 36 608 kB. The access latencies are shown inTable 2.3. The main observation is that DCPMM not only has higher latencies, but theydiffer significantly between sequential and random accesses. This is explained by bufferingbeing employed internally in the DCPMM device, as reported by Intel [Int20d]. While trafficbetween CPU caches and DCPMM happens in a 64B granularity, just like DRAM, internallythe DCPMM employs buffering at a 256B granularity. In other words, it is beneficial tocollocate data on DCPMM in units of 256B to explore spatial locality. It is also worthmentioning that the reported DCPMM latency refer to read operations. As previous studieshave also noted [IYZ+19], precisely measuring the write latency of DCPMM is difficult. Forsupporting DCPMM, Intel CPUs rely on a feature called asynchronous DRAM refresh (ADR).The ADR triggers a hardware interrupt to the memory controller to flush write-protecteddata buffers in the case of a power failure. While stores that linger in the ADR domain are“safe”, currently there is no way to detect when they physically reach the DCPMM itself.
Figure 2.3 compares the bandwidth under two and six DCPMMs with a varying numberof threads. The CPU supports six channels, each of which has two slots, one for DRAMand one for NVM. Therefore, the number of DCPMMs also indicates the number of mem-ory channels. Similar to DRAM, adding more DCPMMs significantly increases the readbandwidth, while the impact for write bandwidth is relatively smaller. It is worth notingthat in most cases using two threads is enough to saturate the DCPMM write bandwidth.Nevertheless, having as many DCPMMs as possible is not always better, as the optimalsetup highly depends on the use-case. As an example, one might benefit from less DCP-MMs in favor of more DRAM modules, since the amount of available memory slots islimited per CPU. In such case, this would imply trading the lower costs and increase inbandwidth of DCPMM for a more expensive setup and larger DRAM capacity, benefitingfrom its lower latency access. DCPMM exhibits peak sequential read and write bandwidthof 40GB/s and 10GB/s, respectively. These are respectively ∼3× and ∼11× times lowerthan those of DRAM. This gap widens even more for random read and write bandwidthto respectively ∼8× (7.4 or 7.4GB/s) and ∼14× (5.3GB/s) lower bandwidth than DRAM.Given the performance gap between DRAM and DCPMM, it becomes more important toleverage more memory channels (i.e., equip more DCPMMs) to reach the peak bandwidth.

24 Chapter 2 Background

(a) Read. (b) Write.
Figure 2.3: DRAM and Optane DCPMM bandwidth when a server is fully (× 6 modules)and partially (× 2 modules) populated.
2.2 RELATED WORK

The advances in the recent years raised the interest in NVM technologies both in academiaand industry. Many interesting works proposed data structures, algorithms, and architec-tures in different contexts. While most of the contributions and the concepts explored canbe used as building blocks for more complex systems, in this section, we limit to reviewthe related work of more complete storage management systems in the context of NVM.

Storage Management in the NVRAM Era

Pelley et al. [PWGB13] explore the impact of NVM (referred to as NVRAM) in traditionaldatabase architecture. Rather than leveraging NVM in the context of the modern storagehierarchy comprised of DRAM, SSD, HDD, and even tape, the work assume that NVM willreplace all existing persistent storage devices. Therefore, as a starting point, they use NVMas a drop-in replacement for disk and analyze how it impacts the database architecture.The first dimension considered refers to reading from NVM. Even if the performanceof NVM is higher than that of other storage media, the authors assume that caching isstill required due to its higher latency. Three alternatives are proposed: Software Buffer,
Hardware Buffer, and DRAM Replication. The Software Buffer approach relies on cachinghot pages in DRAM through a buffer manager, as in conventional databases. The Hardware
Buffer alternative involves removing the buffer manager and rely solely on CPU cachesto hide the higher latency of NVM. Finally, the DRAM Replication also relies on removingbuffer management by having a complete replica of the database in DRAM to serve readrequests. Like the authors, we consider that, while Hardware Buffer and DRAM Replicationstrategies can simplify the software stack my removing buffer management, they areimpractical in most scenarios due to the limited capacity of CPU caches and to the largeDRAM requirements, respectively. Therefore, having a portion of DRAM managed by a
Software Buffer to cache hot pages is still the best strategy.

2.2 Related Work 25

Since a Software Buffer in DRAM is used to read and modify pages, the second dimen-sion considered by the authors refers to writing the pages back to NVM. The strategiesconsidered are: Traditional WAL/ARIES, In-Place Updates, and NVRAM Group Commit. Toenable Traditional WAL/ARIES, the authors introduce two operations, persist_wal() and
persistent_page(), to enable atomic propagation of log records and pages to NVM, re-spectively. The authors note that, while it is a simple approach, the software overhead oflogging and page flushing becomes the bottleneck if NVM is used as the main storagedevice. As an alternative, the In-Place Update strategy is proposed. It eliminates redologging by employing a force strategy (i.e., flushing all updated pages at commit). Trans-actions employ private undo log records, which are persisted to NVM until the transactioncommits, thus enabling the transaction to roll back after a failure. Finally, the authorsalso propose the NVRAM Group Commit strategy, which extends the In-Place Updateby batching multiple transactions and applying their updates at once to a copy of thewhole database. The authors consider NVRAM Group Commit to be the best strategy, asit amortizes the overhead associated with committing single transactions.
While we agree with the authors that Software Buffer is a good strategy, we make a fewobservations regarding writing to NVM. In the Traditional WAL/ARIES approach, the authorsargue that logging and the asynchronous page flushing are the main source of overhead.We point out that, while the authors assume that shadow paging is used to atomically flushpages to NVM, this is not required, since the WAL suffices to guarantee the consistency ofthe database and recover pages in case of partial writes. The overhead of WAL can alsobe significantly reduced with better logging protocols, as discussed later in this section.Furthermore, the In-Place Update and NVRAM Group Commit are proposed to eliminateredo logging. However, both strategies employ shadow paging during commit time, whichwas previously pointed out as a main overhead in the context of asynchronous pageflushing. Removing the redo log also implies lack of support for media recovery. Therefore,we consider that a well-implemented Traditional WAL/ARIES approach can reduce thementioned overheads and perform better than the proposed alternatives.

Managing Non-Volatile Memory in Database Systems

Similar to the Software Buffer strategy discussed previously, van Renen et al. [vRLK+18]propose a buffer manager to leverage the benefits of NVM. The authors point that DRAM isstill required to hide the higher latencies of NVM but that page-based DRAM caching leadsto unnecessary memory traffic. Therefore, unlike Pelley et al. [PWGB13], they propose toleverage NVM in the context of a more complete storage hierarchy comprised of DRAM andSSD, and to reduce the traffic between DRAM and NVM from pages to smaller granularities,such as cache lines or “mini pages”. The authors also employ many state-of-the-art tech-niques, such as pointer-swizziling [GVK+14], and further discuss replacement strategies.The main advantages of the proposed buffer manager are its simplicity, which makes iteasy to be integrated into existing systems, and its capacity to leverage other storagedevices. Nevertheless, while the unnecessary traffic between DRAM and NVM is reduced,it is not completely eliminated, as NVM is never directly accessed by the CPU.

26 Chapter 2 Background

FOEDUS

The FOEDUS is a transactional system [Kim15] designed to leverage many-core servers and
NVM. Like Pelley et al. [PWGB13], the author assumes a scenario in which NVM completely
replaces other storage devices and coexists solely with DRAM. It proposes a B+Tree
variation called Master Tree and relies on the concept of dual pages. Each page has two
copies: a read-only state in NVM and a volatile state in DRAM. This technique resembles
shadow paging, but it stores the address of both versions of a page in the incoming page
pointers, rather than in a separate mapping data structure. FOEDUS employs a redo-only
distributed logging scheme [TZK+13, ZTKL14]. A “log gleaner” process propagates the
updates to the NVM pages by asynchronously replaying the log records. While FOEDUS
employs many state-of-the-art techniques, the author assumes that NVM is accessed
through the regular file system interface, thus not leveraging its byte-addressability and
being the main drawback of the proposed architecture.

Write-Behind Logging

Motivated by the observation that write-ahead logging becomes the main bottleneck in
many scenarios, Arulraj et al. propose an NVM-aware commit protocol called write-behind
logging (WBL) [APP16]. They assume a database system consisting of only DRAM and
NVM and multi-version concurrency control (MVCC) [LBD+11, KR79]. During transaction
execution, changes are written to a DRAM copy of the database. At commit, dirty records
are flushed individually to NVM, following a force strategy. Since MVCC is used, records
are always written to a new location in NVM. Nevertheless, uncommitted updates might
be propagated to NVM if a failure occurs during commit. To determine loser transactions,
a group-commit interval is defined by two timestamps (cp, cd), such that all transactions
with timestamp lower than cp have successfully committed, and no transactions with
timestamp higher than cd have executed yet. These timestamps are written to a log after
all the changes older than cp have been propagated to NVM, hence “write-behind”. The
recovery consists of reading the log to determine the (cp,cd) intervals that define the loser
transactions. Following MVCC, records modified by loser transactions are then ignored by
new transactions, later being removed by a garbage collection process.
The authors show benefits over write-ahead logging (WAL) in terms of memory consump-
tion and reduced traffic toNVM.However, we note thatWAL is a protocol for update-in-place
strategies, which is not the case of MVCC. In other words, the multiple copies of a record
stored in a MVCC system already resemble the before- and after-images stored in log
records in WAL. Furthermore, while WAL can be eliminated in MVCC systems by using
WBL, we point that WAL is often leveraged to enable other functionalities, such as remote
replication, database auditing, and partial transaction rollback. Therefore, in addition to
being limited to MVCC, WBLmakes the support of these functionalities more cumbersome.

2.2 Related Work 27

SAP HANA

SAP HANA [FML+12] is a modern database system that targets hybrid enterprise applica-tions consisting of both transactional and analytical workloads. It follows an in-memorycolumn-store architecture and exploits modern hardware, such as multiple cores, SIMDinstructions, and large main memory and CPU caches. In order to store all databasecontents in memory, SAP HANA relies heavily on data compression. To enable a highcompression rate, data has to be often coalesced and organized in efficient formats. There-fore, SAP HANA employs a delta-main approach: a small delta component ingests newrecords and updates and is periodically merged to a larger and read-only main component,which stores data in a compressed format. Durability is guaranteed through commandlogging [MWMS14] and transaction-oriented checkpoints [HR83]. SAP HANA can alsoleverage NVM to extend the capacity of the main component [ALR+17]. This is a naturalfit, as the main component is read-only and, therefore, NVM can be accessed directly bythe CPU just like DRAM. Not only DCPMMs are larger than DRAM modules, but they arealso cheaper, leading to lower costs. While runtime performance is impacted by the higherNVM latency, the startup is significantly faster, as the main component of NVM is persistedacross restarts, thus avoiding large load times from the storage device to memory.

Hyrise-NV

Hyrise-NV [SKD+16] is an NVM-aware version of the Hyrise in-memory database sys-tem [GKP+10]. Similar to SAP HANA, Hyrise is tailored to hybrid transaction and analyticalworkloads and employs the delta-main architecture. In addition to the main component,Hyrise-NV also persists other data structures, such as the proposed nvBTree, used assecondary indexes. Hyrise-NV relies on append-only strategies and multi-version storageto update data transactionally and guarantee consistency. Furthermore, since write-aheadlogging is not employed, metadata of currently running transactions is persisted to enableundo in case of failure.

SOFORT

SOFORT [OBL+14, Ouk18] is a database system developed from scratch to leverage a hybridDRAM-NVM environment. Similar to SAP HANA and Hyrise-NV, SOFORT is an in-memorycolumn-store targeting both transactional and analytical workloads, also following the
delta-main architecture. Differently than other systems that leverage traditional storagedevices, SOFORT relies purely on DRAM and NVM and, therefore, is able to employ a
single-level architecture. In other words, SOFORT only manages persistent objects in thevirtual memory address space, rather than files in a file system. Primary data is stored inNVM and written/read directly by the CPU. Auxiliary data, such as secondary indexes, canbe placed either in DRAM or in NVM, thus allowing the system to be configured either forhigh performance or for lower costs and faster restart.
SOFORT also supports ACID transactions through multi-version concurrency control(MVCC) [LBD+11, KR79]. Unlike other approaches that propose to eliminate logging but

28 Chapter 2 Background

still employ it in a smaller granularity, SOFORT is able to achieve that goal by employing a
force strategy and storing the transaction table in a persistent data structure. Therefore,
“transaction objects” are persisted and are used to discard operations tagged with theMVCC timestamps of transactions that were in-flight when the failure occurred.
The main limitation of SOFORT is the lack of support for other storage devices (HDD andSSD) in a more complete storage hierarchy. While the proposed architecture may havebenefits in a future where NVM will replace other storage technologies, for the time being,modern storage technologies, such as SSDs, still have to be considered for most use-cases.Finally, as also noted by the authors, it is unpractical to adapt existing systems to followthe same architecture, at it would require heavy software rewrite and architectural changes

Logging

Many of the works discussed so far make the observation that, when leveraging NVMas the main storage device in a database, logging (typically WAL) becomes the mainbottleneck. Therefore, these works employ different flavors of force strategies with thegoal to completely eliminate logging from the critical path of transactions [PWGB13, APP16,SKD+16, OBL+14, Ouk18]. Other works go in the different direction of leveraging NVM toreduce the overhead of logging, rather than eliminating it [CKKS89, AJ89, FHH+11, GXH+11,HSQ14, WJ14]. We focus on two of these works.
Huang et al. [HSQ14] make the observation that NVM is more expensive than other storagedevices (HDD and SSD) and, therefore, restricting the use of NVM to improve loggingperformance yields a higher ratio of transactions per dollar than simply replacing allstorage with NVM. The authors propose NV-Logging to improve the traditional ARIESlogging protocol [MHL+92]. The main idea is to reduce the software overhead associatedwith centralized log buffers by introducing decentralized transaction-private log buffers.During transaction processing, log records are created in private DRAM buffers. Uponcommit, the transaction flushes the log records to arbitrary locations in NVM in the formof “log objects”. To enforce the global LSN order, pointers to these “log objects” are thenappended to a “log entry index” implemented as a circular buffer. While the “log entry index”still acts as a contention point, its critical-section is much shorter, since only fixed-lengthpointers have to be appended, rather than arbitrarily large log records.
Unlike NV-Logging, Wang et al. [WJ14] propose fully-distributed logging for multi-core multi-socket environments. They note that, while distributed logging reduces the overhead oflogging by spreading log records across multiple physical logs, they are prohibitive due tothe overhead introduced by dependency tracking and additional I/O required to guaranteeglobal order of log records. Fortunately, NVM can be leveraged to significantly reduce theseI/O costs and enable distributed logging. The authors investigate both page-level andtransaction-level log space partitioning and employ a global sequence number based on alogical clock [Lam78] to uniquely identify log records. The empirical evaluation shows thattransaction-level partitioning is more favorable, as it avoids cross-socket communications.
We agree that leveraging NVM to improve the logging infrastructure will be mandatory fordatabase systems, and that completely replacing all storage by NVM is currently unfeasible

2.2 Related Work 29

in most scenarios due to its higher cost when compared to SSD and HDD. We also note
that, this approach not only is more cost effective, but it also limits the changes in the
code base to the log manager, thus not requiring drastic changes in the whole database
architecture. Nevertheless, we consider that there are other opportunities to leverage NVM
in database systems, such as NVM-aware buffer management policies.

NOVA

While the works previously discussed were mostly in the context of database systems,
NOVA [XS16] explores NVM in the context of file systems. The goal of NOVA is to enable
efficient access to NVM through the abstraction of regular file system interfaces. The
main motivation is to enable applications to leverage NVM without any changes, rather
than specifically tailoring them to manage NVM through the virtual memory space. NOVA
is a file system in the user-space that follows a hybrid DRAM-NVM architecture and relies
on log-structured writes to provide strong consistency guarantees. The authors claim that
it is able to achieve 22% to 216× throughput improvement compared to state-of-the-art file
systems, and 3.1× to 13.5× improvement compared to file systems that provide equally
strong data consistency guarantees. We consider that, while specialized applications such
as database systems can benefit more from directly managing NVM, other applications
that do not require high performance can easily leverage some of the performance benefits
of NVM through file systems like NOVA.

2.3 CASE STUDY: PERSISTENT TREE STRUCTURES

Perhaps one of the most prolific categories of works in the context of NVM is comprised
of persistent data structures, such as persistent hash tables [LHWL20, DHK+15, NCC+19,
NIK+17, SDUP15, ZH18, ZHW18] and persistent trees [ALML18, CGN11, CJ15, HKWN18,
LLS+17, OLN+16, VTRC11, YWC+15, LXCW19]. Works in this category take as a starting
point volatile memory data structures common in existing programming languages (such
as std::map in C++). NVM is leveraged to make these data structures persistent, but still
maintaining a similar behavior to their volatile counterparts. Therefore, persistent data
structures are simpler when compared to the architecture of storage management system
that employs concepts such as buffer management, ACID transactions, and garbage col-
lection. While they may be inappropriate as a standalone storage manager, they are still
relevant as building blocks for more complex systems. As an example, one could use a
persistent hash table to implement a persistent version of a lock manager in a relational
database system. The techniques employed by these persistent data structures can be
generalized and applied in other scenarios. Therefore, we consider that looking at their
design decisions can aid the reader in better understanding the challenges of NVM.

30 Chapter 2 Background

Architecture Node structure Concurrency

wBTree NVM-only Unsorted Single-threaded
NVM-only Unsorted leaf nodes;NV-Tree (optionally hybrid) inconsistent inner nodes Locking

Partially unsorted leaf; Lock-freeBzTree NVM-only sorted inner nodes (PMwCAS [WLL18])DRAM (inner nodes) SelectiveFPTree + NVM (leaf nodes) Unsorted leaf nodes (HTM + locking)
Table 2.4: Comparison of key design decisions of the persistent tree structures analyzed.
2.3.1 Persistent Trees

We limit the scope of persistent data structures to persistent tree variants, since theseare the most commonly used ones in database systems. We pick four candidates con-sidered to cover a good portion of the design space: wBTree [CJ15], NV-Tree [YWC+15],
BzTree [ALML18], and FPTree [OLN+16]. In the following, we give an overview of each oneof these persistent tree data structures. Table 2.4 summarizes their key design decisions.

Write-Atomic B+Tree (wBTree)

wBTree [CJ15] is a persistent, single-threaded B+Tree that achieves high performance byreducing cache line flushes and writes to NVM. Traditional B+Tree nodes are sorted forfaster binary search. However, as Figure 2.4a shows, keeping a node sorted requires a shiftof data to make place for the new key, which might leave the node in an inconsistent stateupon crashes, and incurs more (expensive) NVM writes. wBTree solves this problem withunsorted nodes proposed in prior work [CGN11]. Figure 2.4b illustrates the idea. A bitmapis used to indicate if each slot contains a valid (green box in the figure) record or not (redbox). The new record is inserted into a free slot (out-of-place), and the bitmap is atomicallymodified using 8B writes to set the validity of the inserted record. Using unsorted nodesreduces the number of NVM writes and eases implementation, but requires linear searchfor lookups, which might be more expensive than a binary search. Nevertheless, as we willsee later, the use of unsorted nodes is a common and effective design in NVM trees.
To enable binary search (thus reducing NVM accesses), wBTree uses an indirection slotarray in each node, as shown in Figure 2.4c. Each entry of the array records the indexposition of the corresponding key in sorted order, i.e., the n-th array element will “point” tothe n-th smallest key by recording the key’s index into the key-value slots. In the example,after inserting key 5, in step 3 the bitmap needs to be modified so that the third elementrecords the position of key 7, which is stored as the second element (index 1) in thekey-value storage area. One bit (left-most box in the figure) in the bitmap is reserved toindicate the validity of the array. wBTree relies on the atomic update of the bitmap toachieve consistency, and on logging for more complex operations such as node splits.After inserting the record out-of-place in a free slot, the indirection slot array is flagged asinvalid and updated, as shown in step 3 of Figure 2.4c. In case of a failure, the indirection

2.3 Case Study: Persistent Tree Structures 31

(a) Sorted node. (b) Unsorted node. (c) Unsorted node with indirection slot array.
Figure 2.4: Comparison of inserting key 5 with value d. Unsorted node reduces writes butrequires linear search for lookup, which can be avoided by using an indirection slot array.
slot array will be detected as invalid and reconstructed upon recovery. Finally, the bitmapis atomically updated to set both the indirection slot array and the new record as valid.This last step imposes that the bitmap is not larger than 8B, the p-atomic unit. When theindirection slot array is smaller than 8B, the bitmap could be removed as the indirectionslot array can be atomically updated and serve as the validity flag.

NV-Tree

NV-Tree [YWC+15] proposes the concept of selective consistency, which, as shown inFigure 2.5, enforces the consistency of leaf nodes and relaxes that of inner nodes. Thisdesign simplifies implementation and reduces consistency costs by avoiding cache lineflushes. Inner nodes, however, have to be rebuilt upon restart, since the copy in NVM mightbe inconsistent and unable to guide lookups correctly. We note that inner nodes couldalso be placed in DRAM since their consistency is not enforced. Similar to the wBTree, NV-Tree also uses unsorted leaf nodes with an append-only strategy to achieve fail-atomicity.Figure 2.6 shows an example of an insertion in an NV-Tree leaf node. The record is directlyappended with a positive flag (or a negative flag in case of a deletion) regardless ofwhether the key exists or not. Then, the leaf counter is atomically incremented to reflectthe insertion. To lookup a key, the leaf node is scanned backwards to find the latestversion of the key: if its flag is positive, then the key exists and is visible; otherwise, thekey has been deleted. The inner nodes are stored contiguously to abstract away pointersand improve cache efficiency. However, this implies the need for costly rebuilds when aparent-to-leaf node needs to be split. To avoid frequent rebuilds, inner nodes are rebuilt ina sparse way, which may lead to high memory footprint. As inner nodes are immutable(except parent-to-leaf nodes) once they are built, threads can access them without lockingand only need to take locks at the leaf and their parents level when traversing the tree.

32 Chapter 2 Background

Figure 2.5: NV-Tree overview.

Figure 2.6: Insertion of a record in an NV-Tree node.
BzTree

BzTree [ALML18] is a lock-free B+Tree for NVM that uses persistent multi-word compare-and-swap (PMwCAS) [WLL18] to handle concurrency and ease implementation. PMwCASis a general-purpose primitive that allows atomically changing multiple arbitrary 8B NVMwords in a lock-free manner with crash consistency. To achieve this, PMwCAS uses atwo-phase approach. In Phase 1, it uses a descriptor d to collect the “expected” and “new”values for each target word, persist the descriptor, and atomically installs (using single-word CAS) a pointer to the descriptor on each word. If Phase 1 succeeded, Phase 2 willinstall the new values; otherwise the operation is aborted with all changes rolled back.
BzTree uses PMwCAS for insert, delete, search, scan, and structural modification opera-tions which may need to change multiple NVM words. Because of the use of PMwCAS,while being lock-free, BzTree implementation is easier to understand than typical lock-freecode. PMwCAS ensures that any multi-word changes are done atomically and recovery istransparent to BzTree, removing the need for customized logic for logging and recovery.
As Figure 2.7a shows, BzTree stores both inner and leaf nodes in NVM. Inner nodes areimmutable (copy-on-write) except for updates to existing child pointers; leaf nodes canaccommodate inserts and updates. Figure 2.7b shows the situation in which a node Lsplits and a new pointer must be inserted in the parent node P. Inserting to a parent nodecauses it to be replaced with a new one that contains the new key (P’). Then, an updatein the grandparent node G is conducted to point to the new parent node P’. Splits canpropagate up to the root and grow the tree. Records in inner nodes are always sorted,while records in leaf nodes are not. Initially, records are inserted to the free space serially.Periodically leaf nodes get consolidated (sorted) and subsequent inserts may continue toinsert into the free space serially. After searching the sorted area (using binary search),the tree must linearly search the unsorted area to get a correct result. The design rationaleis that inner nodes are not updated as often as leaf nodes and should be search-optimized;leaf nodes, however, need to be write-optimized.

2.3 Case Study: Persistent Tree Structures 33

(a) Architecture. (b) Split of inner node.
Figure 2.7: BzTree overview.

Figure 2.8: FPTree overview.
Fingerprinting Persistent Tree (FPTree)

Unlike the other trees being evaluated, FPTree [OLN+16] uses both DRAM and NVM toachieve near-DRAM performance. As Figure 2.8 shows, it stores inner nodes in DRAM, andleaf nodes in NVM. This way, FPTree accelerates lookup performance while maintainingpersistence of primary data (leaf nodes), as only leaf accesses are more expensive duringa tree traversal compared to a fully transient counterpart. The rationale behind is thatwhile losing leaf nodes leads to an irreversible loss of data, inner nodes can always berebuilt from leaf nodes. Since the inner nodes must be rebuilt upon recovery, FPTree tradesrecovery time for higher runtime performance.
FPTree uses fingerprints to accelerate search. They are one-byte hashes of in-leaf keys,placed contiguously in the first cache line of the leaf node. FPTree also uses unsortedleaf nodes with in-leaf bitmaps [CGN11], such that a search iterates linearly over all validkeys in a leaf. A search will scan the fingerprints first, limiting the number of in-leaf keyprobes to one on average, which significantly improves performance. FPTree appliesdifferent concurrency control methods for the tree’s transient and persistent parts. It uses
hardware transactional-memory (HTM) and node-grained latches for inner and leaf nodes,respectively. Such selective concurrency design solves the apparent incompatibility ofHTM and persistence primitives required by NVM such as cache line flushing instructionswhich always cause HTM transactions to abort directly.

2.3.2 Evaluation

To complement this case study, we look at the impact of different design decisions on thefinal performance. It is worth noting that all these data structures were proposed before

34 Chapter 2 Background

NVM was available, and, therefore, they were originally evaluated on different emulationplatforms. While a qualitative comparison was possible, a quantitative comparison wasunpractical. Therefore, as our first contribution, we evaluate the tree structures discussedon real NVM hardware (DCPMM). We consider that this performance evaluation can serveto lay down the performance expectations of DCPMM. Furthermore, since the persistenttrees discussed previously were proposed by several authors, they made different assump-tions about NVM and its programming model, such as how persistent memory is allocated.As our second contribution and to to enable a fair comparison, we have re-implementedall of them according to their original design, while assuming the programming modelfor memory allocation defined by the PMDK library [Int14]. The environment used for thebenchmarks is the same as previously shown in Table 2.2. Finally, as our third contribution,we devised a benchmark framework, PiBench, targeted at the specific use-case of per-sistent data structures. As a contribution to the community and to enable future work toachieve a fair comparison and reproducible results, we made PiBench available both as anopen-source project5 and as a web application6. Further details are shown in Appendix A.

Index Implementations

We highlight important details for implementing the evaluated trees, especially changeswe made either to make them compatible with PMDK’s programming model such that theycan be performed on real NVM, or due to necessary details not covered by the originalworks.
wBTree. wBTree originally uses undo-redo logs for failure atomicity [CJ15]. We improvedit with more efficient micro-logs used by FPTree [OLN+16] and implemented it using thesame code template as FPTree’s to reduce the impact of different implementations. Wealso changed wBTree to use PMDK persistent pointers instead of volatile pointers.
NV-Tree. The original paper [YWC+15] did not cover concurrency, so we implemented latchcoupling. We changed NV-Tree to use PMDK persistent pointers and align records in leafnodes to 8B boundaries; for 8 B keys and values, the size of a record is 24B with the validityflag. This is 7 B more than necessary, but gives better performance. Since the consistencyof inner nodes is not enforced, we placed them in DRAM to improve performance.
BzTree. Splits in BzTree may propagate to upper levels, replacing all the nodes along thepath (copy-on-write inner nodes). We prepared all the nodes on the split path and issued afinal PMwCAS at the highest level to atomically swap in the new nodes. For this to work,we increased the size of PMwCAS descriptor size from 4 to 12 to accommodate enoughmemory word changes and new allocations.7
FPTree. The original paper [OLN+16] proposed two versions: a single-threaded versionand a concurrent version. We focus on the concurrent version since we are most interestedin multi-threaded experiments. However, we note that optimizations in the single-threadedversion, such as allocating leaf nodes in groups, could be applied to all trees.

5https://github.com/sfu-dis/pibench6https://pibench.org/7These strategies were not presented in the original work [ALML18], but has been confirmed by one of theoriginal authors in private communications.

2.3 Case Study: Persistent Tree Structures 35

Workloads

We evaluate the indexes with individual operations (lookup, insert, update, delete, scan).All experiments are run under a uniform key distribution. Scans are performed by selectinga random initial key and then reading the following 100 records in ascending sorted order.Each run starts with a new tree loaded with 100million records with 8B keys and 8B values.We thenmeasure and report the tree performance during the run phase, in which 100millionoperations are executed by a specified number of threads. The numbers reported here referonly to the run phase, excluding the load phase. We use the list of operations completed inevery time window (100ms) of a single run to calculate the average throughput (depictedas the bars and points) as well as the standard deviation (depicted as the error bars).

Single-threaded Throughput

Figure 2.9 shows the single-threaded performance under workloads consisting of a singletype of operation. We analyze and discuss the performance of each operation individually.
Lookup. The first important observation is that the persistent trees that place inner nodesin DRAM (FPTree and NV-Tree) have higher throughput due to the lower latency of DRAM.FPTree ’s fingerprints further reduce cache line accesses in leaf nodes to two in mostcases: one for the fingerprints and bitmap, the other for the potentially matched record.This contrasts with NV-Tree which uses append-only leaves and requires scanning onaverage half of the leaf entries to determine if a record exists and is valid. BzTree employsa hybrid of sorted and unsorted leaf node format, so it needs to search the unsorted arealinearly if the key is not found in the sorted area. It is worth noting that the performancebenefits of lookup operations are transported to the other operations as well, as they mustperform a lookup prior to additional work.
For insert, update, and delete, we note that all trees enforce the consistency and durabilityof single operations using out-of-place writes (possibly within a node) and atomicallyflipping a validity bit to “commit” the operation (for BzTree, this is delegated to PMwCAS).Therefore, these operations must always force the changes to NVM using CLWB, making itimpossible for the CPU caches to amortize the high write latency of NVM. This explainsthe lower throughput and the increased standard deviation of these operations whencompared with their lookup counterparts.
Insert. We observe insert performance is directly affected by (1) the amount of flushes perinsert, (2) the needed maintenance work per insert, and (3) the overhead of node splits.Table 2.5 summarizes the amount of flushes needed by each operation. For all trees,each insert entails at least one flush for the record being inserted. FPTree and wBTreekeep an 8B bitmap per node to indicate which records are valid and enable the slot ofinvalid records to be reused. FPTree also requires flushing the fingerprints, leading to atotal of three flushes per insert. In addition to the bitmap, wBTree keeps a slotted arrayper node to keep the order of records and a single validity bit to indicate the validity ofthis slotted array. Therefore, three additional flushes are required by the wBTree (slottedarray, validity bit, validity bitmap), to a total of four flushes per insert. NV-Tree requiresone additional flush to update the size of the node, to a total of two flushes. BzTree uses

36 Chapter 2 Background

Tree/Operation Insert Update Delete
FPTree 3 3 1NV-Tree 2 2 2wBTree 4 3 1BzTree 15 10 7

Table 2.5: Number of cache line flushes per operation.
two double-word PMwCAS operations per insert to reserve space in the leaf node and
make the new insertion visible to other threads, respectively. Each PMwCAS incurs at least
three flushes [WLL18]. In total, BzTree incurs 15 flushes per insert. If the current PMwCAS
conflicts with another on-going PMwCAS, it might incur more flushes as it helps finish
the other operation first. We attribute BzTree’s low insert performance mainly to the high
number of flushes. Finally, in BzTree, FPTree and wBTree, a node split might propagate
all the way up to the root level. However, for NV-Tree the inner nodes must always be
completely rebuilt whenever a split happens in the parent-to-leaf level. When splitting
a leaf node, two new nodes are allocated to split the records of the node that became
full, causing the higher amount of NVM writes. This operation becomes expensive in
comparison to other trees, which has also an impact in the throughput standard deviation.
Update. As opposed to inserts, an update only operates on an existing key. Overall,
the standard deviation for updates is lower than that of inserts, due to the absence of
allocations and splits. NV-Tree performs updates slower than inserts, as it handles updates
as a deletion followed by an insertion. wBTree updates are faster than inserts since each
update requires one fewer flush (3 vs. 4 in Table 2.5), as record order in the node does not
change (the key is not updated). Thus, the slotted array can be updated atomically without
flushing its validity bit, as only the offset of the updated record changes, while the others
remain the same. BzTree’s update is faster than its insert operation, due to the absence of
allocation and splits, but it still needs many flushes, leading to lower throughput.
Delete. The throughput of delete operations follows a similar trend to those of lookups.
The reason is that deletion for FPTree and wBTree is basically a lookup followed by flushing
the validity bitmap to invalidate the record deleted. There is no deallocation or merging of
nodes implemented, as data structures are more likely to grow rather than shrink. This
is also the approach taken by implementations of the C++ Sandard Template Library.
In contrast to FPTree and wBTree, NV-Tree requires two flushes per deletion, one for
a tombstone and one for the node size. For BzTree, the process is similar, but it uses
a PMwCAS to mark records invisible which requires multiple flushes, leading to lower
performance.
Scan. Range scans start at a random initial key and read the following 100 records. wBTree
is the only one that directly returns records in sorted order using its indirection slotted
arrays. All the other trees must perform an additional sorting and filtering step to return
the requested records. We can conclude that reading less from NVM (e.g., FPTree) does
not compensate the overhead of sorting and filtering.

2.3 Case Study: Persistent Tree Structures 37

Figure 2.9: Single-thread throughput under uniform distribution. Placing inner nodes inDRAM helps much in traversal performance for FPTree and NV-Tree; wBTree performs thebest in range scan as it does not require an extra sorting step.
Multi-threaded Throughput

We now evaluate the performance under multiple threads. We include wBTree’s single-thread performance for reference as it does not support concurrency. Since we dedicateone thread to collect the statistics, we scale the number of worker threads until 23 out ofthe 24 physical cores available in the CPU. Furthermore, we experiment with 32 and 47threads to show the behavior of the trees under hyperthreading.
Figure 2.10 depicts the throughput of individual operations under multiple threads anduniform distribution. It shows a similar trend to the single-threaded experiments. All theevaluated trees scale as expected for lookup, insert, update, delete and scan operationsusing 1–23 threads (no hyperthreading). With hyperthreading (shaded areas in Figure 2.10),all trees maintain or slightly improve the throughput compared to using 23 threads. Inparticular, FPTree is able to leverage hyperthreading significantly better than other trees inlookup operation.
Figure 2.11 shows the throughput of individual operations under the skewed distribution(skew factor 0.2). Since a skewed workload accesses a small subset of keys multipletimes, only the first insert/delete for a given key would succeed and all the subsequentinsert/delete operations for the same key would simply be a lookup. Therefore, we omitthese operations under skewed workloads. The results here showed similar pattern tothe ones with the uniform workload: all trees exhibit higher throughput and largely scaleunder all operations, except BzTree and FPTree’s update operation, which respectivelyscales up to 8 and 16 threads and performs worse as we add more threads. There are twomain reasons for BzTree’s behavior. First, because of the use of PMwCAS, a memory wordmay store a pointer or actual value. Each NVM read is instrumented to check the type ofthe word value, adding additional overhead. Second (and more importantly), the updateoperation employs an optimistic approach that retries a PMwCAS until success; it is wellknown that optimistic approaches are vulnerable to high contention. FPTree does notscale beyond 16 threads for a similar reason: it uses HTM (Intel TSX, which is an optimisticapproach) for traversing the inner nodes and acquiring leaf latches. A skewed workloadwill incur more conflicts at the leaf level, hence more HTM aborts and lower throughput.
For lookup operations, as we vary the skew factor from 0.1 to 0.5 in Figure 2.12a, we seethe throughput dropping for FPTree and BzTree, as lower contention (e.g., skew factor 0.5)

38 Chapter 2 Background

(a) Lookup (b) Insert (c) Update

(d) Delete (e) Scan
Figure 2.10: Throughput under uniform distribution. FPTree and NV-Tree leverage DRAMand perform generally better than pure NVM trees (BzTree and wBTree). All the treesmaintain their throughput with hyper-threading (beyond 23 threads). wBTree ’s single-thread throughput is shown for reference as it does not support concurrency.
leads to accesses to more keys and therefore more cache misses and NVM accesses.NV-Tree does not show obvious changes when we ease the contention. We attributethis behavior to the fact that it needs to acquire node locks even for read-only workloads,causing extra inter-core communications and traffic on the memory bus which is oftenunscalable for read-only workloads on multiple cores [TZK+13, WK16]. Update operationsexhibit a different trend in Figure 2.12b, aswe ease the contention, the throughput increases,although lower contention leads to larger NVM footprint in general. These results highlighttwo factors that affect performance under skewed workloads: (1) the amount of NVMaccesses and (2) contention level. Both factors impact performance, and as we add moreconcurrent threads, contention takes over to become the major factor, contrasting withthe single-threaded case where NVM footprint is the dominating factor.

Impact of Programming Model

Persistent data structures face challenges in handling persistence, recovery and con-currency, which can be resolved using a sound programming model enforced by NVM

2.3 Case Study: Persistent Tree Structures 39

FPTree NV-Tree wBTree BzTree

(a) Lookup (b) Update (c) Scan
Figure 2.11: Throughput under the skewed distribution (skew factor 0.2). FPTree andBzTree do not scale for updates due to their use of optimistic concurrency control.

FPTree NV-Tree wBTree BzTree

(a) Lookup (b) Update
Figure 2.12: Throughput under varying skew factors with 23 threads. Higher skew factormeans lower contention.

40 Chapter 2 Background

programming libraries, such as PMDK. Specifically, this boils down to the use of persistent
pointers, memory alignment, and an NVM-aware allocator, which, as we show next, incur
space amplification and performance overheads.
Space amplification. Similar to in-memory data structures [ZAP+16], persistent data struc-
tures may occupy a significant amount of memory (NVM and/or DRAM), due to various
design decisions to optimize performance (e.g., alignment) and conform to the required
NVM programming paradigm, in particular the use of 16B persistent pointers [Int14]. We
quantify this effect in Figure 2.13 by plotting the amount of memory consumed by each
tree. We insert 100 million records of 8B keys and 8B values; this corresponds to ∼1.5GB
of raw data. Any consumption beyond this amount would be the metadata, extra alignment
or other allocations (e.g., during a split) needed by the tree. We use statistics from jemalloc
for DRAM (stats.allocated), and the pmempool tool for NVM. The NVM consumption is
precise, and DRAM consumption is an upper bound of the real consumption, as jemalloc
also records other allocations made by our benchmark framework.
As shown in Figure 2.13, all the trees in fact use more than 50% of the space needed for the
raw data; NV-Tree/BzTree use respectively∼2×/10× the raw data size. This is partially due
to the relatively small key/value sizes used (8B) and the alignment requirement (typically
8 B) in all the trees. Although both FPTree and NV-Tree place inner nodes in DRAM, NV-Tree
requires more DRAM because inner nodes are rebuilt sparsely to amortize rebuild costs.
This means that it will have a different DRAM-NVM ratio depending on the fill ratio of its
inner nodes. BzTree and wBTree consume a negligible amount of DRAM as they are pure
NVM-based. BzTree’s memory consumption is cumulative (of all nodes ever created) and
the highest, due to its use of copy-on-write for inner nodes. We note, however, that this is
the worst case for BzTree, and in realistic workloads with fewer inserts, inner nodes will
not change as often, which should result in lower NVM consumption.
NVM allocation overhead. Compared to their DRAM counterparts, persistent allocators
need to issue cache-line flush instructions, handle recovery and run on slower NVM. To
understand their behavior, we run an experiment using jemalloc on DRAM and PMDK allo-
cator (which is based on jemalloc) on DRAM and NVM. Each thread issues 1024 allocation
requests, each of which allocates 1 kB of memory. Figure 2.14 shows the time needed to
finish the test. As we increase the number of threads, no allocator scales, and due to the
extra complexity associated with PMDK allocator (e.g., the use of cache-line flush instruc-
tions and fences), PMDK allocator is 2.9–4.4× slower than jemalloc on DRAM. On NVM,
the PMDK allocator can be up to ∼8× slower than itself running on DRAM. These results
signify the high cost of NVM allocations and indicate that persistent data structures should
carefully handle their interactions with NVM allocators. The insert operation interacts with
allocators the most, and we observed non-trivial allocation overhead in all the evaluated
trees. In particular, we found that BzTree spends more than ∼41% of CPU cycles on NVM
allocation in insert operations. Compared to other trees, its use of copy-on-write adds
more burden on the NVM allocator because an inner node cannot be updated in-place
when a new key is added to it. We observed similar trends in the other trees.

2.3 Case Study: Persistent Tree Structures 41

Figure 2.13: Memory consumption after inserting100 million records of 8B keys and 8B values. Figure 2.14: Allocation of 1024 blocksof 1 kB with different allocators.
Recovery Time

An important aspect of persistent data structures is their ability to recover consistentlyand (near) instantly after a failure or clean shutdown. We test recovery time by loading ineach tree a fixed number of records and then killing the process. Table 2.6 shows the timein seconds for each tree to recover from a crash after loading 50 million and 100 millionrecords. wBTree, FPTree and NV-Tree enforce consistency of each single operation, sorecovery consists basically of rebuilding transient data. Both FPTree and NV-Tree placeinner nodes in DRAM and thus these must be rebuilt upon recovery. As expected, the timefor rebuilding inner nodes after inserting 100 million records is about 2× the time with 50million records (recovery time scales linearly as all leaf nodes must be read). wBTree andBzTree reside fully in NVM. Therefore, upon recovery they simply need to open an existingNVM pool and retrieve the root object. From the root object, all the remaining objectsallocated in the pool can be discovered and reached. BzTree relies on PMwCAS to alwaystransform the tree from one consistent state to another, without needing a customizedrecovery procedure. After opening the existing pool, BzTree delegates its recovery processto PMwCAS, which completes its own recovery phase by rolling forward or backwardPMwCAS operations that were in-progress when the crash happened. This translatesinto scanning the PMwCAS descriptor pool [WLL18] which is fixed-sized (100 kB in ourexperiments). Moreover, the amount of in-progress PMwCAS operations at any point intime is bounded by the number of concurrent threads. Therefore, we see a very smalldifference in recovery time under different initial sizes.
These result show that NVM-only trees are able to recovery near instantly (sub-secondrecovery time), at the price of lower runtime performance; placing more components inDRAM may improve runtime performance at the cost of longer recovery time. Neverthe-less, we note that the recovery time of hybrid trees could be improved, in case of cleanshutdowns, by spilling inner nodes to NVM and copying them back to DRAM upon recovery.

Future of NVM

To conclude our case study, we note that NVM is still at an early stage and yet to becomemainstream. Nevertheless, our experience in this evaluation enabled us to identify twoareas where improvements of the current NVM technologies could have a major impact.

42 Chapter 2 Background

Initial Size (# of records) FPTree NV-Tree wBTree BzTree
50 million 1.77s 4.15s 0.036s 0.153s100 million 3.56s 8.45s 0.037s 0.186s
Table 2.6: Recovery time. NVM-only trees (BzTree/wBTree) achieve sub-second recoverytime. DRAM-NVM hybrid trees (FPTree/NV-Tree) trade recovery time for performance.

Figure 2.15: Impact of persistent caches and DRAM-like performance on NVM in a sin-gle thread workload with 50% reads, 25% inserts, and 25% updates with uniform keydistribution.
Persistent CPU caches. Modern CPUs rely on sophisticated, fast volatile caches for goodperformance. This introduces the main challenge of carefully flushing cache lines toNVM while trying to reduce the amount of flushes and NVM accesses. We consider thatenabling CPU caches to become persistent (e.g., by protecting them against power failureswith a capacitor) is the natural next step to simplify software development and increaseperformance [WJ14, IKK16]. In such scenario, applications could completely relinquish theuse of instructions such as CLFLUSHOPT and CLWB. However, guaranteeing the ordering ofwrites using SFENCE may still be required.
DRAM-like NVM devices. A second advancement would be approaching the performancecharacteristics of DRAM. The NVDIMM-N devices discussed in Section 2.1.1 already offerDRAM performance, but its high cost and DRAM’s scalability issues make it prohibitive inlarge scale. Devices based on newmaterials are much cheaper but still lag behind DRAM interms of performance. This gap might be closed either by reducing the cost of flash-basedNVM or by enhancing the performance of cheaper alternatives (e.g., via innovations inmaterials or more sophisticated caching mechanisms).
Figure 2.15 shows the potential impact of these advancements on the tree structuresconsidered. We emulate persistent CPU caches (+Persistent Cache) by removing all cacheline flushes from the code path, and emulate fast NVM (+DRAM-like) by placing the NVMmemory pool in a DRAM-backed file system (tmpfs). While persistent CPU caches improvethroughput by 1.32/1.27/1.17/1.94× for FPTree/NV-Tree/wBTree/BzTree respectively, themain benefit is probably in terms of simplifying the programming model which will alsolead to fewer bugs and savings in development and code maintenance costs. The biggestgains are achieved by increasing the raw device performance, which further improvesthe throughput by a factor of 2.05/1.72/2.17/2.00 for FPTree/NV-Tree/wBTree/BzTreerespectively. This shows that indexes are highly sensitive to device latency and bandwidth.

2.3 Case Study: Persistent Tree Structures 43

44 Chapter 2 Background

3
LOG-STRUCTURED MERGE-TREES

One of the main challenges of NVM is the lack of control developers have over whenrecords are persisted, making it hard to ensure consistency when records are updatedin-place. On the other hand, in log-structured architectures, records are always written to anew location and never overwritten. This property significantly alleviates the challengeof guaranteeing atomic and consistent writes to NVM. Therefore, log-structured systemsare a very attractive first candidate for exploring opportunities to leverage NVM. Thischapter explores use-cases of NVM in log-structured merge-trees, a storage managementarchitecture implemented by many modern systems, such as LevelDB, RocksDB, SQLite,Cassandra, and Bigtable. More precisely, in this chapterwe investigate twomain questions:
• What is the impact on LSMs if we replace all persistent storage by NVM?• Do LSMs still benefit from DRAM caches when NVM is used as persistent storage?

3.1 LSM AND NVM

The log-structured merge-tree (LSM) [OCGO96] was originally proposed in the context ofHDDs with the goal of leveraging the faster sequential writes. The write-optimized natureof LSMs make them appealing to systems that experience high write and data injectionrates. Systems that must ingest an event log and query the ingested data with acceptableresponse time are common examples.
In the context of SSDs, while sequential writes are still usually faster than random writes,the performance gap is smaller. Nevertheless, LSMs gained a new notoriety due to thereduced write amplification to persistent media, a major concern due to the limited erasecycles of SSDs. This has a direct impact in lowering the performance degradation andincreasing the device lifetime. While NVM reduces the gap between random and sequentialaccesses even further and it has a longer endurance and lifetime, it can still benefit fromsequential writes and reduced write amplification, even if to a smaller extent. However,LSMs have an important characteristic that makes them particularly appealing in thecontext of NVM: it is easy to guarantee atomicity and durability of arbitrarily large writes.

45

As previously introduced, when directly accessing NVM through load/store operations, thedeveloper cannot prevent a cache line from being arbitrarily evicted by the CPU. Further-more, store operations can also be re-ordered by the compiler or the CPU. Under thesecircumstances, it becomes challenging for database systems to guarantee a certain levelof consistency, since that requires a careful control of when data is written to persistentstorage. In contrast to update-in-place systems, maintaining consistency and atomicityin an LSM is easier, as records are always written to a new location in a log-structuredmanner, only requiring a small atomic update to reflect the update (such as updating thetail of the log or a catalog entry pointing to the new location). Log-structured writes alsoenable non-temporal stores to be employed to directly stream data from the CPU to NVM,bypassing the CPU cache. Furthermore, the synergy between NVM and LSM is made evenmore explicit by the observation that reading from NVM is faster than writing, while writingto LSM is faster than reading. In other words, they complement each other nicely.

3.2 LSM ARCHITECTURE

Figure 3.1 illustrates the general architecture of an LSM. Writes in an LSM are made to anin-memory data structure (C0) and made durable by logging. When C0 reaches a certainthreshold size, it is merged with a lower level persistent component C1 (which can be, forinstance, a tree data structure) and newer writes are made to a brand new C0 instance. Thiscan be generalized to a hierarchy of multiple persistent components C1..Cn, in such a waythat the size of components grows exponentially in relation to the preceding componentin the hierarchy. The persistent components are immutable. The lookup operation hasto search each component, from the most recent to the oldest, until the record with agiven key is found. A read-only cache holds frequently accessed blocks of the persistentcomponents in memory, thus reducing the amount of I/O required. It is also commonto employ Bloom filters at each component to minimize the amount of I/O by avoidingsearching a component that does not contain a given record. Delete operations are doneby inserting a special tombstone record to indicate the absence of a record with a givenkey. Range scans are usually more expensive than in a B+Tree, as all components must besearched, since records in the range can be present in any of them.
In order to prevent slowdown when a merge is triggered during normal processing, aneager rolling-merge process between components usually runs in the background. Mergingcomponents is required to reclaim space and keep a predictable performance by alleviatingthe read penalty introduced by multiple components. The merge process picks blocks ofadjacent components that have overlapping records, eliminates duplicates by removingolder versions of records, and sequentially write the results to a new location, following thelog-structured nature of the LSM. There are many approaches for merging components,such as leveling and tiering, and picking the right one, as well as tuning the scheduling policyof merge processes (which portions of which components to merge), is a critical aspect ofLSMs. To summarize, LSMs achieve a better write performance when compared to update-in-place strategies, since randomwrites are converted into sequential ones and the amountof data written to persistent storage is reduced (i.e., decreasing write-amplification).

46 Chapter 3 Log-Structured Merge-Trees

Figure 3.1: General architecture of a log-structured merge-tree (LSM).

Figure 3.2: LevelDB architecture represented with the first 4 levels for simplicity.
3.2.1 LevelDB

LevelDB is an open-source, embeddable, persistent key-value store originally developed byGoogle. Keys and values are stored as byte arrays and sorted by key. It defines a basicinterface including Put(key,value), Get(key), and Delete(key) operations. While LevelDBimplements the conceptual architecture of an LSM, relevant implementations details andspecific nomenclature is defined for the sake of better understanding of the upcomingsections. Figure 3.2 shows LevelDB specific architecture.
LevelDB uses a skip-list as its in-memory data structure, called MemTable. The persistentcomponents are organized as levels starting from Level 0 (most recent) with an increasingnumber to older levels. Each level is composed of files called Sorted String Tables (SST).The layout of an SST is represented in Figure 3.3. An SST has a fixed size of 2MB andconsists of four types of blocks. A data block, usually 4 kB, contains keys and values in

3.2 LSM Architecture 47

Figure 3.3: Sorted String Table layout.
sorted order (possibly compressed). Additionally, an SST has a single index block usedto locate the data block of a given key (conceptually similar to a B+Tree of height 2).Optionally, there can be meta blocks to store information such as Bloom filters, in whichcase there will also be a meta index block to locate them. Finally, each SST has a small
footer containing information such as checksum, unique identifier, total size and relativeoffset of blocks. Therefore, the footer is always read prior to searching a record in an SST.
Whenever the MemTable reaches a threshold size (4MB by default), it is compressed andconverted into one or more SSTs of Level 0. With the exception of Level 0, SSTs of thesame level do not have overlapping key ranges, meaning that at most one SST per levelhas to be read (as shown by the key range covered by each SST in Figure 3.2). When thenumber of SSTs in Level n reaches its threshold, they are merged with the SSTs of Level
n+1 that have overlapping key ranges to generate new SSTs. As an example, in Figure 3.2,the SST in Level 1 marked in green will be merged with the two SSTs in Level 2 marked ingreen, since they have overlapping key ranges.
Finally, LevelDB has 7 levels by default, with Level 0 containing a maximum of 4 SSTs, Level
1 containing 10 SSTs, and each level after containing a maximum of factor 10 the numberof SSTs in the previous level. A system catalog keeps track of information on all levels,e.g., current SSTs and their key ranges. The system catalog is atomically updated to reflectchanges, such as removing and adding SSTs after a merge operation.

Block Cache

By default, LevelDB usesmemory-mapped files and the page cache of the operating systemfor improved performance. These features are orthogonal and we have ignored them tobetter isolate the behavior of LevelDB’s own caching component, since most databasesystems also rely solely on their own caching.
In addition to the MemTable, LevelDB implements two DRAM read-only caches: table
cache and block cache. The table cache is used to hold entries containing metadata aboutSSTs and index blocks (possibly meta blocks) of SSTs recently accessed. The block cacheholds exclusively the data blocks from SSTs. In order to improve concurrency, both cachesare composed of 32 shards (default), and each shard implements least recently used (LRU)

48 Chapter 3 Log-Structured Merge-Trees

Figure 3.4: LevelDB environments for accessing storage.
as the default block replacement policy. A read operation must first check if the given keyis present in the MemTable. If not, then it will locate the candidate SST in the next levelbased on the SST key ranges contained in the system catalog. Once the relevant SST isfound, the table cache and block cache are searched for the corresponding index blockand data block, respectively. If any of these blocks is not found, they are read from storageinto the cache before resuming the operation.

3.3 PERSISTENT MEMORY ENVIRONMENT

In the context of NVM, the first question to be answered is: what is the impact on LSMs
if we replace all persistent storage (usually SSD) by NVM? Our first contribution is theinvestigation of this impact. To that aim we extend LevelDB to provide direct access toNVM. As shown in Figure 3.4, LevelDB originally accesses storage by issuing file operations(open, create, rename, delete, read bytes, write bytes) to an abstract environment. Thegoal of this abstract interface is to provide easy portability to different operating systemsby only implementing the required file operations, as well as allowing custom behaviorson file operations (such as monitoring). We rely on this interface to implement a customenvironment to directly access NVM: Pmemenv.
Pmemenv is implemented with the aid of the Intel’s Persistent Memory Development Kit(PMDK) [Int14] and it acts as a lightweight file system in the user space. It is tailoredspecifically for accessing and managing LevelDB’s files directly in NVM. This contrastswith usual interface, where the application has to go through the kernel space to accesspersistent storage. Pmemenv has two main advantages over general purpose file systems.First, it enables zero-copy reads, meaning that data can be read directly from NVM withoutloading it to DRAM. Second, it enables read and write operations to NVM at a cache-linegranularity (64B) instead of whole block (usually 4 kB).
PMDK enables users to create a persistent memory pool by creating a file an NVM-awarefile system and mapping the file to the application virtual memory, allowing direct accessto the underlying storage. The application can then manage objects in the persistentmemory pool through the PMDK allocator interface, which hides the complexity requiredto properly enforce the order of write operations. PMDK also uses a lightweight loggingscheme to guarantee the fail-safe atomicity of persistent allocations. A persistent pointer

3.3 Persistent Memory Environment 49

Figure 3.5: Pmemenv architecture.
for each allocated object is stored in a collection (implemented as a data structure, suchas a linked list) located in a fixed memory region of the pool. The user is able to iterateover this collection and retrieve every allocated object in the persistent memory pool, thuspreventing persistent memory leaks. PMDK also offers transactional support to enablemore complex atomic memory operations than simple allocation and deallocation ofblocks of memory. These memory transactions, however, are not used by Pmemenv.
Figure 3.5 illustrates the general architecture of Pmemenv. It comprises two main parts:an in-memory hash table and a persistent memory pool. Every SST is composed of atransient part and a persistent part. The hash table is used to map the unique identifier ofan SST to its transient part. The transient part of an SST includes non-critical metadatathat is only required during runtime, such as reference counters, mutexes, and status flags.The transient part also contains a pointer indicating the location of the persistent partin the persistent memory pool1. The persistent part contains critical data required bybasic operations and to rebuild the hash table during restart. In our implementation, thepersistent part of an SST is composed of the unique identifier, the current append offset,and the remaining data and index blocks shown in Figure 3.3. The PMDK library alreadystores the size of allocated persistent memory blocks, therefore, even if this is critical data,we do not store it and rely on the library to provide this information. In case of a systemfailure, the hash table can be rebuilt by iterating over the collection of pointers pointing tothe allocated SSTs and retrieving the SST identifiers. The metadata in the transient SSTpart is set to default values and the pointer is set to the corresponding address in thepersistent memory pool.
The separation of SSTs into transient and persistent parts allows metadata to be movedbetween them, enabling the system to possibly slide a persistence bar to choose whichparts to make persistent [OBL+14]. In one extreme scenario, all data, metadata, and datastructures are allocated in the persistent memory pool. This would reduce the recovery

1Note that both DRAM and NVM share the same virtual memory space.

50 Chapter 3 Log-Structured Merge-Trees

time to a minimum at a possible performance cost and additional complexity. While aninteresting direction to be explored by future work, we omit more detailed discussions tofocus on the challenges discussed in the following sections.
Finally, since all writes to SSTs are log-structured (i.e., append-only), they can use non-temporal stores to bypass the processor cache. Writes of an arbitrary number of bytes toan SST are protected from partial writes by updating the current write offset of the SST(8B), which is guaranteed to be an atomic operation. The MemTable log and other auxiliaryfiles, such as the catalog of SSTs, are also managed by Pmemenv the same way as SSTs.

3.4 2Q CACHE POLICY FOR NVM

LevelDB implements LRU as the default replacement policy for each shard of the table
cache and block cache. In other words, whenever the cache is full and a miss occurs, theleast-recently accessed block is evicted to make space for the requested one. However,when the SSTs are in NVM, the processor is able to directly read these blocks withoutcopying them to DRAM. On one hand, DRAM has lower latency and enables faster access.On the other hand, not only the caching components introduce additional complexity, butthere is also an overhead for copying data from NVM to DRAM when a miss occurs. Thisoverhead might not be worthwhile when compared to the cost of simply accessing thedata directly in NVM. Therefore, the second question we investigate is: can LSMs still
benefit from DRAM caches when byte-addressable NVM is used as persistent storage?

Ideally, we would like the cache replacement policy to keep track of accesses not only tocached blocks, but also to un-cached ones. This would enable the policy to make a betterdecision whether it is advantageous to copy a given block to DRAM, avoiding a hotter blockto be evicted as a consequence of a miss to a colder one. As an example, this behaviorwould prevent a table scan from trashing the cache by evicting all of its contents.
The 2Q replacement policy [JS94] considers similar goals. While the original 2Q wasproposed in the context of main memory and hard disks, we have adapted the conceptto NVM in order to enable zero-copy reads from NVM. In other words, we use 2Q as acache admission policy, or placement policy, rather than as a replacement policy. Similarto the original proposal, our 2Q policy has two components: AM and A1. AM holds cachedblocks and is managed by some replacement policy (LRU in our case). A1 does not holdany blocks, but only keeps track of accesses to un-cached blocks (i.e., blocks read directlyfrom NVM). Since only references to blocks are kept, the space consumption of A1 isminimal. The size of A1 is tunable and references are kept in a FIFO queue.
Algorithm 3.1 shows the pseudo-code for the two main functions of the replacement policy.The function Fix is called to request access to a block. If the block is already cached, it isdirectly returned (line 3). Otherwise, if it is not going to cause another block to be evictedor if there was another reference to it in the recent past (line 5), the block is transferredto DRAM (line 6). If the block was accessed recently, it means that it is probably hot andis a good candidate to be copied to DRAM. If both conditions are false, the block is readdirectly from NVM and a reference to it is added to A1 (line 9-10). A hash table is used forefficiently looking up blocks on AM and A1. The function Victim is called when the cache

3.4 2Q Cache Policy for NVM 51

Algorithm 3.1: 2Q policy for NVM pseudo-code.
1 function Fix(block_id)
2 if AM.contains(block_id) then
3 return AM.get(block_id)
4 else
5 if !AM.full() OR A1.contains(block_id) then
6 AM.load(block_id)
7 return AM.get(block_id)
8 else
9 A1.add(block_id)

10 return NVM.get(block_id)
11 end if
12 end if
13 end
14
15 function PickVictim()
16 block_id← AM.remove_lru()
17 A1.add(block_id)
18 end

is full and we need to pick a block for eviction. The block picked is the least-recently usedone (line 16), but a reference to it is additionally added to A1 (line 17). Since A1 is a FIFOwith a limited size, it discards its oldest reference when a new one is inserted.
Figure 3.6 shows the runtime of a binary search over a block of 4 kB of integers in threescenarios: DRAM, NVM (latency approximately 4× that of DRAM), and simulating a missof LRU in a DRAM cache over NVM storage. In the breakdown of the cost of an LRU miss,it is possible to see the constant overhead introduced by the cache component (fix, unfix,eviction, etc), as well as the huge cost of copying data from NVM to DRAM. The binarysearch represented in the breakdown is faster than the one in DRAM, because the datawas already cached by the CPU caches during the transfer (i.e., the cost is amortized). Thecache miss in the LRU policy has a constant cost comprised of lookup, eviction, and copyof a block to DRAM. The additional cost required by the policy exceeds by far the cost ofsimply doing the binary search in NVM. The 2Q policy introduces two different scenariosfor a cache miss: the first scenario has a lower cost as it simply adds a reference to theFIFO and reads directly from NVM, while the second scenario is similar to LRU and has ahigher cost. In an NVM context, a well-tuned 2Q policy should prefer to pay the lower misscost for blocks not frequently accessed and the higher miss cost for blocks expected tobe frequently accessed in the near future. While most proposed replacement strategies(LRU, LFU, CLOCK, etc) focus on improving the hit ratio, the idea of being able to choosebetween two different miss costs adds a new dimension. Assuming that the hit ratio isdetermined by the replacement strategy and the cache size, a smaller 2Q cache is likelyto have more misses than a larger LRU cache. However, if most of the 2Q misses paythe lower cost, similar or even better performance than LRU can be achieved with a lowerDRAM consumption. This introduces the non-intuitive idea that a higher hit ratio does notnecessarily translate to better performance, as the costs for misses might differ.

52 Chapter 3 Log-Structured Merge-Trees

Figure 3.6: Average runtime of binary search over 4 kB of integers.
3.5 EVALUATION

We use the Intel NVM Emulation platform that emulates an NVM device by accessing adedicated area of DRAM with a higher, tunable latency. The higher access latency to DRAMis achieved through a special BIOS. A full description of this system can be found in [Dul16].The system is equipped with two Intel Xeon E5 processors. Each one has 8 cores, runningat 2.6GHz, and featuring 32 kB L1 data and 32 kB L1 instruction cache as well as 256 kBL2 cache. The 8 cores of one processor share a 20MB last-level cache. The system has64GB of DRAM and 192GB of emulated NVM. The emulated NVM device is mounted withthe ext4 file system with DAX support. In the experiments, we set the latency of NVM to360ns, approximately 4 times the latency of DRAM (90ns). Considering HDD/SSD is outof the scope of this work, since all experiments are based on the assumption that thestorage device can be directly accessed through the CPU caches. The system runs Linuxwith kernel version 4.4.21. We use PMDK (v1.2)2 and LevelDB (v1.19). All the source codewas compiled using GCC 4.8.5. We disabled the memory mappings of SSTs and operatingsystem caching in LevelDB. Compression and filtering of SSTs (bloom filters) are also notused. The MemTable is set to its default size of 4MB. All requests to LevelDB are madefrom a single thread.

3.5.1 Write Performance

We first analyze runtime and latency of two approaches for writing to NVM: through the
ext4 file system with Direct Access (DAX) support (as a drop-in replacement for HDD/SSD)and through Pmemenv. As mentioned in Section 3.3, the file system manages theseoperations at a block granularity (usually 4 kB), while Pmemenv allows finer control overwritten data. This implies that, in a scenario where durability of single operations mustbe guaranteed, Pmemenv is able to write only the changed cache lines. However, mostsystems implement some sort of group commit to hide write latencies. LevelDB enablesthis by batching many Put operations in a WriteBatch that is accumulated in DRAM and islater made durable as a single Put. We consider scenarios with different WriteBach sizes.Additionally, we investigate if batching writes in DRAM still offers benefits for Pmemenv.

2Originally named NVML, the name change to PMDK was announced on December 11, 2017.

3.5 Evaluation 53

(a) Runtime (b) Average Latency
Figure 3.7: Insertion of 100 million key-value records with varying WriteBatch size.

File System 1 10 100 1000 10000ext4 + DAX 23 56 161 586 4750Pmemenv 12 39 125 517 4749
Table 3.1: Standard deviation of average latency in Figure 3.7b in microseconds.

We run a write-only workload of the Yahoo! Cloud Serving Benchmark (YCSB) [CST+10]with 100 million key-value records, where each key is 16B and each value is 112B, giving atotal of 128B per record. The results are depicted in Figure 3.7.
First, for a group size of one, the ext4+DAX configuration has to persist data at the gran-ularity of pages via fsync, which incurs a high cost if single operations are to be madedurable. Pmemenv is able to avoid the kernel path and to persist data at a much smallergranularity, which reduces the overhead related to write operations. Increasing the groupsize drastically improves the performance of ext4+DAX (16 times faster when increasinggroup size from 1 to 100), as the cost of fsync is amortized across many insertions. For
Pmemenv, an improvement of approximately 50% in runtime is observed when increasingthe group size from 1 to 10. For larger group sizes the difference is not significant.
Grouping insert operations in batches introduces a trade-off between throughput (runtime)and latency, as the first requests to arrive in a group are delayed. Figure 3.7b shows theaverage latency of single insert requests for different group sizes. The standard deviationcan be observed in Table 3.1. For smaller group sizes (1 to 100) in ext4+DAX, the increasedlatency is justified by the large gains in runtime, making the batching of operations anobvious choice for most applications. However, for Pmemenv, this trade-off is not soclear and the decision of sacrificing latency for better runtime might become a matterof service level agreements, like response time required by applications. Finally, not only
Pmemenv presents lower runtime and lower average latency than ext4+DAX, but also alower standard deviation for group sizes 1 to 100, which translates to a more predictableperformance over time.

3.5.2 Read Performance

We also analyze if better performance can be achieved by dedicating a portion of DRAMfor caching hot data. Since writes in LevelDB are made in a separate data structure,

54 Chapter 3 Log-Structured Merge-Trees

(a) Uniform (b) Skewed
Figure 3.8: Distribution of accesses to blocks.

the remaining caching components benefit mainly read operations. Therefore, we haveconsidered read-only YCSB workloads to better outline the performance impact. Eachworkload issues 50 million lookups over 10 million key-value pairs. Before each workloadis executed, the caches are warmed up by executing read requests until they becomecompletely full. The warmup time is not considered. We analyze two different scenarios:uniform and skewed distribution (80% of requests to 20% of the records) of key requests.It is worth noting that each Get request for a key translates into two block requests, onefor the index block and one for the data block. Hence, even a uniform distribution of keyspresents a skewed distribution of block accesses. Figure 3.8 illustrates the number ofaccesses of each block sorted from the most to the last accessed.
Figure 3.9 presents the runtime of both read-only workloads for different system config-urations. The X axis represents which portions of SSTs are cached in DRAM. We startwith a No Cache approach, where the caching components were completely removed andall SSTs are read directly from NVM through pmemenv. Later, we gradually increase theDRAM consumption by statically placing portions of every SSTs in DRAM. The Footersscenario has the footers of all SSTs in DRAM. The footer of an SST contains pointersto the index blocks, as well as checksums and additional status flags. Footers are fre-quently accessed (it is where each read in an SST starts) and, since they are relativelysmall (around 64B), keeping all of them in DRAM improves performance at a minimalcost of memory consumption. Next, IndexBlocks considers holding the index blocks ofall SSTs in DRAM. For our workloads, every index block is approximately 18 kB and thereare around 500 SSTs, giving a total of about 10MB additional DRAM consumption (lessthan 1% of the total size). The observed performance gains are significant and justify theadditional memory consumption. At this point, we can conclude that a careful placementof frequently accessed data in DRAM is beneficial despite the low latency of NVM.
However, so far we have only statically placed data in DRAM or NVM, there is no cachingcomponent involved. In addition to keeping all index blocks in DRAM, we introduce acaching component for the data blocks, which enables the system to dynamically adaptby keeping frequently accessed data blocks in DRAM. The scenarios 1% Blocks and 10%
Blocks cache the indicated amount of data blocks. The interesting observation for LRU(default cache policy in LevelDB) is that dedicating additional DRAM harms the system’sperformance initially. While the performance improves with more DRAM (10% Blocks),

3.5 Evaluation 55

(a) Uniform (b) Skewed
Figure 3.9: Runtime of read-only workload.

larger amounts of DRAM would be required to achieve the same performance of cachingonly index blocks. This is explained by the cost of cache misses in LRU: lookup, eviction,and transfer of block from NVM to DRAM. If cached data is not accessed enough times,this cost is high compared to the alternative of directly accessing data in NVM and avoidingthe overhead caching. As discussed in Section 3.4, the cost of transferring data to DRAMis only worthwhile if the policy can predict that this block will be accessed frequently inthe near future.
To alleviate the high cost of misses, we have implemented 2Q to enable a more lightweightpolicy. We have set the A1 size to 5% of the AM size. Our initial goal with 2Q is to avoidthe observed behavior where the system gets slower when more DRAM is dedicated forcaching. In contrast to LRU, there is always some performance improvement with largercaches for data blocks. This comes from the fact that 2Q avoids evicting a cached blockand moving a new block to DRAM when a miss occurs. Finally, the All scenario representsthe runtime with the whole dataset cached in DRAM. It is possible to see in Figure 3.9bthat the 2Q cache with enough DRAM to hold 10% of the data blocks can achieve similarperformance of holding all blocks in DRAM.

3.5.3 Mixed Workloads

Based on the observations from the previous experiments, we analyze the overall behaviorof the system in workloads containing both updates and lookups. Two mixed workloadswith skewed access are considered: 25% and 50% of updates. We also run the experimentswith varying NVM latencies to show that the behavior is the same regardless of theslowdown/speedup incurred by higher/lower latencies.
Similar to previous results, we start with a NoCache approach and gradually dedicatemore DRAM for caching purposes. The Group Size 10 has enough DRAM for holding 10update operations and persist them as a single WriteBatch. Later, in addition to that, wereserve enough DRAM to hold All Indexes. Finally, we hold up to 10% of the data blocksin a 2Q cache. Figure 3.10 presents the gradual performance gains achieved in each of

56 Chapter 3 Log-Structured Merge-Trees

(a) 25% Updates (b) 50% Updates
Figure 3.10: Runtime of skewed mixed workload.

these steps. The biggest improvement happens when keeping all index blocks in DRAM.Not only index blocks are frequently accessed, but their additional DRAM consumptionis minimal, making it realistic to hold all of them in DRAM and avoiding any replacementpolicy overhead. Regarding data blocks, while a block cache with 2Q replacement policyoffers some benefits in terms of performance, it is up to the user to decide if the costof additional DRAM justify these gains when compared to eliminating the block cachecompletely and always accessing data blocks directly in NVM. We consider that enablingthe system to manage hot and cold data is important and better caching policies canprobably achieve this behavior with even better performance.

3.6 ADDITIONAL CASE STUDY: ROCKSDB

The techniques proposed in the previous sections were evaluated in 2016. By the time,real NVM hardware was not available, and therefore we followed the approach of mostworks of basing our evaluation in emulation platforms. Since then, much has changed.Not only NVM hardware became available and accessible in the form of Intel OptaneDC Persistent Memory Modules, but libraries and kernel modules for managing NVMalso evolved and improved significantly. Nevertheless, the assumptions upon which theproposed techniques were based still hold, such as the NVM latency being higher but withinthe same order of magnitude of DRAM. Therefore, to prove that the concepts introducedare still applicable, we have implemented and evaluated them in a more modern use-caseand more recent hardware environment.
Instead of LevelDB, we take RocksDB as a new case study. RocksDB is developed byFacebook and was originally forked from the LevelDB project. In the past few years,RocksDB performance has improved significantly on top of LevelDB, while still following thesame LSM architecture. Furthermore, new functionalities and options were added, whichenabled RocksDB to be used as the storage engine for more complex SQL systems, suchas MySQL (under the name of MyRocks) and MongoDB (under the name of MongoRocks).
Like LevelDB, RocksDB assumes that the main storage media is SSD (potentially HDD)and does not leverage NVM. Rather than leveraging NVM for the main storage, as in ourinitial approach with LevelDB, we opted for a more moderate approach on RocksDB by

3.6 Additional Case Study: RocksDB 57

(a) Regular persistent block cache. (b) Persistent block cache with Pmemenv and 2Q.
Figure 3.11: Overview of the main components of the RocksDB architecture.

leveraging NVM in the persistent block cache component. The persistent block cache is anoptional component of RocksDB and, like the block cache, it holds frequently accessedblocks from the main storage and serves as an intermediate caching layer3, as shown inFigure 3.11a. While the block cache is implemented in DRAM, one of the intended uses ofthe persistent block cache is to leverage SLC SSDs, which are faster and more expensive,to cache frequently accessed blocks from the main storage, which is usually stored inregular TLC SSDs. Therefore, blocks in the persistent block cache are stored in files andmanaged through the regular file system interface.
In order to leverage NVM instead of SLC SSD, we implemented an NVM-aware persistent
block cache by employing both the Pmemenv and the 2Q placement policy introduced inthe previous sections, as seen in Figure 3.11b. This not only avoids the overhead of filesystem interfaces and allows blocks in the persistent block cache to be accessed directly,but it also guarantees that only hot blocks are migrated to the DRAM block cache through2Q, while blocks accessed less frequently are accessed directly in NVM. Differently thanthe Pmemenv on LevelDB, we re-implemented the Pmemenv in the persistent block cacheof RocksDB without the aid of PMDK, since cache operations are not complex enough tojustify a more sophisticated library. Still, we access NVM through the same way: mappinga file on a DAX file system to the virtual memory space of our application (RocksDB).

3.6.1 Evaluation

We use the environment shown in Table 3.2 to evaluate the impact of Pmemenv and the2Q placement policy in the persistent block cache of RocksDB. We initially load RocksDBwith 1 billion records with keys of 8B and values of 100B. The total size of the dataset is110GB and stored on SSD. Since both the block cache and the persistent block cache serveonly read requests, we run a workload consisting only of Get operations to stress thesecomponents. We focus on two cache configurations. In the first scenario, no persistent
3Unlike LevelDB, we configure RocksDB to make no distinction between index blocks and data blocks.Therefore index blocks are also cached by the same block cache and persistent block cache, rather than by adedicated table cache.

58 Chapter 3 Log-Structured Merge-Trees

Processor Intel Xeon Platinum 8260L CPU (35.75MB Cache, 2.40GHz)Main Memory 96GiB DDR4 2666MHz (6× 16GiB modules)NVM Intel Optane DCPMM 1.5 TiB (6× 256GiB modules)SSD Intel SSD DC P3700 Series 1.6 TiB (PCIe 3.0 x4, NVMe)RocksDB 6.2.2Operating System Linux 5.3.4-3Compiler gcc-8.2.1
Table 3.2: Server used for RocksDB benchmarks.

Figure 3.12: Throughput achieved by a single thread in a read-only workload.
block cache is used, only the regular DRAM block cache with a size of 10GB. In the secondscenario, we reduce the size of block cache from 10GB to 2GB, and redirect the costs to a
persistent block cache in NVM. For that, we assume a DRAM price of 11,70 US$/GB andan NVM price of 5,40 US$/GB4, which leads to a persistent block cache with capacity of17GB. The goal is to have the same cost in both scenarios, so we can focus on comparingthe performance achieved in each case.
Figure 3.12 shows the throughput achieved by a single thread in three scenarios. The
DRAM-only represents the scenario previously described with a block cache of 10GB and no
persistent block cache. DRAM+NVM represents the scenario in which a block cache of 2GBis used together with a persistent block cache of 17GB, but the persistent block cache is theone provided by RocksDB, i.e., it is not NVM-aware and accesses NVM through the regularfile system interfaces, just like a regular SSD. Finally, the DRAM+NVM (Pmemenv+2Q)represents the same memory distribution, but with our custom implementation of the
persistent block cache, which uses Pmemenv and the 2Q placement policy. We see inthe DRAM+NVM case that, while simply employing NVM in the regular persistent blocks
cache already yields improvements, those are rather small. On the other hand, making the
persistent block cache NVM-aware through the Pmemenv and 2Q significantly improves thethroughput in comparison to the DRAM-only approach. Figure 3.13 extends this evaluationto a scenario with multiple threads, showing that the throughput improvements still hold.
Finally, we evaluate the benefits of NVM in terms of a warm startup. Whenever RocksDB isstarted (either after a normal shutdown or a failure), requests are issued and the block

4A single DRAM module of 128GB costs approximately 1500 US$, while an Intel Optane DCPMM with thesame capacity is estimated to cost 695 US$ [Aco19].

3.6 Additional Case Study: RocksDB 59

Figure 3.13: Throughput achieved by multiple threads in a read-only workload.

Figure 3.14: Time elapsed to warm up the block cache and reach the peak performance.
cache is slowly warmed up until it is completely populated, at which point the systemachieves its peak performance. However, the blocks in the persistent block cache surviveacross shutdowns and can be accessed immediately, enabling a faster peak-performancestartup. Figure 3.14 shows this scenario, with the throughput in the Y axis and the elapsedtime in the X axis. The two scenarios depicted are the DRAM-only with a block cache of10GB of DRAM and the Pmemenv+2Q with a block cache of 2GB of DRAM and persistent
block cache of 17GB of NVM. Initially we see the peak performance of both systems forthe read-only workload with a single thread. We then shutdown and restart both systemsat the 30 s mark. The filled areas below the curves indicate the time elapsed from thestartup until the peak performance is reached. The Pmemenv+2Q takes only 15 s, sinceonly the 2GB of the block cache have to be populated and most requests can be servedimmediately from the persistent block cache. Meanwhile, even if the throughput reachesacceptable levels in the first few seconds after startup, the DRAM-only requires 280 s tofinally reach its peak throughput. Therefore, the conclusion is that the concepts introducedby Pmemenv and 2Q can be directly applied to the persistent block cache of RocksDB,allowing not only a higher throughput for the same cost, but also enabling the system toachieve its peak throughput much sooner after a restart.

60 Chapter 3 Log-Structured Merge-Trees

4
B+TREES

The B+Tree is one of the most traditional storage management architectures. In com-
parison to an LSM, a B+Tree does not require regular garbage collection or other sorts
of internal reorganization, since records are commonly update in place. This leads not
only to better a performance of point lookup and range scan operations, but also to a
more robust behavior, as the system does not slowdown because of merge processes
lacking behind. These are some of the characteristics that make B+Tree architectures
attractive in the context of relational databases. However, the update-in-place nature of
B+Trees makes it impractical to leverage NVM as the main persistent storage, since data
can easily be corrupted. Previous attempts to leverage NVM on B+Trees give up at least
one of three aspects: NVM byte-addressability, NVM persistency, or B+Tree update-in-place
strategy. Therefore, in this chapter we investigate how all three of them can be achieved
by proposing a buffer pool architecture, discussing implementation details, empirically
evaluating the overhead, and elaborating on the performance expectations of the proposed
approach. The goal of this chapter is to answer the following questions:

• How can B+Trees leverage both persistency and byte-addressability of NVM?
• How to handle corruptions of update-in-place strategies?

4.1 B+TREE AND NVM

Due to its ubiquity in database systems [Com79], previous works have investigated oppor-
tunities to leverage NVM in the context of B+Trees. The main challenge stems from two
B+Tree properties: records are updated in-place and records are stored in sorted order
within each node (or “page”). Updating records in B+Tree nodes in NVM while respecting
these properties can lead to data being corrupted and lost. This is a similar scenario to
the example in Figure 1.1 in Section 1.2, in which the sorted array can be seen as a B+Tree
node. We classify the works that address this challenge in three categories illustrated in
Figure 4.1 and discuss them in the following.

61

(a) Buffer Extension (b) DRAM Buffered Access (c) Persistent Trees
Figure 4.1: The three categories of B+Tree architectures proposed by previous works.

4.1.1 Category #1: Buffer Extension

Systems organize their records in a B+Tree format on persistent media (traditionally HDDand SSD), with each node being represented by a page. Since pages need to be read fromstorage tomemory to be accessed, a portion of DRAM is used as a buffer pool to hold thesepages. In this scenario, previous works proposes to leverage the lower costs and higherdensity of NVM to extend the buffer pool capacity [CJY15, OCXH14, LJW+19], as shownin Figure 4.1a. The observation is that a larger buffer pool enables more pages to be onbyte-addressable media and, therefore, avoid expensive I/O to traditional storage devices.While not often discussed, this scenario can also benefit from NVM-aware buffer poolpolicies to properly place pages either in DRAM or NVM, such as the 2Q policy presentedin Section 3.4. Furthermore, some of the works in this category also focus on wear levelingand reducing write amplification, which are concerns similar to the ones in the early daysof flash memory, but not often considered in the context of NVM [OCXH14, LJW+19].
Since the buffer pool (or a part of it) resides in NVM, buffered pages are preserved acrosssystem restarts and, therefore, could be accessed instantly. However, as previously dis-cussed, the pages in NVM can be corrupted if a failure occurs during an update. Therefore,a pessimistic assumption is made by discarding all contents in NVM during restart andtreating it as a fresh buffer pool by reading the original pages from the main storagedevice after recovery procedures. In other words, the persistency of NVM is not leveraged(represented by the stripped lines of NVM in Figure 4.1a). This is the main weakness ofthese approaches. The main advantages are the reduced costs (by employing cheaperNVM instead of DRAM) and low implementation effort (since NVM is treated like DRAM).
Finally, we note that a similar behavior to the works in this category can be achieved at thehardware level, by configuring the DCPMM in memory mode, as discussed in Section 2.1.2.However, in such case, NVM is not exposed to the application, thus preventing the buffermanager from applying custom replacement and migration policies.

62 Chapter 4 B+Trees

4.1.2 Category #2: DRAM Buffered Access

As shown in Figure 4.1b, rather than extending the buffer pool, works in this categoryassume that the buffer pool resides solely in DRAM and NVM is used either as the mainstorage device (left-hand side of Figure 4.1b) [Kim15, PWGB13] or as a caching layer be-tweenDRAMand themain storage onHDDor SSD (right-hand side of Figure 4.1b) [vRLK+18].The common point between these two approaches is that the system never accessesNVM directly, but it copies pages to the DRAM buffer pool before operating on them. Asa result, the system has full control over page propagation to NVM, since they are onlydone explicitly by copying a page from DRAM to NVM, similar to the regular interactionbetween memory and storage. This control over writes to NVM enables the system to takemeasures, such as copy-on-write, to prevent pages from being corrupted by partial writesfrom DRAM to NVM, as in the case where not all the affected cache lines are correctlypersisted. If NVM is used as a caching layer (right-hand side of Figure 4.1b), keeping thepages consistent enables the system to directly read them from NVM after a restart, thusavoiding the I/O to the main storage and enabling a warmer restart.
Leveraging the persistency of NVM is the main advantage of the approaches in thiscategory. On the other hand, the main disadvantage is the unnecessary data movementbetween DRAM and NVM, since pages in NVM could be directly accessed by the CPU.An alternative employed by van Renen et al. [vRLK+18] is to leverage the fine-granularityaccess of NVM rather than page-based access. These fine-grained accesses can be eitherthe size of a single cache-line (typically 64B) or multiple cache-lines (also referred to as
“mini-pages”). While this reduces the unnecessary movement of data, it does not eliminateit completely and further complicates memory management in the buffer pool, since itmust manage pages of multiple sizes. In other words, the byte-addressability of NVM is notfully leveraged, according to our definition of byte-addressability discussed in Section 1.1.

4.1.3 Category #3: Persistent Trees

We have previously discussedworks in this category in Section 2.3. As shown in Figure 4.1c,some variants of persistent B+Trees place all nodes in NVM [CJ15, YWC+15, ALML18],while hybrid variants place only leaf nodes in NVM and inner nodes in DRAM, under theobservation that inner nodes can be rebuilt from leaf nodes during restart [OLN+16]. Nev-ertheless, in both cases nodes in NVM are updated directly, since these B+Trees are plaindata structures with no buffer management or more traditional recovery procedures. Con-sequently, simple operations, such as the insertion or update of a record, might cause datacorruption. To prevent that, the typical approach taken is to ensure that the data structureis consistent at all times by carefully enforcing the order of writes through hardware in-structions such as SFENCE, CLFLUSHOPT and CLWB. These hardware instructions introducenot only overhead, but also additional complexity on the implementation, compared toclassical textbook implementations of data structures. Furthermore, persistent B+Treesstill have to prevent records from being updated in-place, as there is no way to protectagainst partial writes. Therefore, copy-on-write strategies, such as shadow paging [Lor77],are used when updating the B+Tree nodes. An alternative is to leverage the fine-granularaccess of NVM and keep records within nodes unsorted, in such a way that they are alwayswritten to a new position within the same node. A validity bitmap in the header of the node

4.1 B+Tree and NVM 63

Category Persistency Byte-Addressability Update-In-Place

Buffer Extension No Yes Yes
DRAM Buffered Access Yes No Yes
Persistent Trees Yes Yes No
Persistent Buffer Pool withOptimistic Consistency Yes Yes Yes

Table 4.1: Categories of B+Tree architectures that leverage NVM.
can then be atomically updated to indicate which records are valid. Even if this avoids theoverhead of making a complete copy of the page (as it is the case in shadow paging), itstill breaks the update-in-place property, even if in a smaller granularity. One could arguethat, as contradicting as it may sound, these alternatives employ shadown “paging” on therecord-level, rather than on the page-level. Therefore, while persistent B+Trees leverageboth the persistency and byte-addressability of NVM, they introduce additional complexityand negatively impact operations that rely on the sorted order of records, such as treetraversals and sorted range-scans.

4.2 PERSISTENT BUFFER POOL WITH OPTIMISTIC CONSISTENCY

While the categories previously discussed have advantages, they do no provide three im-portant properties at once: persistency, byte-addressability, and update-in-place. Table 4.1summarizes the approaches and their characteristics. We propose a new approach toachieve all these properties: Persistent Buffer Pool with Optimistic Consistency.
Our approach is motivated by the following observations. First, like Category #1 and
Category #2, we consider that a buffer pool is the perfect abstraction for managing theinteraction between all devices in the storage hierarchy. Category #3 does not considerother devices (such as SSDandHDD) and does not enable dynamic placement of data (suchas migrating hot nodes to DRAM when the workload changes). Second, like Category #1and Category #3, directly accessing NVM is required to fully leverage its byte-addressabilityand treat it as more than faster storage. Therefore, the unnecessary data movementintroduced by Category #2 is not optimal. Third, like Category #2 and Category #3, datapersisted on NVM should be leveraged during system restart. Ignoring persisted data andstarting from a clean state, as in Category #1, is simply using NVM as cheap memory.
We consider that NVM is not only cheap memory and not only faster storage, it is actuallyboth and should be treated accordingly. On a high level, we propose to use NVM to extendthe buffer pool (similar to Category #1) but still directly accessing it (like Category #3) andleveraging persisted pages upon restart (like Category #2). Rather than preventing datacorruption by obsessively enforcing a fine-grained consistency for every write to NVM, wejust “hope” that corruption will not happen1, but still put in place mechanisms to detect andrecover them during restart. As a result, NVM is treated as both memory (during runtime)and storage (during recovery).

1Hence ”optimistic consistency“.

64 Chapter 4 B+Trees

4.2.1 Architecture and Assumptions

Figure 4.2 shows an overview of the architecture we propose for implementing the Persis-
tent Buffer Pool with Optimistic Consistency. The main assumption is that the B+Tree isused in a transactional environment and accessed through a buffer pool. We also assumea no-force/no-steal strategy [HR83]. The no-force implies that pages in the buffer poolare not flushed to the main storage at commit time. Therefore, durability is guaranteedby physiological write-ahead logging (WAL), as defined by the ARIES protocol [MHL+92].The no-steal entails that pages in the main storage will not contain updates made by losertransactions. This is possible under the observation that the buffer pool capacity can be sig-nificantly increased with NVM, up to the point where the complete working set of pages fitsin the buffer pool and no pages need to be evicted to themain storagemid-transaction. Thissimplifies recovery, as undo log records are only required during normal processing (in caseof transaction abort) and can be discarded afterwards, without the need of being writtento the WAL. Many systems implement the no-force/no-steal strategy, usually by employingtransaction-private redo/undo log buffers [DKO+84, MWMS14, TZK+13, SGH18]. Finally,we assume modern transactional recovery techniques based on WAL [GGS16, Sau17], suchas instant recovery and instant restart, with single-page recovery being the main require-ment [GK12]. Further buffer management techniques, such as pointer swizzling [GVK+14]and low overhead replacement policies [LHKN18] are desired, but not required. The focusof our approach is handling corruption that might occur when a failure happens whileupdating pages directly in the NVM portion of the buffer pool.
As Figure 4.2 shows, the buffer pool is extended with NVM. The ratio between DRAM andNVM can be configured by the user, with one extreme being DRAM-only (faster runtime,higher price, slower recovery) and the other extreme being NVM-only (slower runtime,lower price, faster recovery). The WAL is optionally stored in NVM for better performance,following approaches proposed by related work [CKKS89, AJ89, FHH+11, GXH+11, HSQ14,WJ14]. For simplicity, we do not elaborate on which alternative is used, as this is orthogonalto the rest of the architecture. We also note that for reducing costs, the system shouldperiodically migrate log records from the WAL in NVM to a log archive on cheaper devices,such as SSD, HDD, and tape. For better performance, SSD is also used for the main storage.
During normal processing, a page to be updated will be either on the main storage (SSD)or in the buffer pool (NVM or DRAM). Figure 4.3 shows the life cycle of a page. In case thepage is on SSD, it is loaded to the NVM portion of the buffer pool. In case the page is inDRAM, there is a hit and the page is updated normally. If the page is in NVM, one of twoactions can occur. First, the page can be identified as “hot” by a placement policy, such asthe 2Q discussed in Section 3.4, in which case it is copied to DRAM and updated there.Second, the page can be simply “warm”, in which case the update is done directly to NVM.More elaborated policies can be explored to further improve page placement, such asdeciding if a page on SSD should be read to NVM or directly to DRAM, or if a page evictedfrom DRAM should be discarded or copied to NVM. To focus on a simple presentation,we do not discuss these policies in detail, however they have been discussed by relatedwork [APM19, vRLK+18] and are an interesting direction for future work.
A solution to avoid corruption when updating the page directly in NVM is to employ similartechniques to Persistent Trees by combining copy-on-write techniques with the hardwareinstructions SFENCE, CLFLUSHOPT and CLWB, as discussed in Section 4.1.3. This has two

4.2 Persistent Buffer Pool with Optimistic Consistency 65

Figure 4.2: Architecture overview of our proposed persistent buffer pool. The user cantune the ratio between DRAM and NVM used by the buffer pool. Reads and writes from/tothe buffer pool are done practically in the same way, not mattering if the page resides onthe DRAM portion or the NVM portion. Furthermore, pages persisted in the NVM portionare leveraged for a warm restart, thus enabling a faster peak-performance recovery.

Figure 4.3: Typical life cycle of a page that migrates through different devices.

66 Chapter 4 B+Trees

Figure 4.4: A single record the size of a cache line (64B) of each page is updated. Theupdated records are lost if there is a failure. Pages in the NVM portion of the buffer poolare corrupted even if the transactions committed.
major drawbacks. First, it does not only break the update-in-place property of pagesin NVM (as previously discussed), it also potentially requires pages in NVM to have adifferent format and be treated differently than pages in DRAM. For example, regular pagesin DRAM can keep records sorted, while pages in NVM are log-structured and have anadditional atomic bitmap to validate updates. This complicates buffer management andintroduces additional overhead, as pages must be converted from one format to anotherwhenever they are moved between devices. While the overhead of converting betweenpage formats might be negligible when compared to the cost of SSD I/O, this overheadbecomes relatively higher when compared to the cost of copying a page between NVMand DRAM. The second drawback is that writes to NVM cannot be amortized by the CPUcaches, since updated cache linesmust be eagerly flushed with CLFLUSHOPT and CLWB. Thisexposes writes to the higher latency of NVM and incurs an even higher runtime overhead.These drawbacks arrive as a consequence of protecting the system from corruption at allcosts. We propose to go in an opposite direction by acknowledging that corruptions areinevitable and embrace them as part of our buffer pool design.

4.2.2 Embracing Corruption

Updating pages directly in NVM without enforcing any kind of consistency will lead topages being corrupted eventually. Allowing these corruptions to happen might soundunfeasible in the real world. However, this approach is motivated by three observations.
First, failures are rare. This is important, considering that corruptions can only occur if a
partial-write happens as a consequence of a failure, such as a power outage or an abruptsystem crash due to software errors. If systems fail too often, the issue must be addressedat a different level, such as replacing the hardware. Therefore, the overhead of neuroticallyenforcing the consistency of each small update to a page in NVM is undesirable.
Second, the number of pages that can be corrupted is bound. This claim is backed by athought experiment. A corruption happens if we update a record in a page in NVM and thisupdate is lost after a failure because it was not evicted (partially or completely) from the

4.2 Persistent Buffer Pool with Optimistic Consistency 67

volatile CPU cache. In other words, the update was never persisted to NVM. Assume theB+Tree nodes are 4 kB and that a single record the size of a cache line (64B and also thetransfer unit between CPU cache and NVM) is updated on each node in NVM. Figure 4.4illustrates this scenario. Considering the cache size of a modern CPU is approximately40MB2, the maximum number of updated records that the cache can hold is given by:
40MB

64B/record
= 655 360 records (pages)

Since we assumed that each updated record belongs to a different page, that is also themaximum number of pages that were corrupted by lost updates after the failure. Note thatCPU caches are multi-way set associative and holding a single cache line for each page isunlikely. In reality, cache lines are evicted much sooner by the CPU and persisted back toNVM due to associativity conflicts, leading to fewer pages being corrupted. Nevertheless,we make a pessimistic and conservative assumption to strengthen our argument. Consid-ering that the smallest DCPMM commercialized by Intel is 128GB, if it is completely usedby the buffer pool, the total number of 4 kB pages it can hold is given by:
128GB

4 kB/page
= 33 554 432 pages

In such a scenario, a maximum of 2% of the pages in the buffer pool can be corrupted in theworst case (655360 of 33554432). This is generalized by Equation (4.1), which states thatthe percentage of corrupted pages in the worst case is proportional to the ratio betweenthe size of the CPU cache and the size of NVM used by the buffer pool. Since the size ofCPU caches is much smaller and more constant3 than the size of NVM, in most scenariosthe maximum number of corrupted pages will be a small fraction of all the pages in thebuffer pool. Figure 4.5 further aids in visualizing this relation by showing the percentageof pages that can be corrupted in the worst case (Y axis) when increasing the size of NVMdedicated to the buffer pool (X axis). As in the previous thought experiment, we assume aCPU cache of 40MB and pages of 4 kB.

Corrupted Pages ≈ Size of CPU Cache

Size of NVM Buffer Pool
(4.1)

As seen, the relative number of pages that can be corrupted in the worst case drasticallydrops for large NVM capacities. Such large buffer pools are common, even in the context ofDRAM, given the ever-increasing demands of data processing. However, it is worth notingthat, even if the number of pages that can be corrupted is low, it can still be much higherthan acceptable industry standards4. Finally, this leads to our third and most importantmotivation: corrupted pages can still be detected and recovered. The main insight isthat the corrupted pages are in the buffer pool, not in the main database storage. In atransactional environment, the atomicity and durability are already guaranteed by WAL,therefore issuing CLFLUSHOPT or CLWB after each update to a page in the buffer pool is notnecessary, as the log serves as the single source of truth. In the following we elaborate onthe techniques used for detecting and recovering corruptions.
2For example, the Intel Xeon Platinum 8260L CPU has 35.75MB of last-level cache (L3).3The capacity of DRAM and NVM can be increased by acquiring more and/or larger modules. Meanwhile,expanding the capacity of the CPU caches requires acquiring a completely new CPU.4As an example, Amazon S3 is designed for 99.999999999% (11 9’s) of data durability.

68 Chapter 4 B+Trees

Figure 4.5: Percentage of pages in the buffer pool that can be corrupted in the worst case.
4.3 DETECTING CORRUPTIONS

We saw that pages in the NVM portion of the buffer pool can be corrupted because updatesmight not have been properly persisted. Consequently, during restart after a failure, thesepageswill still be in the buffer pool, but their state is unknown. They can either be consistentand ready to be accessed, or corrupted. Since we want to leverage the persistency of NVM,we must identify the state of a page prior to accessing it. Fortunately, this can be done byleveraging the existing checksum that many database systems store in the header of eachpage, thus not requiring radical changes to the system architecture.
Traditionally, the checksum of a page is calculated and updated when the page is writtenfrom volatile memory (DRAM) to persistent storage (SSD/HDD). When a page is fetchedfrom persistent storage to the buffer pool, its checksum is calculated again and comparedto the checksum stored within the page. The goal is to detect page corruptions causedby media failures, such as a bad HDD sector. In the case of NVM, the insight is that thecorruption that may happen due to non-persisted cache lines can be generalized to amediafailure, just like in the case of SSD and HDD. Therefore, we rely on the checksum alreadypresent in the page headers when updating pages in NVM.
During runtime, whenever a page in the NVM portion of the buffer pool is updated, thesystem calculates the new checksum for the whole page and updates it. This is theonly difference to pages in the DRAM portion, which have their checksum calculated andupdated only when they are flushed to persistent media, rather than for every update. Thisdifference is also shown in Figure 4.2. In addition to the checksum, other fields in the pageheader are the unique page identifier (PID) and the page log sequence number (pLSN), asin the ARIES algorithm [MHL+92]. For every update to the page, the LSN is updated tocorrelate the state of the page with respect to the logged update. It is worth noting thatneither the updated record, the new LSN, or the new checksum are eagerly flushed fromthe CPU cache back to the page in NVM. Eventually the CPU will naturally evict the affectedcache lines and they will be persisted. This is an important advantage, as it allows theseupdates to be amortized by the CPU cache and not be exposed to the higher NVM latency.
During restart after a failure, recovery routines take place, starting by log analysis. Duringthe log analysis phase, the WAL is scanned starting from the last checkpoint towards its

4.3 Detecting Corruptions 69

(a) Update to a page in NVM (b) Possible states after a failure
Figure 4.6: The states a page may be found in the NVM portion of the buffer pool duringrestart. The dark gray area indicates the header of the page, which contains the checksum,PID, and pLSN, among other fields.
end. At the end of log analysis we know what was the state of the database right beforethe crash, such as dirty pages and active transactions. In the context of our proposedbuffer pool architecture, the most important information retrieved during log analysis isthe eLSN (expected LSN) of each page, which is the LSN of the last committed updated.After log analysis, we assume modern instant recovery takes place [GGS16]. The systemstarts to accept requests right after log analysis and pages are recovered on-demand thefirst time they are accessed. If a page being accessed was on the DRAM portion of thebuffer pool, it was completely lost and it must be recovered by retrieving an older versionof the page from the main storage and replaying the relevant log records to it. However,in the case a page accessed is discovered in the NVM portion of the buffer pool, it mightbe in a consistent state and it could be accessed right away, without requiring any furtherrecovery. In order to decide the state of such page, the checksum of the page is calculatedand compared to the checksum stored in the page header. The result of this comparison,together with the LSN stored in the page header, defines the state of the page.

4.3.1 Possible States

Figure 4.6 shows a simple scenario with all the possible states a page in NVM may befound during restart. Figure 4.6a shows a single record of a page in NVM being updatedfrom “Harry” to “Kevin”. As previously mentioned, the system increments the pLSN andcalculates and updates the new checksum. Since there are no guarantees of which cachelines were persisted, a failure might happen at any point and the page can be found in thestates shown in Figure 4.6b during restart. Figure 4.7 shows the decision tree to determinethe state of the page. In the following, we elaborate on each one of these states

State #1: Corrupted Page

In this case, not all updated cache lines were evicted from the CPU cache. Figure 4.6bshows two possible scenarios. First (top), only the updated record and the new pLSN were

70 Chapter 4 B+Trees

Figure 4.7: Decision tree to determine the state of a page in NVM during restart.
evicted. Second (bottom), only the new checksum and the pLSN were evicted. While othersituations are possible, the relevant part is that the calculated checksum of the page willnot match with the checksum stored within the page, therefore the page is corrupted.

State #2: Outdated Page & Dirty Updates

In this case, the calculated checksum and stored checksum match. However, while thisguarantees that the page is not corrupted, it does not guarantee the correct version ofthe page. Therefore, the pLSN stored in the page must be compared to the eLSN retrievedduring log analysis. They will not match in two situations. First (top), the pLSN is lower thanthe eLSN, since none of the updated cache lines were evicted from the CPU cache, meaningthat the page is in a physically consistent, but outdated state. Second (bottom), the pLSNis higher than the eLSN, since all updated portions of the page were evicted from the CPUcache, but the transaction that made these updates did not commit before the failure,therefore the page is physically consistent but contains dirty updates. This distinction isrelevant because, while in both cases the page cannot be accessed and must be recovered,their recovery procedure is slightly different, as discussed later in Section 4.4.

State #3: Silent Corruption

In this case, not all updates were evicted from the CPU cache, represented by only thefirst two characters of the updated record being evicted, leading to “Kerry”, which is acorrupted state. However, it could be that the calculated checksum of this corruptedstate matches the checksum stored in the page due to hash collisions in the checksumalgorithm. This is known as a silent corruption, as the checksum cannot detect it. This is aworst-case scenario, as data loss will be unnoticed. However, this is a common trade-offfor checksum-based approaches that are utilized at many levels of the hardware andsoftware stack. The critical point is the probability of the worst-case occurring. As we willshow in the following, the probability is lower than the probability for silent data loss inother scenarios that are accepted in practice. Even considering the low probability, onecould, in pedantic scenarios, analyze the whole WAL to detect silent corruptions. However,

4.3 Detecting Corruptions 71

the probability that reading the WAL leads to an error might be higher than having a silentcorruption in the NVM portion of the buffer pool.
We note that the calculated checksum of the page is only compared to the checksumcurrently stored in the page header (stored checksum). This means that if the calculated
checksum collides with any checksum that the page had in the past, this will not be aproblem, as long as it is different from the current stored checksum. A checksum of 64 bithas 264 distinct values. Assuming a hash function that uniformly distributes the resultsacross the domain, the probability of the calculated checksum being the same as the stored
checksum in a single page is given by:

P (collision for a single page) =
1

264
≈ 5.4× 10−20

Therefore, the inverse of that is the probability of having no collision in a single page, whichis given by:

P (no collision for a single page) = 1 − 1

264

As previously mentioned in Section 4.2.2, the number of pages that can be corrupted isbound and a CPU cache of 40MB can corrupt up to 655360 pages per failure. Therefore,the probability of having no collision in any of these pages is given by:

P (no collision in any page) =

(
1 − 1

264

)655360

This leads to the inverse probability, which is the probability of having a collision in at leastone page:

P (collision in at least one page) = 1 −
(
1 − 1

264

)655360

≈ 3.5× 10−14

Considering industry standards that typically require 11 9’s of durability (i.e., 10−11 probabil-ity of data loss) [Ama06], the probability of a silent corruption for each crash is acceptable.To further strengthen the argument, the probability of at least one page being corrupted in
n pages is given by:

P (collision in at least one page in n pages) = 1−
(
1− 1

264

)n

We can now calculate how many pages need to be considered as events to have a 50%chance of a corruption. The following equation shows how many pages have to be cor-rupted:

72 Chapter 4 B+Trees

0.5 = 1 −
(
1− 1

264

)n

, n = 1.28× 1019 pages

Based on the assumption that 655360 is the number of pages that can be corruptedper failure in the worst case, the number of failures that need to happen to reach a 0.5probability of at least one page being corrupted is:

1.28× 1019

655360
≈ 1.95× 1013 failures

It is worth noting that hash collisions are only a problem if they happen exactly beforea failure, not during normal runtime. If we assume that 10 failures happen in a year, ittakes 1012 years for a single server to be exposed to a 50% chance of a silent corruption.Considering estimations that modern cloud providers have fleets of approximately 1 millionservers, it would still take 106 years. Finally, these probabilities are a pessimistic andhypothetical worst-case scenario. In practice, the assumed events will not happen, such asthe CPU cache holding a single cache line of each page. Therefore, since the probability ofsilent corruption is smaller than in other cases that are accepted in practice, we transitivelyconclude that our case is acceptable.

State #4: Valid Page

Finally, in this case all the updated cache lines were evicted from the CPU cache andpersisted to NVM. When the page is requested for the first time and discovered in theNVM portion of the buffer pool, the calculated checksum will match the stored checksumand the pLSN will match the eLSN retrieved during log analysis. Therefore, the page can beaccessed without further recovery procedures. For buffer pools with large NVM capacities,most pages are expected to be in this state.

4.4 REPAIRING CORRUPTIONS

This section describes the recovery algorithm of the Persistent Buffer Pool with Optimistic
Consistency. As previously mentioned, after a failure the log analysis phase takes place andonce it completes, pages can be requested and are recovered on-demand. Algorithm 4.1shows the pseudo-code of the twomain functions: Fix and RecoverPage. The Fix functionis called whenever a page is requested by its page_id. In case this is the first access tothe page after the failure, the recovery procedure is triggered (line 2-4). Otherwise, the Getfunction (line 7) executes regular buffer management procedures, such as fetching thepage from main storage and pinning it to memory to prevent early eviction.
The RecoverPage function starts by identifying if the page being requested was in theNVM portion of the buffer pool at the time of the failure. This is done by querying an
allocation table which is stored in a fixed position in the beginning of the NVM space (line

4.4 Repairing Corruptions 73

11). The allocation tablemaps page identifiers to the location offset of the respective pages
within the pool. In the case the page is not found in NVM, it was potentially in DRAM, thus
requiring regular recovery procedures by fetching it from main storage and replaying the
relevant log records (line 28-30). Otherwise, a pointer to the page is retrieved from the
allocation table (line 12) and the page checksum is calculated (line 13) and compared to
the checksum stored within the page in order to identify its state (line 14).
As previously discussed, State #3 is unlikely and therefore ignored. In case the checksums
do not match, the page is corrupted and must be recovered (State #1). Since we cannot
make further assumptions about its state, the algorithm discards the page, fetches an
older version from main storage, replays the relevant redo log records, and finally returns
the page (line 15-16). If the checksums match, the pLSN is compared to the eLSN. If they are
equal, the page is in the correct version (State #4) and can be returned immediately (line 25).
If the pLSN is higher than the eLSN, then the page contains updates made by uncommitted
transactions. Given the no-steal/no-force strategy of the buffer pool, rolling back changes
is not possible since UNDO information is never persisted to the WAL, therefore the page
must be discarded, an older version is fetched from the main storage, and the log records
are replayed to “roll forward” the page to its most recent and consistent state (line 15-23),
like in State # 1. If the pLSN is lower than the eLSN, the page is in an old state and missing
updates made by committed transactions, thus only requiring the log records generated
by those transactions to be replayed directly on it (line 23). This case has the advantage
of saving an additional I/O operation by leveraging the page found in NVM rather than
fetching an older version from the main storage, thus being potentially faster. Finally, the
recovered page is returned (line 25).
The original single-page recovery [GK12]was proposed in the context of traditional databases
with volatile memory buffer pool (DRAM), persistent main storage (HDD/SSD), and regular
database backups. The original proposal consists of repairing corrupted pages on the
main storage by fetching an older version of the page from a backup location and replaying
the log records. The advantage of the proposed Persistent Buffer Pool with Optimistic
Consistency is that it relies on an existing and effective recovery technique rather than
re-inventing the wheel. Single-page recovery is generalized by applying the same concept
in a different context: the main storage is to the persistent buffer pool the same thing that
the backup is to the main storage.

4.5 PERFORMANCE EVALUATION AND EXPECTATIONS

This section empirically evaluates the main overhead introduced by the Persistent Buffer
Pool with Optimistic Consistency: calculating checksums. We also discuss and propose
alternatives to reduce this overhead. Finally, we elaborate on the end-to-end performance
expectations of the the overall system.

74 Chapter 4 B+Trees

Algorithm 4.1: Pseudo-code for the Fix and RecoverPage functions.
1 function Fix(page_id)
2 if IsFirstAccess (page_id) then
3 return RecoverPage (page_id)
4 end if
5 // Return a pointer to the page in the buffer pool, potentially
6 // fetching it from the main storage if a page miss occurs
7 return Get (page_id)
8 end
9

10 function RecoverPage(page_id)
11 if IsOnNVM (page_id) then
12 page← Get (page_id)
13 checksum← CRC64 (page)
14 if checksum != page.getChecksum() then // State #1
15 page← Fetch (page_id) // Fetch page from main storage
16 ReplayLog (page) // Apply log records
17 return page

18 else
19 if page.LSN != GetExpectedLSN (page_id) then // State #2
20 if page.LSN > GetExpectedLSN (page_id) then // Dirty update
21 page← Fetch (page_id)
22 end if
23 ReplayLog (page) // Dirty update or outdated
24 end if
25 return page // State #2 or State #4
26 end if
27 else // Page was in DRAM and was lost
28 page← Fetch (page_id) // Fetch page from main storage
29 ReplayLog (page) // Apply log records
30 return page

31 end if
32 end

4.5 Performance Evaluation and Expectations 75

Processor Intel Xeon Platinum 8260L CPU (35.75MB Cache, 2.40GHz)Main Memory 96GiB DDR4 2666MHz (6× 16GiB modules)NVM Intel Optane DCPMM 1.5 TiB (6× 256GiB modules)Operating System Linux 5.3.4-3Compiler gcc-8.2.1
Table 4.2: Server used for micro benchmark.

4.5.1 Checksum Overhead

To achieve the three characteristics discussed in the beginning of this chapter (persistency,
byte-addressability, and update-in-place), we propose calculating the checksum for thewhole page for each record inserted, updated, or deleted. This creates an overhead whichmight not be negligible and has a direct impact in the final performance of the system.The overhead depends on the size of the record being updated. If the record is largeand spans a significant portion of the page, the overhead is proportionally lower. Inthe case of insertions, the sorted order of records in a B+Tree node must be kept, andtherefore, in average, half of the page will be accessed anyway for moving other recordsto accommodate the new one. A similar situation happens with deletions. On the otherhand, updating a record does not require other records to be moved, and, therefore, theoverhead of calculating the checksum becomes relatively higher. To provide a strongargument, we look at the worst-case scenario of updating a small record. We evaluate andcompare different strategies through a micro-benchmark. The micro benchmark consistsof measuring the time required for updating a random record in a random page storedin a persistent buffer pool of 10GB of NVM using a single thread. We calculate the CRCchecksum through fast vectorized hardware instructions provided by Intel SSE 4.2 [Int20a].Table 4.2 shows the configuration of the server used for the micro benchmark.
Three strategies are initially considered. First, “No Checksum” simply updates the record inthe NVM page. Since consistency is not enforced and there is no way to detect corruptedpages, this implies that all pages in NVM must be discarded after a failure, thus notleveraging the NVM persistency at all. This serves as our baseline, as pages are updatedlike in DRAM, not requiring any additional work, thus being the fastest way to update arecord. Second, “Copy To DRAM” consists of copying the whole page from NVM to a DRAMbuffer prior to the update. The record is then updated in DRAM, thus avoiding corruption inNVM. We note that “No Checksum” and “Copy To DRAM” are equivalent to the way pagesin NVM are updated in the Category #1 and Category #2 discussed in Section 4.1. The
Category #3 is not considered, as the page format and update method are significantlydifferent, requiring out-of-place updates and explicit cache-line flushes. Finally, “Checksum”represents our proposed technique and consists of updating the record in NVM, calculatingthe checksum for the whole page, and writing the new checksum to the header of thepage. Figure 4.8 shows the runtime of each approach (Y axis) while varying the size of therecord updated (X axis). Different page sizes are also considered (Figures 4.8a to 4.8d).For further clarity, the slowdown of each approach relative to “No Cache” is also calculatedand shown in Table 4.3.
We make three observations. First, as expected, the “No Cache” approach has the sameperformance in all scenarios, since larger records are likely to still be buffered by the

76 Chapter 4 B+Trees

(a) Page of 4 kB (b) Page of 8 kB (c) Page of 16 kB (d) Page of 64 kB
Figure 4.8: Runtime of updating a record in NVM for each approach considered.

Slowdown Factor
Page Size Update Size Copy To DRAM Checksum Partitioned Checksum

8B 2.7 4.0 1.364B 2.5 3.7 1.34 kB 512B 2.0 4.0 1.68B 4.5 6.5 2.064B 4.2 5.7 1.98 kB 512B 3.3 5.5 1.78B 8.3 10.9 2.664B 7.8 9.5 2.416 kB 512B 6.0 8.4 2.08B 31.3 36.8 4.964B 28.4 33.4 4.164 kB 512B 21.8 26.6 4.4

Table 4.3: Slowdown of each approach calculated by dividing their respective runtime inFigure 4.8 by the runtime of updating the record in NVM (“No Checksum”). Lower is better.

4.5 Performance Evaluation and Expectations 77

Figure 4.9: Partitioned checksum.
DCPMM. This aligns with previous works that reported that DCPMM employ its own on-chip caches to buffer accesses to the underlying media in units of 256B [vRVL+19, IYZ+19].Furthermore, the size of the page in this case plays no role. Second, both “Copy To DRAM”and “Checksum” become slower for large page sizes, since they require accessing thewhole page (either while copying to DRAM or while calculating the checksum). Third andmost important, “Checksum” performsworse than “Copy To DRAM” in all cases. This showsthat, computing the checksum for the whole page is more expensive than simply copyingthe page to DRAM. Even if the difference is small, one could argue that the high runtimeoverhead defeats the purpose of the Persistent Buffer Pool with Optimistic Consistency.Therefore, we propose a simple alternative: partitioned checksums.
Calculating the checksum for a whole 4 kB page is too expensive if only 8B are updated.Therefore, the motivation of partitioned checksums is reducing the amount of data that hasto be read for calculating the checksum. As Figure 4.9 shows, instead of a single checksumfor the whole page (left-hand side), the page is logically divided in smaller partitions andeach partition has its own checksum (right-hand side). In the scenario in fig. 4.9, if therecord “Kevin” is updated, only two checksums (green and red) need to be calculated. Thissignificantly reduces the overhead, as shown by the “Partitioned Checksum” results inFigure 4.8 and Table 4.3, in which 8 checksums per page are used. It is worth noting that,while multiple checksums are used, the unit of recovery, repair, and corruption detection isstill a page. Therefore, if one of the checksums of a page does not match the checksumcalculated for its respective partition, the whole page is considered corrupted.
The number of checksums used for each page can be set as a system parameter. The trade-off introduced in this case is between additional space requirement (more checksums)and higher overhead for updating pages directly in the NVM portion of the buffer pool(less checksums and larger partitions). Table 4.4 shows the space overhead introducedby having 32 checksums of 8B each 5 in the different page sizes previously discussed.
Finally, it is worth remembering that the overhead shown in our evaluation is the worst-casescenario of small updates to a page. Furthermore, this overhead only refers to updating asingle record in a page in NVM. This situation is expected to happen sporadically, since agood placement policy, such as the 2Q discussed in Section 3.4, should migrate frequentlymodified pages to DRAM. Such pages not only avoid the checksum overhead, but alsobenefit from the lower latency of DRAM. In addition to partitioned checksums, future work

5This would fit exactly in the reported 256B buffer unit of DCPMM.

78 Chapter 4 B+Trees

Page Size Space Overhead Partition Size
4 kB 6.2% 128B8 kB 3.1% 256B16 kB 1.5% 512B64 kB 0.3% 2048B

Table 4.4: Trade-off between space overhead and partition size (higher runtime overhead)for multiple page sizes with 8B and 32 checksums per page.
might as well explore alternatives to reduce the checksum overhead, such as increasing theoptimism by calculating the checksum of a page after a certain number of changes. Thiswould introduce a new trade-off between a higher number of corrupted pages (checksumscalculated less often) and higher runtime overhead (checksums calculated more often).

4.5.2 Runtime and Recovery

This section discusses the expected end-to-end behavior of the Persistent Buffer Pool with
Optimistic Consistency. We compare this to traditional ARIES recovery [MHL+92], as wellas to modern Instant Recovery [GGS16]. We note that Instant Recovery is not orthogonal toARIES, but rather it builds on top of it to improve the recovery time by enabling on-demandrecovery. Similarly, the Persistent Buffer Pool with Optimistic Consistency also extendsthe techniques introduced by ARIES and Instant Recovery. Therefore, the approachesdiscussed here are not competitors per se, but improvements on top of each other.
Figure 4.10 shows the expected behavior when recovering from a failure. The ARIES systemstarts by executing transactions until a failure happens, at which point the system is offlineand the throughput drops to zero. The three recovery phases take place, indicated by thegray areas. Log analysis starts by scanning the recovery log from the last checkpoint untilits end. It collects information about the state of the system right before the failure, suchas dirty pages and active transactions, which is used as input for the next phases. The
redo phase replays log records of updates to pages that might have not been properlyflushed from the buffer pool. Finally, the undo phase rolls back changes made by losertransactions. Once the undo phase is completed, the system starts to accept requestsand the buffer pool is slowly warmed up until the throughput reaches its original state. Ifthe buffer pool employs a no-steal strategy, undo is not necessary during recovery.
In the case of Instant Recovery, the main difference of the log analysis phase is thatexclusive locks of loser transactions are reacquired. After log analysis, the system startsto accept requests immediately. The redo and undo phases are triggered on-demand,and therefore they do not necessarily correspond to the gray areas in Figure 4.10. Theon-demand redo is triggered when a page is requested by a post-failure transaction. Thepage-by-page redo is enabled by keeping log records linked through a per-page logicalchain. Similarly, undo is triggered when a post-failure transaction tries to acquire a lockpreviously held by a loser transaction. In this case, the loser transactions is rolled back.
Instant Recovery increases the availability of the system by starting to process transactionsmuch sooner, reaching its peak performance when the buffer pool is warmed up, the hotpages are recovered, and transactions holding high-contented locks are rolled back.

4.5 Performance Evaluation and Expectations 79

Finally, we discuss the proposed Persistent Buffer Pool with Optimistic Consistency (shownsimply as Persistent Buffer in Figure 4.10). We assume the same memory budget for allsystems. In other words, if ARIES and Instant Recovery have a buffer pool of 100GB ofDRAM, we assume that the sum of the DRAM and NVM portions in the Persistent Buffer isalso 100GB, with the NVM portion being larger (e.g., 20GB of DRAM and 80GB of NVM).
The first expectation is that the peak performance will be reached much sooner after log
analysis. This is a consequence of pages lingering in the NVM portion of the buffer poolacross failures. All pages in DRAM and a few of the pages in NVM will require recovery(as previously discussed). However, since the DRAM portion is smaller, less pages arelost. Furthermore, most of the pages in NVM will be accessible immediately. Therefore,faster “peak-performance” recovery is enabled by two factors: less work to be done during
recovery and the buffer pool is kept warm across failures.
The second expectation is that the initial performance of Persistent Buffer will be lowerthan that of the two other approaches. Assuming the same memory budget, the lower per-formance is a result of the higher NVM latency and the overhead introduced by calculatingthe checksums. In this case, the performance can be improved by increasing the amountof DRAM and decreasing the amount of NVM in the buffer pool. This ratio between DRAMand NVM dedicated to the buffer pool should be implemented as a system parameterto enable a tunable behavior. Figure 4.11 shows the effects of varying this proportion.Increasing the amount of DRAM will lead to a higher throughput during normal processing,but also will increase the recovery time. On the other hand, dedicating more NVM to thebuffer pool will lead to lower throughput but faster recovery. One might argue that failuresare rare, and therefore lowering the throughput to the detriment of faster recovery is not agood trade-off. However, there is an additional hidden factor: cost. Since NVM is cheaperthan DRAM, one could keep the same buffer pool capacity for lower costs, or increasethe buffer capacity for the same price (thus reducing “page misses” and expensive I/O tothe main storage). Enabling such a customizable behavior to trade between performanceand costs is attractive in cloud scenarios, in which customers require higher performanceduring peak hours, but also want to reduce costs at low-demand periods6.

4.6 DISCUSSION

In this chapter, we explored how to leverage NVM in the context of B+Trees. The firstcontribution is the classification of existing approaches into 3 categories. We observed thatall the approaches fail at achieving three characteristics: persistency, byte-addressability,and update-in-place. The second contribution is the proposal of our approach, a Persistent
Buffer Pool with Optimistic Consistency, to achieve all these goals, thus answering thequestions raised in the beginning of the chapter. Like Category #1 and Category #2, weextend the traditional buffer pool infrastructure to manage NVM. Like Category #3, wewrite directly to pages in NVM in a consistent, but optimistic, manner.
The persistent B+Trees in Category #3 are stand-alone data structures and rely on a “force”strategy by eagerly flushing cache lines from the CPU cache to NVM, thus pessimistically

6Anecdotally, industry professionals have communicated in private conversations that certain customersare happy to accept trade-offs such as “80% of the performance for 50% of the cost”.

80 Chapter 4 B+Trees

Figure 4.10: Expected behavior during system restart and recovery after a failure.

Figure 4.11: Effects of varying the ratio between DRAMandNVM in the proposed Persistent
Buffer Pool with Optimistic Consistency.
protecting the data from corruption at all times and guaranteeing the consistency of singleoperations. Our main insight is that B+Trees are more commonly used in a transactionalenvironment in which a group of operations must be atomically executed, rather thanonly single operations. The usual technique for achieving this transactional semantics isthrough logging, or more precisely write-ahead logging (WAL). Therefore, we argue thatleveraging WAL makes more sense than simply getting rid of it. We make the observationthat WAL is enough to guarantee the consistency of the system, and, therefore, a “force”strategy is not required neither between the buffer pool and the main database storage,nor between the CPU cache and the NVM portion of the buffer pool. In other words, aslong as WAL is intact, the system can always be recovered.
Alternative approaches propose to leverage NVM to get rid of WAL, based on a commonmisconception that logging is the bottleneck of database systems. However, we argue that,in addition to B+Trees, WAL also became ubiquitous in the context of modern databasesystems. Not only WAL guarantees atomicity and durability, it also also enables importantbusiness features such as partial rollbacks and database auditing. In cloud environments,WAL is also used for replication and consensus between distributed servers. Therefore, allthese issues would have to be properly addressed in order to completely get rid of the log.This would require a significant effort and changes in modern architectures, going againstthe general proposal of this work to gradually evolve modern systems to leverage NVMrather than completely rewrite them.

4.6 Discussion 81

82 Chapter 4 B+Trees

5
INDEX+LOG KEY-VALUE STORES

Many applications employ key-value stores (KVS) in at least some point of their softwarestack. These KVS are typically non-transactional and one of the most common use-casesis as intermediate caching service in web environments, so clients can avoid expensivenetwork round-trips to a distant data center or server. This is seen in many scenarios, suchas caching query results of a database, or caching popular web contents in a content distri-
bution network (CDN). Therefore, the data cached is often unstructured and heterogeneous,possibly comprising objects such as relational tuples, a YouTube video, or a web page.Since no assumption about the data can be made, these KVS often employ what is knownas an index+log architecture. In this architecture, records are organized in a log-structuredarea to facilitates space management of arbitrarily large records and of structural recordchanges, such as adding a new attribute to a tuple. A separate index data structure is usedto efficiently locate records in the log-structured area. Furthermore, since caching systemsrequire short response times, they are often a single-level system completely in-memory(DRAM). This leads to increased costs and limited capacity. While employing storagedevices such as HDD and SSD would address these issues, they would not only requiresoftware changes to the single-level architecture employed by these systems, but alsoincur high performance penalties. The high latencies of HDD and SSD become particularlyprohibitive, as enabling short and predictable response times is a main requirement. Inthis chapter, we present the design of RStore, an index+log KVS designed to address theseissues. RStore employs NVM to enable large capacity and lower costs, when compared toDRAM-only KVSs. RStore also focuses on achieving short and predictable response times,which are measured in terms of low tail latency. Therefore, in addition to leveraging thelower latency of NVM, we also discuss all of the design decisions that enable RStore toachieve its goals. The two high-level questions being investigated in this chapter are:

• How to extend the capacity and lower the costs of index+log KVSs?• How to achieve short and predictable response times in the form of low tail latency?
In comparison to the proposals in Chapters 3 and 4, implementing a new system fromscratch, as is the case of RStore, might seem to go against the overall principles of thisthesis of transforming existing systems to leverage NVM without requiring disruptivechanges. However, we note that none of the techniques employed by RStore are novel ordisruptive per se. Message-passing communication, cooperative multitasking, and log-structured storage are all well-known and established concepts, employed to some extentby other systems. The contribution of RStore lies in the combination of these techniques.

83

5.1 THE CASE FOR TAIL LATENCY

Key-value stores (KVS) comprise a class of systems that cover a wide range of use-
cases. They are more often used for caching and storage management in applications like
websites, mobile apps, real-time systems, distributed trust, etc. Many of these applications
share characteristics that differ from those of more traditional OLTP and OLAP systems:

• Unstructured and heterogeneous records.
• Many small requests issued by a large number of clients.
• Write requests constitute most of the overall workloads.
• Low and predictable latency requirements for single-record requests.
• High load changes over time requiring scalable behavior and elasticity.

In particular, latency becomes critical in many of these scenarios. As an example, search
engines require extremely low latency to interactively predict results while the user is still
typing a search term. Other examples include real-time communication between devices
in the context of IoT and a fluid interaction with the user in the context of augmented
reality. For such cases, having a low average latency is often not enough and therefore tail
latency plays a major role in the performance analysis of a system. To make the case for
tail latency, assume that 100 HTTP requests are required to load a website and there is
service-level agreement (SLA) for the website to be loaded in less than 1 s in 99% of the
cases. However, even if the server has a 99%-ile latency of 100ms but at least 10 of these
requests must happen sequentially, the amount of times the 1 s SLA is achieved drops
from 99% to 90%(0.9910). The importance of tail latency has already been discussed in
previous works and acknowledged multiple times in industry [DB13, DHJ+07, Gre13].
Unfortunately, most modern KVS are throughput-oriented, in the sense that their design
decisions mainly focus on increasing the amount of requests processed over time, at
times by sacrificing the latency, as is the usual case of techniques like batching and
group-commit. Furthermore, many other components of a system have a negative impact
on the tail latency. The operating system scheduler might arbitrarily preempt threads at
undesirable points, introducing additional overhead for context switches. The traditional
network stack often implies unnecessary movement of data and coarse-grained locks.
Storage devices, such as SSDs, require periodical internal reorganization to enable wear-
leveling. Garbage collection and defragmentation is also employed in memory allocators
and compaction and merging in log-structured systems like LSMs. As a consequence, it is
challenging to adapt traditional KVS to become latency-oriented, since the overall latency
is affected by the latency of each individual component and usually there is not a single
culprit for being the bottleneck. Therefore, to design a latency-oriented system from the
ground up, it is required to reduce the latency at each individual component by employing
design decisions different than most traditional systems.

84 Chapter 5 Index+Log Key-Value Stores

5.2 GOALS AND OVERVIEW

The design decisions of RStore are guided by two main goals. First, enable low and
predictable latency. In this context, the focus is on low tail latency of single requests, asthese become critical for many use-cases. Second, RStore should enable efficient use ofhardware resources such as CPU, memory, and storage. An efficient use of CPU requiresnot only achieving a high throughput, but also a scalable throughput to the number ofcores in the system. In terms of memory and storage, the goal is to achieve a good ratiothat enables lower costs while not harming the tail latency. The main design points thatenable RStore to achieve these goals can be summarized as:

• Asynchronous execution enables cores to be always doing “useful” work, leading toefficient usage of CPU resources. This is achieved through asynchronous message-passing communication and cooperative multitasking, avoiding preemptive schedul-ing and enabling RStore to scale with an increasing number of cores.
• Hybrid DRAM+NVM architecture allows a good balance between cost and perfor-mance. Most of the primary data is stored in NVM, while a small portion of DRAM isused to hide the higher latency of NVM.
• Log-structured storage enables efficient space utilization for arbitrary large recordsand robust performance even under high memory utilization.
• User-space networking eliminates the typical bottlenecks of the operating systemsnetwork stack and allows zero-copy semantics by directly copying data betweennetwork card buffers and non-volatile memory.

5.3 EXECUTION MODEL

The execution model of RStore is motivated by the principles of reactive systems and theactor model. To that aim, two main execution techniques are employed: message-passingcommunication and cooperative multitasking.

5.3.1 Reactive Systems and Actor Model

RStore aims at the principles of reactive systems [BFKT14]: message-driven, resilient,responsive, elastic. These principles were already identified by early work of Joel Barlett,Jim Gray, and Bob Horst at Tandem Computers [BGH87] and Joe Armstrong on the Erlangprogramming language [Arm03], but it was not until the recent need for large-scale systemsthat they gained more attention, also in database systems [BBG+14, BDKM17].
One of the ways to achieve such characteristics is enabling concurrency through theactor model [HBS73]. An actor (or a “partition” in RStore) is an independent and isolatedlogical entity treated as the universal primitive for concurrent computation. Since actors are

5.2 Goals and Overview 85

isolated, the only way of communication is bymessage passing (seemore in Section 5.3.2).This level of isolation also provides resilience by means of fault containment and localizedrepair, i.e., the failure of an actor is not propagated through the whole system. Whencombined with replication techniques, the system can achieve higher availability and
responsiveness. Furthermore, the isolation and independence provide a higher degree ofsystem-wide elasticity by allowing actors to be easily distributed and relocated acrosscores, NUMA nodes, or potentially different machines through the network. Finally, animportant consequence of all these aspects is the simplification of development andmaintenance of large and complex systems. As an example, one of the best practicesof good programming is eliminating special cases. The actor model achieves that byeliminating any differences between local and remote communication (or between scale-up and scale-out) at the programming level, i.e., no matter where actors reside, theycommunicate in the exact same way (message passing).

5.3.2 Message-Passing Communication

Whilemany fundamental concepts of concurrent and parallel programmingwere introducedin the 1960’s in the context of time sharing inmulti-user single-core environments, it was notuntil early 2000’s that true parallelism becamewidespread thanks to the advent ofmulticoreCPUs. As a consequence, system architectures and algorithms had to be revisited to fullyexploit the potential of multiple cores.
Themany programmingmodels that emerged from this timewere classified by Silberschatzet. al. [SGG14] into two dimensions: interprocess communication (message passing vs.shared memory) and problem decomposition (task parallelism vs. data parallelism). Mostmodern systems employ shared memory for communication between processes (whichwe will refer from now on as threads) and task parallelism, i.e., distinguished tasks areexecuted on the same data.
In shared-memory communication, threads must carefully coordinate by means of mutualexclusion implemented through mechanisms such as locks (a.k.a. latches), semaphores,and lock-free algorithms. To enable algorithms to scale with many cores, the mutually-exclusive critical sections must be as small as possible to avoid contention. To achievethat, these algorithms have to be re-architectured, which often leads to more complex andless general approaches. On top of that, the ever increasing number of cores and degreesof parallelism of modern hardware requires these algorithms to be constantly revised andoptimized. As a consequence, the programming of large systems becomes significantlymore complex and expensive if one is to leverage this increasing level of parallelism. Interms of performance, previous work has shown poor scalability [HAMS08] and a highnumber of wasted CPU cycles [STPA16] in the context of database systems. Finally, theadditional complexity may introduce subtle bugs that are difficult to find as it is harder toreason about execution order in the presence of arbitrarily interwoven threads.
In contrast to shared memory, RStore employs asynchronous message-passing for inter-process communication and data parallelism for problem decomposition. In other words,similar to systems like HStore [SMA+07], each core runs a single worker thread that onlyaccesses a partition of the complete dataset. Each worker thread has an associated

86 Chapter 5 Index+Log Key-Value Stores

(a) Throughput (b) CPU Consumption
Figure 5.1: Comparison of shared-memory (mutex) and message-passing synchronizationover multiple cores.
message queue, to which it can receive requests sent by other threads. If a given threadrequires data residing on another partition, it must send a message to request the datafrom the thread owning that partition. Since communication is asynchronous, the firstthread is free to execute further requests while it waits for the response of the message.
While message passing may sound heavyweight compared to shared memory, it allowsfor a more efficient usage of CPU resources. To prove this point empirically, Figure 5.1compares both shared memory and message passing approaches when incrementing asingle counter for an increasing number of cores. For the shared memory scenario, eachthread acquires a mutex, increments the counter and then releases the mutex. For themessage passing case, a single thread owns the counter and is responsible for incre-menting it, while the other threads send messages to it with a request to increment thecounter on their behalf. It is worth noting that, while incrementing a counter can be donemore efficiently than with a mutex, we use this example to simulate a high contentionscenario. This scenario is realistic as avoiding contention becomes harder considering anever growing number of cores on future CPUs.
In Figure 5.1a, although message passing presents a higher throughput for a small numberof cores (due to reduced cache-coherency events), the throughput drops significantly withmore cores, while the shared memory scenario remains constant. However, in Figure 5.1b,shared memory consumes an increasing amount of cycles while providing no additionalperformance benefits, i.e., these cycles are wasted while message passing maintains aconstant CPU consumption.

5.3.3 Cooperative Multitasking

Section 5.3.2 stated that RStore relies on data parallelism on a system-wide level. In otherwords, data is partitioned (by hash or range) and each core runs a single thread, acting asan independent KVS instance. However, it is inevitable that a task (such as processinga client request) will be hindered of making progress when waiting for blocking eventssuch as a message reply, storage I/O, or a network request. Therefore, task parallelism

5.3 Execution Model 87

Figure 5.2: A single thread executes multiple tasks through cooperative multitasking inan event-loop. Each task is executed to completion and dependencies between tasks areexpressed by a chain of future and continuation objects.
within a single-threaded partition is also desired to make efficient use of CPU resources.Nonetheless, allowing many threads on the same core does not only lead to expensivecontext switches, but also to unpredictable behavior, as we have little control over thepreemptive task scheduling employed by the kernel. Alternatively, RStore employs taskparallelism within a partition through a light weight user-space cooperative multitasking.
The left-hand side of Figure 5.2 shows the single-threaded multitasking model of RStore.Each thread has a scheduler and a task queue. The scheduler runs an event loop thatpicks a task from the queue and then executes it to completion (i.e., non-preemptive).Tasks are expressed by means of futures, promises, and continuations. These conceptsare common to programming languages, such as Scala [HPM+13], and to frameworks forbuilding distributed systems, such as Seastar [Scy15b]. A more detailed definition can befound in the work by Miller et al. [PPM16]. We quote the Scala manual which describes:

“A future is a placeholder object for a result that does not yet exist. A promise is
a writable, single-assignment container, which completes a future. Promises can
complete the future with a result to indicate success, or with an exception to

indicate failure.” [HPM+13]

The right-hand side of Figure 5.2 shows a small example: read two integers from file1(4 B each), sum their values, write the sum to file2, and finally increment a counter. Sincefile operations are blocking events, the read() and write() functions delegate the I/O to ahelper thread and immediately return a future object as a result. A continuation Cont1 canbe chained to this object through the then() method and the code passed as argumentwill only be executed once the I/O result becomes available. Meanwhile, the single-threadis free to execute the next task in the queue (T2). Once the read result is available, thescheduler can execute Cont1. Writing to the file will return another future object to whichthe Cont2 is chained. Therefore, continuations are used to express dependency betweentasks that are executed asynchronously. This model enables full control of the executionflow, as context switches can only happen at well-defined parts of the code (i.e., betweentasks and continuations), resulting in a more predictable behavior of the overall system.

88 Chapter 5 Index+Log Key-Value Stores

5.4 LOG-STRUCTURED STORAGE

The concept of log-structuring was first proposed by Mendel Rosenblum and John Ouster-hout in the context of file systems [RO92]. The original motivation was to mitigate thebottleneck of HDDs by exploiting their faster sequential write bandwidth, while servingmost reads from main memory, based on the increasing memory capacities by the time.
Flash SSDs reduced the performance gap between sequential and random I/O, albeitsequential I/O requests may still be faster as they better exploit the SDD’s inner parallelism.Nevertheless, writing a block to flash requires erasing it first, which can only be done at alarger granularity than writing. This created a new motivation for log-structuring, as newwrites can be directed to fresh blocks and space can be reclaimed at a later point in time,thereby reducing the amount of erase cycles required. Most flash translation layers (FTL)of modern SSDs rely on some sort of log-structuring. At a system scale, the log-structureddesign offers additional benefits that are exploited by a wide range of modern systems, asdiscussed in the following.
First, systems like RocksDB [Fac12] and SILT [LFAK11] use a log-structured merge-tree(LSM) [OCGO96] to reduce the write amplification by batching writes in memory and writingthem in a log-structured manner to persistent storage. The reduced write amplificationleads to a longer life-time of SSDs, as these can endure a limited amount of erase cycles.Other systems like LogBase [VWA+12], Hyder [BRD11], and LLAMA [LLS13] also use log-structured storage in the context of SSDs.
Second, in the context of DRAM and NVM, gains in write performance might be relativelysmaller and one might be tempted to employ update-in-place strategies. However, log-structuring enables better memory management in terms of lower fragmentation andpredictable performance in high utilization scenarios. RAMCloud [OGG+15] adopted alog-structured memory allocator [RKO14] to leverage these benefits and allow robustperformance even in face of application changes (e.g., expand records of a table from100B to 130B). A similar concept was applied in the context of NVM [HRB+17].
Third, log-structuring makes it trivial to perform atomic writes, as only the head of thelog must be updated to reflect an arbitrarily large group of operations. This becomeseven more convenient in an NVM scenario, as the programmer has little control over CPUcaches, which makes it cumbersome to efficiently implement update-in-place strategieswhile keeping data consistent at all times.
Benefits also entail drawbacks following the no-free-lunch conjecture. Unlike update-in-place, a log-structured strategy organizes records by creation time and allows multipleversions of a record to co-exist. This causes three general problems. First, since recordsare appended to the end of the log, there is low locality for operations such as a sortedrange queries, requiring multiple random accesses. Second, point lookup operationsbecome more expensive as they may inspect multiple locations until the most recentversion of a record is found, as it is the case in LSMs. Third, garbage collection is neededto delete older entries and reclaim space. However, these problems are less critical in thecontext of NVM. The low latency reduces the cost of many random accesses requiredby read operations, while the high bandwidth allows efficient garbage collection, as largeportions of live data must be moved to a new location.

5.4 Log-Structured Storage 89

To summarize, not only there is goodness in log-structured designs, but as already notedby David Lomet [Lom93]:

“Log structured file system has wonderful potential as the underpinning of a
database system, solving a number of problems that are known to be quite

vexing, and providing some additional important benefits.”

5.5 NETWORKING

In many KVS scenarios, multiple parallel requests are received from clients through thenetwork and many messages are exchanged between remote machines. Therefore, thenetwork plays a major role and is a critical point of optimization. Saturating the networkbandwidth becomes challenging while offering low and predictable latencies. While betterbandwidth usage could be achieved by classical techniques for trading-off latency forhigher throughput, they should be avoided at the network level if one is to offer a systemwith robust performance. In common scenarios where the vast majority of requests haveless than 320B [AXF+12], the processing overhead per package becomes relatively higher.
Operating system kernels offer applications a general-purpose networking stack. Whileconvenient, kernel networking has issues such as expensive context switches, unnecessarycopy of data between NIC, system cache, and application buffers, and poor scalabilitydue to large lock granularities. To circumvent this issues, libraries such as DPDK [Lin10]enable access to the NIC in the user-space. As a consequence, systems are able to tailorthe network stack to their use-cases such as zero-copy usage and avoid context switches.
Figure 5.3 compares the performance between kernel networking and DPDK in a mi-crobenchmark. To isolate the impact of DPDK we implemented an HTTP echo-serverwithin our system. The server receives parallel HTTP packages of 100B from multipleremote clients and send them back, without further complex processing. Figure 5.3ashows how DPDK enables the throughput to scale with an increasing number of cores.Figure 5.3b shows the tail latency of a server with 4 threads using both kernel and DPDKnetworking while increasing the number of packages sent by clients. At 400 thousandpackages per second, the 99%-ile of kernel networking increases abruptly, which reflectsthe throughput achieved with 4 threads in Figure 5.3a. Meanwhile, DPDK not only enablesa predictable latency behavior (no abrupt spikes) but even the worst latency (99.99%-ile)is lower than the 99%-ile of kernel networking. Additional percentiles of kernel networkingare much higher and are omitted to enable a better visualization of absolute numbers.
For the reasons mentioned above, we opted for using DPDK on RStore for the client andserver communication. While a simple client-server communication does not leverageDPDK to its full potential, it is an important building block for extending the communicationto many servers in a future distributed context. In such scenario, multiple messages areexchanged between servers and efficient networking becomes even more critical.

90 Chapter 5 Index+Log Key-Value Stores

(a) Throughput (b) Tail latency
Figure 5.3: HTTP echo server processing 100B packages using kernel networking andDPDK. Not only DPDK enables a more scalable throughput, but also lower tail latency.

Figure 5.4: RStore architectural overview. The system is partitioned on a per-core basisand each partition runs its own instance of a single-threaded KVS. Each instance followsan index+log architecture and the communication between partitions happens throughmessage passing.
5.6 IMPLEMENTATION DETAILS

In this section, we describe details of the overall RStore architecture. Figure 5.4 gives acomplete overview of the whole system. In this case, the server spans the whole key range
[a..z] of a dataset. Further to the center of the figure we have the internal organizationof the server. The server is a 4-core system equipped with DRAM and NVM. The wholesystem is internally partitioned on a per-core basis and communication between cores isdone by message-passing, as previously explained in Section 5.3.2.

5.6.1 NVM Allocation on RStore

The log-structured approach significantly facilitates spacemanagement, as arbitrarily sizedrecords are accommodated naturally by appending to the end of a block without the need ofmoving other records for creating space. NVM physical devices are segmented into 2MBchunks, which is the unity of physical allocation. RStore implements an allocation tablethat maps each physical segment to a logical segment within a logical device. Figure 5.5illustrates such organization.

5.6 Implementation Details 91

Figure 5.5: NVM device allocation.
Information of which segments are free and used are stored in the first physical segmentof the device in the form of an allocation table. Physical segments currently used aremapped to a single logical segment in a logical device. Since keeping the consistencyof allocation mapping is critical, the allocation table is implemented as a persistent datastructure in which updates are guaranteed to be atomically persisted.
While the overhead of an additional indirection from logical to physical segments can beavoided, it allows each partition of RStore to be fully independent by accessing an isolatedlogical device. It also eases load balancing and reorganization across physical devices, assegments can be moved simply by updating the mapping in the allocation table.
Finally, RStore handles logical segments of three different types: log, data, map. Logsegments are used for storing log records, which are used for durability and recovery. Datasegments can be further divided into smaller blocks of pre-defined sizes (2 kB, 16 kB, 64 kB,2MB). These blocks are used for the log-structured storage of records and for overflowblocks in case of large values (more in Section 5.6.4). Map segments contain entries thatare used to track information of blocks currently allocated in data segments.

5.6.2 Log-Structured Storage and Indexing

The architecture of RStore is commonly referred as index+log architecture, and employedby many systems both in academia [RKO14, HRB+17, VWA+12] as well as in industry, suchas Bitcast at Riak [SS10], Sparkey at Spotify [Spo14], and FASTER at Microsoft [CPK+18].The main idea is to separate the concerns of data access and space management bydecoupling them. This contrasts with approaches such as clustered B+Trees and LSMs, inwhich primary and indexing data are managed within the same data structure.
RStore employs a log-structured NVM area comprised of fixed-size blocks (64 kB). Even ifNVM is byte-addressable and differs from traditional block devices, it is still desirable toorganize data in blocks (or “pages”), as it represents a unit of space allocation, garbagecollection (see Section 5.6.3), fault containment/detection, and possibly localized re-pair [GK12]. Records are appended to a block until the block becomes full and is thenmarked as immutable. Once a record is appended to this log-structured area, a pointer

92 Chapter 5 Index+Log Key-Value Stores

(a) Scan of 100 records (b) Scan with predicate evaluation
Figure 5.6: Average time for scanning records in a sorted array (sequentialmemory access)vs. in index+log (random memory access).
to it is inserted into a tree index residing completely in DRAM, enabling a more efficientaccess than simply scanning the existing records.
This separation of concerns offers important advantages. First, there is more flexibilityregarding the representation of persistent and runtime data. For example, any data struc-ture can easily be integrated to index the records in NVM. Second, the index structurecontains only fixed-size entries with pointers to the actual data, which simplifies memorymanagement within the data structure. Third, the index structure consumes only a smallamount of additional memory. A workload analysis at Facebook [AXF+12] shows thatthe vast majority of keys are no larger than 20B, while the majority of values are at least300B. If the index structure stores whole keys and a pointer to the record in NVM, itsspace consumption is less than 10%. Fourth, handling records in a log-structured mannerenables efficient usage of NVM space by reducing fragmentation and avoiding large overprovisioning (B+Tree nodes are usually kept 75% full to accommodate future records).This becomes important since RStore does not make any assumptions about data format,origin, or schema. While a well-defined schema enables performance optimizations by theunderlying system, RStore trades these gains for enough flexibility to be used either as aNoSQL KVS and cache, or as the storage engine for a more complex relational engine.
Despite its advantages, the mentioned architecture introduces drawbacks that must beproperly addressed. First, the separation between primary and indexing data is not optimalin terms of spatial locality. Systems designed for HDDs had to exploit at maximum thespatial locality since sequential accesses were significantly faster than random accesses.This assumption still holds for modern SSDs and DRAM and exploiting cache-obliviousdata structures are relevant [BDF05, GL01], but the performance gap between random andsequential access is much smaller. This gap can be further reduced by exploiting DRAMprefetching techniques [CAGM04, KFG15, PLMA17] that can be directly applied to NVM.
Figure 5.6 shows the scan performance of a log-structured storage and of a sorted arraythrough a microbenchmark. We isolated other components to better understand the trade-offs. Figure 5.6a shows the average time (Y axis) for scanning 100 records with varyingsize (X axis) and copying them to the network buffer with a single thread. As previouslymentioned, we show how we can reduce the gap between Index+Log and Sorted Array by

5.6 Implementation Details 93

firing an asynchronous memory prefetch for the next record while the current record isbeing copied to the network buffer. Figure 5.6b shows another case in which a scan of100 records has a predicate to evaluate, which introduces additional CPU time, allowing abetter overlapping between execution and prefetching. We argue that, while we trade-offscan performance for other benefits (such as easy memory management and garbagecollection), we can still improve the worst case, albeit still being slower than a scan insorted storage. Nevertheless, in the context of a system accessed through a modernnetwork, the performance benefits are mostly blurred by higher network latency.
The second disadvantage is that, while the space management of primary data is made ina log-structured manner, the space management of indexing data still has to be handled.Fortunately, index space management is significantly simplified by using fixed-size indexentries, as previously mentioned. At one extreme, only 8B pointers to the actual recordscan be used as index entries. In such case, index operations are more costly, as everykey comparison must go out-of-node to fetch the actual key in NVM. In the context of atree index, we employ techniques such as prefix truncation and poor man’s normalized
keys [GL01] to keep a copy of a small portion of the key within the node. In most cases, thissmall portion of the key is enough to resolve comparisons without accessing out-of-nodedata. By changing the amount of bytes dedicated to store the in-node portion of keys,we can trade between memory consumption and access performance, while keepingfixed-size index entries.
Third, while the index can exploit the lower latency of DRAM, it must be rebuilt in case offailures. We rebuild the index during startup from the key-value records in the log-structuredstorage. Since RStore is composed of independent partitions, the index for each one ofthese partitions can be recovered on-demand, i.e., accessing data during restart does notrequire a complete rebuild of all indexes. A similar approach is used by hybrid NVM-DRAMdata structures [OLN+16, XJXS17]. To limit speedup recovery, regular snapshots of theindex can be taken by flushing the whole data structure to NVM.

5.6.3 Garbage Collection

Traditional LSM implementations employ a merge operation to reclaim space of obsoleterecords and consequently reduce the number of persistent components (also called SSTs)that must be inspected during reads. RStore relies on a global index to access records,therefore, a read operation does not have to consider multiple copies of a record, as onlythe most recent one is indexed. Nevertheless, the cost of index operations increases withthe size of the index.
LSMs can reduce the cost of inspectingmultiple SSTs by employing Bloom filters. However,in the context of NVM, two points must be considered. First, memory consumption ofBloom filters is not negligible for large data, even if the memory budget is optimallydistributed across levels [DAI17]. Second, Bloom filters are used to avoid expensive diskI/O which incurs high latency. On NVM, accesses incur a much lower latency and thereforethe performance gains of avoiding these accesses relative to the additional overheadintroduced by Bloom filters are smaller. In other words, probing the Bloom filter alreadyincurs a memory access, which is a similar cost to directly searching the key in NVM.

94 Chapter 5 Index+Log Key-Value Stores

Figure 5.7: False overlap leads to inefficient space reclamation and unnecessary writeamplification in merges of LSMs.
Figure 5.7 shows the merge process of an LSM. The merge starts by selecting a rangeof records from Level n for merging with records from Level n+1 that have an overlappingkey range. The problem of relying on overlapping key ranges for garbage collection isthat there is no guarantee of how much space will be reclaimed. In other words, thekey ranges defined by min and max keys may overlap but the records themselves mightnot. As shown in Figure 5.7, in the worst case there is no overlap of records and themerge process is superfluous, thus increasing the write amplification. The phenomenon isreferred to as false overlap and has been discussed in previous work [LAK16]. Alternativessuch as logical merging through pointer manipulation may help in reducing the amount ofduplicated records and consequently in improving lookup performance, but it does nothelp with reclaiming space, which is critical when a device is mostly full. Furthermore, themerge operation is hard to parallelize, as it depends on the key distribution of the workload.A uniform distribution allows an easier parallelization of the merge operation, as disjunctranges can be merged, while a skewed distribution causes only a subset of the whole keyrange to be merged frequently.
The garbage collection of RStore was designed to be oblivious to the aforementionedeffects caused by using key ranges as victim-picking strategy. The core idea is to keep liveinformation about free space and valid records in each NVM block. In a way, it resemblesthe trim command in early SSDs, in which the user actively provide information aboutunused space to facilitate garbage collection by the flash translation layer(FTL). Trackingthis information on a record granularity introduces overhead during runtime, as blindinserts/updates/deletes are not possible anymore. Nevertheless, it facilitates garbagecollection, which is the main source of unpredictable performance in many systems. Inother words, RStore takes a small, but predictable, performance penalty during normalprocessing in order to reduce the unpredictability of garbage collection.
Figure 5.8 gives an overview of the algorithm. A block initially has 100% of free space,which is reduced as the block is filled. When the block is full, it becomes immutable.Whenever a record is deleted or a new version is inserted, the free space information ofthe corresponding block is updated. The free space heap tracks the free space of eachblock, which allows identifying the block that will yield the largest amount of space when

5.6 Implementation Details 95

Figure 5.8: Garbage collection algorithm of RStore.
reclaimed. Since free space of blocks changes frequently, maintaining the heap structure
is expensive. Therefore, whenever the free space of a block is changed for the first time, a
reference to this block is added to the free space queue. By doing so, the heap is updated
only when garbage collection is required, thereby alleviating the heap overhead during
runtime. When garbage collection is triggered, step 1 is to update the free space heap
with blocks in the free space queue, i.e., blocks in which the free space changed since last
garbage collection. With the free space heap updated, step 2 is to pick block with largest
amount of free space (in this case Block 2), referred as victim. Next, valid records from
the victim block are moved to a dedicated garbage collection block in step 3. Finally, in
step 4 and step 5, the garbage collection block becomes a new block at the end of the list
and the victim block becomes the new dedicated block to be used by the next iteration of
garbage collection, respectively.
Figure 5.9 compares our algorithm and traditional LSM merge (RocksDB). We limit the
available space to 16GB and load it until little space is left in order to force garbage
collection. Both systems run on top of NVM described in Section 5.8 and we use leveled
compaction in RocksDB. To isolate the algorithm impact, in Figure 5.9a we run an update-
only workload for 5 minutes with a single-thread serving requests sent at a rate of 25000
requests per second (a rate that both systems can easily sustain). Not only RStore has lower
tail latency, but it is constant and unaffected by skew. Figure 5.9b shows the throughput
over time including the load phase (gray area) using 16 threads. In addition to leveled
compaction, we run RocksDB with universal compaction. Universal compaction trades
higher read and space amplification for lower write amplification and is more cumbersome
(as noted in the first drop during the load phase). It also requires double the amount
of space, which explains the throughput drop to zero after the load phase: the system
becomes unresponsive since not enough space is available for compaction. Finally, the
absolute throughput number is not important, instead the focus is on the drop when the
device is full and garbage collection becomes critical. The average throughput of RocksDB
drops by 38% and RStore by only 7%.

96 Chapter 5 Index+Log Key-Value Stores

(a) Tail latency (b) Throughput
Figure 5.9: Impact of garbage collection in the performance when storage device is full.

Figure 5.10: Large values are stored only once in an overflow block, reducing write amplifi-cation. Records and log records point to the single copy of a large value.
5.6.4 Logging and Recovery

In addition to the log-structured storage, each partition of RStore has a local recoverylog. Since operations to the log-structured storage are easily made atomic, one mayconsider that it obviates the need for separated logging. However, the log acts as a centralcomponent which can be used by third-party systems for state machine replication throughprotocols such as RAFT [OO14]. In this case, log records are send to remote replicas and thenetwork bandwidth becomes the bottleneck. Therefore, we use redo-only logical logging,which has smaller log records compared to traditional physiological logging, thus betterleveraging network bandwidth.
An initial concern is that the recovery log doubles the write amplification. However, decou-pling logging from storage facilitates replication of higher-level operations. As an example,while the log-structured storage only operates through basic single record operations suchas insert, delete, and update, the recovery log allows multi-record operations, such asdeletion of multiple keys based on a given prefix, to be transmitted as a single log record.Furthermore, to alleviate the write-amplification introduced by logging, large keys andvalues are stored only once in an overflow block which is then referred by both log recordand key-value record. Figure 5.10 illustrates this case in which a value larger than 2 kB isinserted. The larger part of the value is stored in the overflow block which is referred byboth the respective log record and key-value record.

5.6 Implementation Details 97

Another concern is that latency of writes is doubled, since every write must be flushedtwice to NVM: one to the log, another one to storage. However, only writes to the log mustbe eagerly persisted. Writes to storage do not have to be explicitly flushed and can beamortized by CPU caches. Since storage is log-structured, data is not overwritten. In caseof a crash before a record is evicted from the CPU cache, it can be recovered by replayingthe recovery log.
After a system failure, recovery starts by rebuilding the in-memory index and free spaceinformation from the records present in the log-structured storage. The recovery log isthen analyzed and any missed operations are replayed. Since each partition of RStore isindependent, this process is completely parallelizable and a partition can start to serveclient requests without waiting for a complete system recovery.

5.7 SYSTEM OPERATIONS

In this section, we describe the steps of basic operations. Unlike other systems, RStore doesnot support blind operations, since free space information must be tracked for garbagecollection. Each operation is initially assigned to the partition spanning the range thatcovers the given key.
An insertion of a record starts by searching the index for the given key. If the key alreadyexists the operation fails. Otherwise a log record corresponding to the operation is writtento the log, and the record itself is written to the log-structured storage. An entry containingthe key and pointer to the record is then inserted in the index structure.
The update of a record is similar to an insertion, with two main differences. First, theoperation fails if the key does not exist. Second, the update is done by inserting a newversion of the record which invalidates the old one. Therefore, the corresponding pointer inthe indexmust be updated to point to the new record and the old recordmust be invalidatedby resetting a validity bit. Validity bits of records are kept in-memory and must be rebuiltduring restart, since immutable blocks of the log-structured storage cannot be updatedin-place. Additionally, the size of the old record is added to the free space informationof the block containing it. A deletion works like an update in which a special tombstonerecord with no value is inserted and the corresponding entry in the index is deleted ratherthan updated.
The point lookup of a record traverses the indexing structure to find the record for thegiven key. If the full key is stored in the index, the lookup makes a single access to NVMto retrieve the full record (if it exists). If fixed-size partial keys are used for indexing, thelookup might require additional accesses to records in NVM to compare the full keys incase the partial key is not enough to resolve a comparison when traversing inner nodes.
Range lookupsmay span multiple partitions. Therefore, a partition is chosen to coordinatethe operation. It then forwards the range lookup operation by sending a message to allother partitions that span key ranges overlapping with the one specified by the operation.Each partition then independently executes the range lookup locally by traversing theindex data structure. Even if the records are not sorted on the log-structured storage, their

98 Chapter 5 Index+Log Key-Value Stores

corresponding index entries are, enabling the records to be retrieved in sorted order. Once
a local range lookup is completed, the partition replies the results to the coordinating
partition, which is responsible for collecting the multiple results and issuing the final reply
of the operation.

5.8 EVALUATION

In this section, we present performance results of an end-to-end evaluation of systems.
The metrics we are most interested in are throughput scalability and low tail latency.

5.8.1 Methodology

We run all systems on a single machine and use a second client machine sending a high
number of parallel requests. The indicated number of threads is the same for both server
and client. To overload the server, each client thread opens 8 connections to the server and
issues asynchronous requests (at any point in time a client thread has 8 in-flight requests).
We measure throughput and latency on the client side. For throughput, we collect the
amount of operations completed every 1 second. At the end of the execution, we use
the list of operations completed per second for calculating the average throughput as
well as the standard deviation. For tail latency, measuring each individual request would
introduce too much compute and memory overhead, therefore we randomly sample up to
500 thousand requests every 1 second and use the total amount of samples to plot the
latency percentiles.

5.8.2 Environment

The server has an Intel Xeon Platinum 8260L CPU, 96GB of DRAM (6× 16GB DIMMS),
and 1.5 TiB of Intel Optane DC Persistent Memory (6× 256GB modules). The client has an
Intel Xeon CPU E5-2699 v4 and 128GB of DRAM (8× 16GB DIMMS). Both client and server
use a 10 GbE Intel Ethernet Controller X540-AT2. The network cards are accessed through
DPDK(v17.02). The Linux version is 5.3 on both machines The NVM modules are combined
into a single namespace in fsdax mode and accessed through an ext4 file system with
the DAX option enabled. All the systems benchmarked rely on Intel Optane DC Persistent
memory for storage. It is either accessed as an SSD replacement through the regular
file system API, or accessed directly as persistent memory (in the case of NVM-aware
systems, like RStore).

5.8 Evaluation 99

5.8.3 Other Systems

In addition to RStore, we also benchmark three popular KVS systems: memcached (v1.5.16),
Redis (v5.0.5), andRocksDB (v6.2.2). We also compare to FASTER (v2019.11.18.1) [CPK+18],
a more recent system which employs modern techniques. Both memcached and Redis
are often used as a web cache. While they enable flushing memory contents to persistent
media as a background task, the default scenario is purely in-memory. We disable their
caching behavior to guarantee that records loaded by the client are not arbitrarily discarded
by the LRU policy. The available memory is set to 32GB. Finally, it is worth noting that
Redis is a single-thread system.
RocksDB is an LSM persistent KVS to make efficient use of SSDs. To enable a fairer com-
parison, we run RocksDB on top of NVM as well. We disable Bloom filters and compression
of values, since other systems do not employ them. Furthermore, since I/O to NVM is
faster than to SSD, the overhead of compressing data prior to writing to persistent storage
is relatively higher and the gains of avoiding I/O with Bloom filters are relatively lower. The
compression of keys is kept. We use a block cache of 6GB. Additional parameters were
changed according to the tuning guide available at the official repository1. We make the
complete settings available2. RocksDB does not have networking, so we adapted the same
network layer of memcached. Finally, it is worth noting that RocksDB does not explore the
byte-addessability of NVM, using it as a faster SSD. Previous work improved RocksDB to
better leverage NVM [EGA+18], but these changes are not available in the main repository.
Finally, while comparing absolute throughput numbers may not be completely fair, the
comparison of overall system behavior is still relevant.
FASTER also has a log+index architecture, using a lock-free hash table for indexing and
epochs for concurrency control. Unlike RStore, in FASTER keys are not part of the index,
which reduces its memory footprint. Furthermore, it requires that the amount of hash
buckets is a power of 2. For 100B and 1000B values we set the amount of hash buckets to
226 and 223 which gives an average of 2.3 and 1.9 records per bucket and 4GB and 0.5GB
memory consumption, respectively. We limit the log size to 32GB. FASTER does not offer
networking, therefore we adapted it to work with memcached network stack. We show
results for the in-memory version of FASTER. We omit the persistent version as it showed
lower performance and does not access NVM directly, therefore the results could be unfair
and misleading. Consequently, we have also disabled checkpointing.
RStore keeps the index completely in DRAM, which contains keys (approximately 25B)
and pointers to the complete records in NVM (8B). We apply hash partitioning to RStore
and set the amount of available memory to 32GB. In addition to the persistent version, we
also benchmark a fully in-memory variant of RStore (tagged with IM).

1https://github.com/facebook/rocksdb/wiki/Setup-Options-and-Basic-Tuning2https://gist.github.com/llersch/6a6fd515b9db8a87ed860573e3417961

100 Chapter 5 Index+Log Key-Value Stores

5.8.4 Throughput Scalability

In this section, we measure the throughput when increasing the number of threads at the
server side. It is worth noting that each client thread sends up to 8 parallel requests to
the server at any point in time. We run the Yahoo! Cloud Serving Benchmark [CST+10],
issuing Put and Get requests. Our Put operations are done on existing records (updates),
therefore the dataset size does not increase. We vary the ratio between these requests to
simulate different workload scenarios: read-heavy (90% Get, 10% Put), balanced (50% Get,
50% Put), and write-heavy (10% Get, 90% Put). Following workload trends [AXF+12], we set
the key size to approximately 20B with an additional prefix of 4B while having large-value
(1000B) and small-value (100B) scenarios.
We analyze two load scenarios that achieve 16GB of payload data. In other words, for
1000B values 16 million records are inserted, while for 100B values 160 million records
are inserted. After the load phase, we run each workload for 5 minutes. Figure 5.11 and
Figure 5.12 show the results for 1000B and 100B payloads, respectively. The shaded part
indicates the hyper-threading zone. We make three observations.
First, both Redis and RocksDB perform worse than the others. This is expected, since, as
previously mentioned, Redis is a single-thread system and therefore the X-axis represents
only the amount of clients sending requests. The main reason RocksDB presents a lower
performance is the fact that it does not fully leverages the byte-addressability of NVM,
simply accessing it like a faster SSD. Nevertheless, it is worth noting how RocksDB performs
better than Redis for the read-heavy scenarios since it is able to leverage multiple threads.
As soon as the amount of write operations increase, RocksDB is exposed to the higher
write latency of NVM during flushing and compaction.
Second, the performance of RStore and memcached degrades when the amount of write
operations increases. For RStore, write operations expose the higher NVM write latency,
as well as it triggers garbage collection due to the log-structured organization. The in-
memory variant, RStore(IM), is able to scale better and saturate the network limit with
fewer cores since it is not affected by NVM. For memcached, no additional allocation is
required because only existing records are updated. However, it introduces additional
overhead when acquiring a coarse-grained mutex every time a record is updated. FASTER
and RStore(IM) scale well and have a similar behavior, as both saturate the network in
Figure 5.11 and scale almost linearly in Figure 5.12.
The throughput of RStore is slightly higher than memcached with 1000B and slightly
lower with 100B, but both scale similarly across many threads. Furthermore, it is worth
noting that RStore stores most of its data in NVM, which introduces a higher latency as
a trade-off for lower costs. Nevertheless, RStore still achieves a good performance due
the combination of the techniques mentioned previously. Finally, it is possible to see the
impact NVM has on RStore, since RStore(IM) saturates the network with fewer cores in
Figure 5.11 while offering higher throughput in Figure 5.12.

5.8 Evaluation 101

(a) Read-heavy (90/10) (b) Balanced (50/50) (c) Write-heavy (10/90)
Figure 5.11: Throughput of YCSB workloads with values of 1000B over multiple threads.

Redis FASTER memcached RocksDB RStore (IM) RStore

(a) Read-heavy (90/10) (b) Balanced (50/50) (c) Write-heavy (10/90)
Figure 5.12: Throughput of YCSB workloads with values of 100B over multiple threads.

102 Chapter 5 Index+Log Key-Value Stores

5.8.5 Tail Latency

We analyze the tail latency in form of latency percentiles to evaluate the predictability ofthe systems. However, tail latency is a metric that does not live on its own. It must beconsidered in the context of the pressure being put on the server by the clients. Even if thethroughput of the system scales linearly, the more overloaded the system is, the higherthe tail latency percentiles are. In other words, one should ask the question: “How fast canI go before the tail latency is affected?". Therefore, we set a fixed number of 16 threads onthe client and throttle the rate at which requests are sent to control the pressure we put onthe server side. The server runs with 4 threads, since the throughput of the systems is nottoo different at this point, as seen in Figures 5.11 and 5.12.
Figure 5.13 and Figure 5.14 show the tail latency for the read-heavy, balanced, and write-
heavy workloads (rows) and the rate of requests being sent by the client (columns) whichincreases across plots from left to right. We omit rates higher than 500 thousand op/sbecause none of the systems can sustain higher throughput at 4 threads, as seen before.
At the end of the run phase, we have a list of all observed requests and sort them by latency.This sorted list is used to plot the minimum, maximum, and percentiles of latency for theserequests. We set a high-level goal of achieving sub-millisecond tail latency, marked by thegray area in each plot. Therefore, systems with good tail latency must have a curve asstraight and low as possible inside the gray area.
As previously mentioned, the higher the pressure being put by the client, the higher the taillatency is. That means that not only the curves become steeper but also higher overall,as can be seen in the behavior of Redis in Figure 5.13 for the read-heavy workload whencomparing 80k op/s and 160k op/s, for example. Another observation is that the behaviorof systems do not change after a certain point, as is the case of RocksDB for all workloadsin Figure 5.14 after 160k op/s. The reason is that at this point the pressure being put on theserver is higher than the throughput it can deliver, causing the client to reach its maximumamount of outstanding requests while waiting for the server. In other words, at this pointwe consider that the tail latency of the server has already reached an undesirable behavior.
For most scenarios, RocksDB has the worst tail latency, since it accesses NVM through theregular file system interface. Redis, memcached and FASTER have a good behavior for lowpressure scenarios such as 20k op/s for all workloads in Figure 5.13. After this point, Redisbecomes more unpredictable. The exception is the write-heavy scenario at 320k op/s and500k op/s, in which the behavior of all systems except RStore and RStore(IM) becomeworse. Overall RStore has a higher tail latency, since it requires at least one access toNVM per operation. However, RStore also has a straighter line at high load scenarios (500kop/s) with write operations, this being a consequence of log-structuring and asynchronousmessage-passing communication. RStore(IM) has a similar behavior, but is able to keep alower tail latency.
Figure 5.14 shows the same scenarios for smaller requests (100B value). The mainobservation is that RStore(IM) behaves better than other systems in more cases. Theoverhead of package processing is relative to the size of the package, therefore, RStorein general has an additional benefit in these cases by being the only system using DPDK.This is seen more notably for most workloads at 320k op/s and 500k op/s.

5.8 Evaluation 103

Figure 5.13: Tail latency of YCSB workloads with values of 1000 bytes and 4 threads. Eachcolumn indicates the rate at which clients send operations to the server (label at the top).Each row indicates the workload (label at the left).
Figures 5.15 and 5.16 present the experiments with 16 threads on the server side andvalues of 1000B and 100B, respectively. We compare RStore only to memcached, since itis the system with better tail latency behavior among all the other systems. We considertwo pressure scenarios: 1 million (light color) and 2 million (dark color) operations persecond. In all cases, while memcached has a better behavior at 1M op/s, this behavior isnot sustained when the pressure is increased to 2M op/s. On the other hand, RStore has aslightly worse behavior at 1M op/s but is able to keep it more stable for the 2M op/s case,having both of its curves between the memcached curves.

5.8.6 Scans

The operations that suffer the most from the index+log architecture are sorted rangescans. Even if scans are less common for the use-cases that we target with RStore (likeweb-caching), we still consider important to support it to some extent. We discussed inSection 5.6.2 the limitations and possible improvements. Here we show an end-to-endevaluation of ranged scans on RStore.
Small scans are more common for our use-cases and they are unlike to span more thanone or two partitions. Figure 5.17 shows the throughput (X axis) for different scan sizes(number of records) for records of 100B over multiple threads (Y axis). It is worth notingthat scans are bandwidth intensive and therefore network quickly becomes the bottleneck.

104 Chapter 5 Index+Log Key-Value Stores

Figure 5.14: Tail latency for YCSB workload with values of 100 bytes values and 4 threads.Same organization as Figure 5.13.

(a) Read-heavy (90/10) (b) Balanced (50/50) (c) Write-heavy (10/90)
Figure 5.15: Tail latency for YCSB workloads with values of 1000B and 16 threads.

5.8 Evaluation 105

memcached@1M op/s
memcached@2M op/s

RStore@1M op/s
RStore@2M op/s

(a) Read-heavy (90/10) (b) Balanced (50/50) (c) Write-heavy (10/90)
Figure 5.16: Tail latency for YCSB workloads with values of 100B and 16 threads.

Figure 5.17: Scan performance over multiple threads.
The colored dashed-lines show the point at which the network bandwidth is saturated foreach scan size. We can see that for 100 records, we are able to saturate the bandwidthwith only 8 cores. For scan sizes of 300, 500, and 1000 records, we saturate the bandwidthwith 6, 6, and 4 cores, respectively.

5.8.7 Memory Consumption

One of the goals of RStore is to have reduced costs by using cheaper NVM for storage, incontrast to completely in-memory systems. We collected the amount ofmemory consumed(DRAM and NVM) by each system after loading them with 16 million records with 1000Bpayload and 160million recordswith 100B bytes payload. Figure 5.18 shows these numberswith the raw size indicated by the gray area. Since each record has a key and additionaloverhead space introduced by each system, the scenario with 100B payload requires morespace. With 1000B payload, all systems have a similar memory consumption (DRAMfor memcached, Redis and FASTER; NVM for RStore and RocksDB). The additional DRAMconsumption of RStore is due to the index, while in RocksDB it is caused by the 6GB blockcache andmemtable. With 100B payload, Redis requiresmore DRAM thanmemcached and
RStore requires more NVM than RocksDB. As mentioned previously, RocksDB compresses

106 Chapter 5 Index+Log Key-Value Stores

(a) 16 million records with values of 1000B (b) 160 million records of with values of 100B
Figure 5.18: Memory consumption of each system.

Value Size RStore memcached Redis RocksDB FASTER
1000B 98$ 207$ 200$ 160$ 195$100B 227$ 335$ 361$ 187$ 342$

Table 5.1: Approximate cost (in US$) of each system based solely on their memory con-sumption depicted in Figure 5.18.
keys, which allows a lower space consumption on NVM. It is also worth noting that witha larger amount of records, RStore requires more DRAM for the index than RocksDB.Moreover, since RStore requires the index to be completely in DRAM, it is less flexible intuning the memory budget.
Finally, considering the memory consumption and current prices of DRAM (1500$ for128GB) and NVM (695$ for 128GB) modules [Aco19], we have anecdotally calculated thememory and storage price of each system in Section 5.8.7. Figures 5.19a and 5.19b showthe throughputs of the Balancedworkload, shown before in Figures 5.11b and 5.12b, dividedby the respective costs of Section 5.8.7. These values serve as an initial expectation ofthe rate of costs between the systems considering their performance. While RStore has athroughput similar to memcached and lower than FASTER in Figure 5.11b, it has a muchbetter performance when we compare the throughput relative to the cost of storage, asshown in fig. 5.19a. In Figure 5.19b, the throughput relative to cost of RStore is much closerto the other systems, showing no significant advantage for the scenario with 100B values.

5.9 RELATED WORK

The concepts presented in this chapter were already explored to some extent in othersystems. Related work was partially covered for each aspect of RStore in their respectivesections, therefore here we elaborate on more recent complete systems that share someof the same design decisions.
RAMCloud [OGG+15] is a KVS implemented as a distributed hash table that relies on largeamounts of DRAM to store all of its data with the goal of achieving extremely low latency.

5.9 Related Work 107

(a) Values of 1000B (b) Values of 100B
Figure 5.19: Rate of throughput for workload Balanced divided by cost (higher is better).
RStore target similar goals of not only low latency, but predictable latency. It also exploresmodern storage hardware (NVM) for reduced storage costs.
Anna [WFLH18] is a distributed KVS that also relies on a thread-per-core model and mes-sage passing rather than shared memory communication. While this work focus more onthe internal organization and storage aspects of RStore in a single node context, Anna usesa standard C++ hash table for storing records and focus more on the distributed aspects.
FASTER [CPK+18] is a persistent KVS that also relies on a log-structured organizationof records while enabling update-in-place for in-memory regions. RStore does not allowupdates-in-place, since records are written directly to persistent storage and updatingdata in-place could lead to corruption and inconsistencies between replicas that could notbe undone by our roll-forward recovery method. FASTER uses a lock-free hash table forindexing and epochs for concurrency control of operations such as garbage collection,index resizing, page flushing, and checkpointing. The index in RStore can be either a hashtable or a search tree, in which case it also supports range scans. On one hand, FASTERdoes not keep the keys in the index, which reduces its DRAM footprint, on the other hand
RStore saves memory by storing records in NVM. FASTER is able to leverage SSDs throughits hybrid log, while RStore does not support SSD but supports NVM.
ScyllaDB [Scy15a] is a distributed database compatible with Apache Cassandra. It alsofocuses on low and predictable latency and implements an asynchronous execution modelthrough future-promise-continuation concepts offered by the Seastar Framework [Scy15b].
ScyllaDB also uses user-space networking through DPDK for efficient package processing.
The project Orleans at Microsoft Research [BBG+14] offers a toolset for building cloud-native systems. It shares some of the high-level goals of RStore, such as following anactor-basedmodel to enable easier development and scaling of largely distributed systems.
Different than RStore, that still implements logical logging separated from log-structuredstorage, LogBase [VWA+12] also implements a log-structured storage but relies on theatomicity of writes to completely get rid of write-ahead log. Nevertheless, LogBase man-ages the log-structured storage through files on SSD and delegates replication to HDFS.

108 Chapter 5 Index+Log Key-Value Stores

6
CONCLUSION

This thesis discussed use-cases of non-volatile memory (NVM) in modern storagemanage-ment architectures. We proposed new techniques to leverage NVM and enable systemsto achieve higher performance and lower costs. Rather than radical changes, these tech-niques focused on gradual and incremental improvements over established architectures.Chapter 2 covered the relevant background and related work. Over the course of this thesis,each of the three main chapters investigated a different architecture. In the beginning ofeach of these chapters we raised two questions that guided the work described in thechapter. In the following we summarize each chapter and answer these questions.
Chapter 3 investigated opportunities to leverage NVM in the context of log-structured
merge-trees (LSM). The first question posed was: “what is the impact on LSMs if we
replace all persistent storage by NVM?”. To answer that, we initially relied solely on NVM aspersistent storage of LevelDB, a popular LSM storage manager. We proposed Pmemenv, apersistent memory environment to enable direct and fine-grained management of LevelDBfiles (SSTs). Considering writing to NVM, we compared the performance between theregular file system interface and Pmemenv, for different WriteBatch (group commit) sizes.We showed that the impact of NVM and Pmemenv on LSMs is that smaller WriteBatchsizes can be used to achieve a lower average latency without major negative impactson the throughput. In other words, the benefit of batching multiple writes to amortizethe access to persistent media is lower when NVM is accessed directly in LSMs. Thepossibility of directly accessing NVM through Pmemenv then raised a second question:
“do LSMs still benefit from DRAM caches when NVM is used as persistent storage?”. Weobserved that statically placing hot data, such as index blocks, in DRAM improves theperformance. However, we have also noticed that a dynamic data placement in DRAMthrough a traditional cache component and replacement policy is not always beneficial.The main insight is that the overhead of copying a block from NVM to DRAM is only worthif this block will be read frequently enough in the future. Otherwise the block should beread directly in NVM to avoid this overhead. We enabled this behavior by implementing anNVM-aware cache component for LevelDB that uses 2Q as a placement policy to DRAM.Our evaluation showed that 2Q never harms the performance and enables the systemto make better decisions regarding which blocks should be moved to DRAM and whichblocks should be read in NVM. We concluded Chapter 3 by applying the same conceptsto build an NVM-aware persistent block cache for RocksDB, a more modern version ofLevelDB, and showed that the benefits still hold when evaluated on real NVM hardware.

109

Chapter 4 discussed existing approaches to leverage NVM in the context of B+Trees.These approaches were classified in three categories. We observed that none of thecategories can benefit from three characteristics at once: the persistency of NVM, thebyte-addressability of NVM, and the update in-place strategy of B+Trees. The first questioninvestigated was: “how can B+Trees leverage both persistency and byte-addressability of
NVM?”. Like otherworks, we considered that integratingNVM in the existing buffermanageris a simple, yet powerful, approach. Not only NVM can be used to extend the capacity ofthe buffer pool, but the buffer manager enables B+Trees to use NVM in the context of amore complete storage hierarchy comprised of other devices, such as DRAM, SSD, andHDD. We proposed placing NVM side-by-side with DRAM, meaning that pages in NVM canbe directly accessed without being copied to DRAM, i.e., pages are byte-addressable. Inorder to leverage the persistency and access pages on the NVM portion of the buffer poolafter a restart, these pages must be consistent. We discussed how this consistency is hardto guarantee if records are updated in-place directly in NVM, which led us to our secondquestion: “how to handle corruptions of update-in-place strategies?”. Rather than enforcingthat pages are consistent at all times, we introduced the concept of optimistic consistency.We designed the Persistent Buffer Pool with Optimistic Consistency that does not enforcethe consistency of pages in NVM and optimistically expect them not to be corrupted,but is still able to detect and repair corruptions. The main insight is that B+Trees arecommonly used in a transactional environment and that durability is guaranteed through
write-ahead logging (WAL), as proposed by the ARIES algorithm. Corrupted pages canbe detected through checksums, and the WAL suffices to recover corrupted pages. Inother words, corruptions of pages in NVM are generalized to regular media failures. Thisis achieved by applying the well-known concepts of checksums and single-page recoveryto a new context: NVM. We evaluated the runtime overhead of calculating checksumsthrough microbenchmarks and elaborated on the overall behavior of a complete system.We argued that the benefit of our Persistent Buffer Pool with Optimistic Consistency isenabling the system to adapt to different demands by explicitly trading high throughputfor faster peak-performance recovery and lower costs.
Chapter 5 described the design of RStore, an index+log key-value store (KVS). RStore istargeted at use-cases such as web caching, IoT, and augmented reality. The typical work-loads of these use-cases require low and predictable response times and are commonlyaddressed by single-level DRAM-only systems, such as memcached and Redis. The DRAM-only design implies that these systems have limited capacity and high costs, which raisedour first question: “how to extend the capacity and lower the costs of index+log KVSs?”.While employing storage devices such as SSDs would address these issues, changes toadapt the single-level architecture to manage files would be required and the high latencyof these devices would increase the response times. RStore employs NVM to store recordsin the log-structured area, while having a DRAM index to efficiently access these records.Since both NVM and DRAM share the same virtual memory address space, it maintainsthe single-level architecture of DRAM-only systems. NVM is also denser and cheaper thanDRAM, which enable RStore to achieve larger capacity and lower costs. While the latency ofNVM is higher than DRAM, it is still lower than flash-based SSDs and introduces a smallerresponse time penalty. However, looking only at the average latency of requests is notenough to ensure predictable response times in the targeted workloads, tail latency mustalso be considered. Therefore, the second question raised was: “how to achieve short and
predictable response times in the form of low tail latency?”. In addition to NVM and the
index+log architecture, RStore combines techniques such as message-passing commu-nication, cooperative multitasking, and user-space networking. Our evaluation showed

110 Chapter 6 Conclusion

that the combination of these design decisions enable RStore to achieve a competitivethroughput and lower costs. The evaluation also shows that, even if NVM increases theresponse time of RStore in comparison to a DRAM-only variant, the tail latency does notdrastically increase under high loads, which leads to a more robust behavior.
Other works exploredNVM in the context of storagemanagement and database systems byproposing novel architectures. Some of these works are very NVM-centric and disruptive,in the sense that they do not take into consideration current hardware and traditionalsoftware architectures. While novel architectures and a complete software rewrite mightbe required in a future where NVMwill replace all storage devices, and possibly even DRAM,currently this is not the case. To enable modern systems to immediately leverage NVM, weargue for an incremental evolution rather than a revolution. This same approach was takenby works that improved database logging protocols by using NVM, however, other systemcomponents had not been explored enough yet. Furthermore, some of the techniquesproposed in this thesis might sound too obvious once they have been presented, due totheir simplicity. We argue that simplicity is major advantage. In other words, the noveltycomes from applying well-known concepts, such as caching policies, buffer management,checksums, recovery, and log-structuring, to a new context: NVM.
Many opportunities exist for future work. In the context of LSMs, the merge process iscritical component for achieving high performance, and therefore NVM-aware merge poli-cies can lead to significant improvements. As for B+Trees, the complete implementationand evaluation of our Persistent Buffer Pool with Optimistic Consistency would constitutea major contribution. Unfortunately, even if modern transaction-oriented recovery tech-niques, such as single-page recovery, are well-understood and accepted, they have not beenadopted by many systems yet. Since these techniques are a prerequisite for our proposedbuffer pool, implementing them would require significant engineering effort that could notbe completely tackled in this thesis, specially considering the extent of the effort requiredfor integrating NVM in the code base of two complete systems used in production (LevelDBand RocksDB) and for implementing RStore. Nevertheless, we presented the initial ideaand discussed its implementation and trade-offs. The RStore system was developed inthe context of much larger industry project which aims at building a complete distributedsystem. We believe that the concepts of RStore provide a solid foundation that futurework can extend to a distributed environment. Finally, we conclude by stating that, what isparamount for future work, and what we tried to achieve in this thesis, is that proposedtechniques should be incremental rather than disruptive, in order to keep them simple andeasy to be adopted by modern systems, or as once written by Jim Gray [GR93]:

“Don’t be fooled by the many books on complexity or by the many complex and
arcane algorithms you find in this book or elsewhere. Although there are no

textbooks on simplicity, simple systems work and complex don’t.”

111

112 Chapter 6 Conclusion

BIBLIOGRAPHY

[ABGA17] Raja Appuswamy, Renata Borovica-Gajic, Goetz Graefe, andAnastasia Ailamaki.The Five-Minute Rule Thirty Years Later and its Impact on the Storage Hierarchy.In Proc. ADMS (VLDB Workshop), pages 1–8, 2017.
[Aco19] Paul Acorn. Intel Optane DIMM Pricing: $695 for 128GB, $2595 for256GB, $7816 for 512GB. https://www.tomshardware.com/news/

intel-optane-dimm-pricing-performance,39007.html, 2019. Ac-cessed: 2020-09-01.
[AJ89] Rakesh Agrawal and HV Jagadish. Recovery Algorithms for Database Ma-chines with Non-Volatile Main Memory. In Proc. IWDM, pages 269–285, 1989.
[ALML18] Joy Arulraj, Justin J. Levandoski, Umar Farooq Minhas, and Per-Åke Larson.BzTree: A High-Performance Latch-free Range Index for Non-Volatile Memory.

PVLDB, 11(5):553–565, 2018.
[ALR+17] Mihnea Andrei, Christian Lemke, Günter Radestock, Robert Schulze, CarstenThiel, Rolando Blanco, Akanksha Meghlan, Muhammad Sharique, SebastianSeifert, Surendra Vishnoi, Daniel Booss, Thomas Peh, Ivan Schreter, WernerThesing, Mehul Wagle, and Thomas Willhalm. SAP HANA Adoption of Non-Volatile Memory. PVLDB, 10(12):1754–1765, 2017.
[Ama06] Amazon. Simple Storage Service (S3). https://aws.amazon.com/s3/,2006. Accessed: 2020-09-01.
[APM19] Joy Arulraj, Andy Pavlo, and Krishna Teja Malladi. Multi-Tier Buffer Man-agement and Storage System Design for Non-Volatile Memory. CoRR,abs/1901.10938, 2019.
[APP16] Joy Arulraj, Matthew Perron, and Andrew Pavlo. Write-Behind Logging. PVLDB,10(4):337–348, 2016.
[Arm03] Joe Armstrong. Making Reliable Distributed Systems in the Presence of Soft-

ware Errors. PhD thesis, Royal Institute of Technology, Stockholm, Sweden,2003.
[AXF+12] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.Workload Analysis of a Large-Scale Key-Value Store. In Proc. ACM SIGMET-

RICS/PERFORMANCE, pages 53–64, 2012.

113

[BBG+14] Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen Thelin. Or-leans: Distributed Virtual Actors for Programmability and Scalability. TechnicalReport MSR-TR-2014-41, Microsoft Research, 2014.
[BCB16] Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-Juergen Boehm. Makalu:Fast Recoverable Allocation of Non-Volatile Memory. In Proc. OOPSLA, pages677–694, 2016.
[BDF05] Michael A. Bender, Erik D. Demaine, andMartin Farach-Colton. Cache-ObliviousB-Trees. Proc. SIAM J. Comput., 35(2):341–358, 2005.
[BDKM17] Philip A. Bernstein, Mohammad Dashti, Tim Kiefer, and David Maier. Indexingin an Actor-Oriented Database. In Proc. CIDR, 2017.
[BFKT14] Jonas Bonér, Dave Farley, Roland Kuhn, and Martin Thompson. The ReactiveManifesto. https://www.reactivemanifesto.org/, 2014. Accessed:2020-09-01.
[BGH87] Joel Bartlett, Jim Gray, and Bob Horst. Fault Tolerance in Tandem ComputerSystems. In The Evolution of Fault-Tolerant Computing, pages 55–76, 1987.
[BRD11] Philip A. Bernstein, Colin W. Reid, and Sudipto Das. Hyder - A TransactionalRecord Manager for Shared Flash. In Proc. CIDR, pages 9–20, 2011.
[CAGM04] Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and Todd C. Mowry.Improving Hash Join Performance through Prefetching. In Proc. ICDE, pages116–127, 2004.
[CCA+11] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,Ranjit Jhala, and Steven Swanson. NV-Heaps: Making Persistent ObjectsFast and Safe with Next-Generation, Non-Volatile Memories. In Proc. ASPLOS,pages 105–118, 2011.
[CGN11] Shimin Chen, Phillip B. Gibbons, and Suman Nath. Rethinking Database Algo-rithms for Phase Change Memory. In Proc. CIDR, pages 21–31, 2011.
[Cha78] H. Chang. On Bubble Memories and Relational Data Base. In VLDB, pages207–229, 1978.
[Cho17] Jeongdong Choe. Intel 3D XPoint Memory Die Removed from Intel Optane™PCM (Phase Change Memory). https://www.techinsights.com/

blog/intel-3d-xpoint-memory-die-removed-intel-optanetm-
pcm-phase-change-memory, 2017. Accessed: 2020-09-01.

[Chu71] Leon Chua. Memristor - The Missing Circuit Element. IEEE Transactions on
Circuit Theory, 18(5):507–519, 1971.

[Chu11] Leon Chua. Resistance Switching Memories are Memristors. Applied Physics
A, 102(4):765–783, 2011.

[Chu19] Leon O. Chua. Resistance Switching Memories are Memristors. In Handbook
of Memristor Networks, pages 197–230. Springer, 2019.

[CJ15] Shimin Chen and Qin Jin. Persistent B+-Trees in Non-Volatile Main Memory.
PVLDB, 8(7):786–797, 2015.

114 BIBLIOGRAPHY

[CJY15] Kaimeng Chen, Peiquan Jin, and Lihua Yue. Efficient Buffer Management forPCM-Enhanced Hybrid Memory Architecture. In Proc. APWeb, volume 9313,pages 29–40, 2015.
[CKKS89] George P. Copeland, Tom W. Keller, Ravi Krishnamurthy, and Marc G. Smith.The Case For Safe RAM. In VLDB, pages 327–335, 1989.
[Com79] Douglas Comer. The Ubiquitous B-Tree. ACM Comput. Surv., 11(2):121–137,1979.
[CPK+18] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin J. Levandoski,James Hunter, and Mike Barnett. FASTER: A Concurrent Key-Value Store withIn-Place Updates. In Proc. ACM SIGMOD, pages 275–290, 2018.
[CST+10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Rus-sell Sears. Benchmarking Cloud Serving Systems with YCSB. In Proc. SoCC,pages 143–154, 2010.
[DAI17] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. Monkey: Optimal Navi-gable Key-Value Store. In Proc. ACM SIGMOD, pages 79–94, 2017.
[DB13] Jeffrey Dean and Luiz André Barroso. The Tail at Scale. Commun. ACM,56(2):74–80, 2013.
[DGS80] Keith L. Doty, Joel D. Greenblatt, and Stanley Y. W. Su. Magnetic BubbleMemoryArchitectures for Supporting Associative Searching of Relational Databases.

IEEE Transactions on Computers, 29(11):957–970, 1980.
[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, PeterVosshall, and Werner Vogels. Dynamo: Amazon’s Highly Available Key-valueStore. In Proc. SOSP, pages 205–220, 2007.
[DHK+15] Biplob Debnath, Alireza Haghdoost, Asim Kadav, Mohammed G. Khatib, andCristian Ungureanu. Revisiting Hash Table Design for Phase Change Memory.

SIGOPS Oper. Syst. Rev., 49(2):18–26, 2015.
[DKO+84] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro, MichaelStonebraker, and David A. Wood. Implementation Techniques for MainMemoryDatabase Systems. In Proc. ACM SIGMOD, pages 1–8, 1984.
[Dul16] Subramanya R. Dulloor. Systems and Applications for Persistent Memory. PhDthesis, Georgia Institute of Technology, Atlanta, GA, USA, 2016.
[DVTBH13] Michael FL De Volder, Sameh H Tawfick, Ray H Baughman, and A John Hart.Carbon Nanotubes: Present and Future Commercial Applications. Science,339(6119):535–539, 2013.
[DWS+08] Xiangyu Dong, Xiaoxia Wu, Guangyu Sun, Yuan Xie, Hai Li, and Yiran Chen.Circuit andMicroarchitecture Evaluation of 3D StackingMagnetic RAM (MRAM)as a Universal Memory Replacement. In Proc. ACM DAC, pages 554–559, 2008.

BIBLIOGRAPHY 115

[EGA+18] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe, Siying Dong,Kim M. Hazelwood, Chris Petersen, Asaf Cidon, and Sachin Katti. ReducingDRAM Footprint with NVM in Facebook. In Proc. EuroSys, pages 42:1–42:13,2018.
[Eva15] Jason Evangelho. Intel and Micron Jointly Unveil Disruptive, Game-Changing 3D XPoint Memory, 1000x Faster Than NAND. https:

//hothardware.com/news/intel-and-micron-jointly-drop-
disruptive-game-changing-3d-xpoint-cross-point-memory-
1000x-faster-than-nand, 2015. Accessed: 2020-09-01.

[Fac12] Facebook. RocksDB. https://rocksdb.org/, 2012. Accessed: 2020-09-01.
[FHH+11] Ru Fang, Hui-I Hsiao, Bin He, C. Mohan, and Yun Wang. High PerformanceDatabase Logging using Storage Class Memory. In Proc. ICDE, pages 1221–1231, 2011.
[FML+12] Franz Färber, NormanMay,Wolfgang Lehner, PhilippGroße, IngoMüller, HannesRauhe, and Jonathan Dees. The SAP HANA Database – An ArchitectureOverview. IEEE Data Eng. Bull., 35(1):28–33, 2012.
[GG97] Jim Gray and Goetz Graefe. The Five-Minute Rule Ten Years Later, and OtherComputer Storage Rules of Thumb. ACM SIGMOD Record, 26(4):63–68, 1997.
[GGS16] Goetz Graefe, Wey Guy, and Caetano Sauer. Instant Recovery with Write-Ahead

Logging: Page Repair, System Restart, Media Restore, and System Failover,
Second Edition. Synthesis Lectures on Data Management. Morgan & ClaypoolPublishers, 2016.

[GK12] Goetz Graefe and Harumi A. Kuno. Definition, Detection, and Recovery of Single-Page Failures, a Fourth Class of Database Failures. PVLDB, 5(7):646–655,2012.
[GKC+11] B Govoreanu, GS Kar, YY Chen, V Paraschiv, S Kubicek, A Fantini, IP Radu,L Goux, S Clima, R Degraeve, et al. 10× 10nm 2 Hf/HfO x Crossbar ResistiveRAMwith Excellent Performance, Reliability and Low-Energy Operation. In IEEE

IEDM Technical Digest, pages 31–6, 2011.
[GKP+10] Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier, Philippe Cudré-Mauroux, and Samuel Madden. HYRISE - A Main Memory Hybrid StorageEngine. PVLDB, 4(2):105–116, 2010.
[GL01] Goetz Graefe and Per-Åke Larson. B-Tree Indexes and CPU Caches. In Proc.

ICDE, pages 349–358, 2001.
[GP87] Jim Gray and Gianfranco R. Putzolu. The 5 Minute Rule for Trading Memoryfor Disk Accesses and The 10 Byte Rule for Trading Memory for CPU Time. In

Proc. ACM SIGMOD, pages 395–398, 1987.
[GR93] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Tech-

niques. Morgan Kaufmann, 1993.

116 BIBLIOGRAPHY

[Gra07] Goetz Graefe. The Five-Minute Rule Twenty Years Later, and how FlashMemoryChanges the Rules. In Proc. DaMoN (ACM SIGMOD Workshop), page 6, 2007.
[Gre13] Brendan Gregg. Systems Performance: Enterprise and the Cloud. Prentice HallPress, USA, 1st edition, 2013.
[GSE+94] Jim Gray, Prakash Sundaresan, Susanne Englert, Kenneth Baclawski, andPeter J. Weinberger. Quickly Generating Billion-Record Synthetic Databases.In Proc. ACM SIGMOD, pages 243–252, 1994.
[GVK+14] Goetz Graefe, Haris Volos, Hideaki Kimura, Harumi A. Kuno, Joseph Tucek,Mark Lillibridge, and Alistair C. Veitch. In-Memory Performance for Big Data.

PVLDB, 8(1):37–48, 2014.
[GXH+11] Shen Gao, Jianliang Xu, Bingsheng He, Byron Choi, and Haibo Hu. PCMLogging:Reducing Transaction Logging Overhead with PCM. In Proceedings of the 20th

ACM Conference on Information and Knowledge Management (CIKM), pages2401–2404. ACM, 2011.
[H+08] Yiming Huai et al. Spin-Transfer Torque MRAM (STT-MRAM): Challenges andProspects. AAPPS Bulletin, 18(6):33–40, 2008.
[HAMS08] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stone-braker. OLTP Through the Looking Glass, and What We Found There. In Proc.

ACM SIGMOD, pages 981–992, 2008.
[HBS73] Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. A Universal ModularACTOR Formalism for Artificial Intelligence. In Proc. IJCAI, pages 235–245,1973.
[HKWN18] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. En-durable Transient Inconsistency in Byte-Addressable Persistent B+-Tree. In

Proc. USENIX FAST, pages 187–200, 2018.
[HPM+13] Philipp Haller, Aleksandar Prokopec, Heather Miller, Viktor Klang, Roland Kuhn,and Vojin Jovanovic. Scala Documentation: Futures and Promises. https:

//docs.scala-lang.org/overviews/core/futures.html, 2013. Ac-cessed: 2020-09-01.
[HR83] Theo Härder and Andreas Reuter. Principles of Transaction-Oriented DatabaseRecovery. ACM Comput. Surv., 15(4):287–317, 1983.
[HRB+17] Qingda Hu, Jinglei Ren, Anirudh Badam, Jiwu Shu, and Thomas Moscibroda.Log-Structured Non-Volatile Main Memory. In Proc. USENIX ATC, pages 703–717, 2017.
[HSQ14] Jian Huang, Karsten Schwan, and Moinuddin K. Qureshi. NVRAM-Aware Log-ging in Transaction Systems. PVLDB, 8(4):389–400, 2014.
[HYY+05] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Ya-mada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, and H. Kano. A NovelNonvolatile Memory with Spin Torque Transfer Magnetization Switching: Spin-RAM. In IEEE IEDM Technical Digest, pages 459–462, 2005.

BIBLIOGRAPHY 117

[IC20] Stratos Idreos and Mark Callaghan. Key-Value Storage Engines. In Proc. ACM
SIGMOD, pages 2667–2672, 2020.

[IKK16] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-Atomic PersistentMemory Updates via JUSTDO Logging. In Proc. ASPLOS, pages 427–442. ACM,2016.
[Int14] Intel Corporation. Persistent Memory Development Kit (PMDK). https://

github.com/pmem/pmdk/, 2014. Accessed: 2020-09-01.
[Int19] Intel Corporation. Processor Counter Monitor. https://github.com/

opcm/pcm, 2019. Accessed: 2020-09-01.
[Int20a] Intel Corporation. Instruction Set Extensions Technology. https:

//software.intel.com/sites/landingpage/IntrinsicsGuide/
#techs=SSE4_2, 2020. Accessed: 2020-09-01.

[Int20b] Intel Corporation. Intel Optane DC SSD Series. https://www.intel.com/
content/www/us/en/products/memory-storage/solid-state-
drives/data-center-ssds/optane-dc-ssd-series.html, 2020.Accessed: 2020-09-01.

[Int20c] Intel Corporation. Intel Optane Persistent Memory. https:
//www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory.html, 2020. Accessed:2020-09-01.

[Int20d] Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Ref-erence Manual. https://software.intel.com/content/www/us/
en/develop/download/intel-64-and-ia-32-architectures-
optimization-reference-manual.html, 2020. Accessed: 2020-09-01.

[IYZ+19] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, AmirsamanMemaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, JishenZhao, and Steven Swanson. Basic Performance Measurements of the IntelOptane DC Persistent Memory Module. CoRR, abs/1903.05714, 2019.
[JS94] Theodore Johnson and Dennis E. Shasha. 2Q: A Low Overhead High Perfor-mance Buffer Management Replacement Algorithm. In VLDB, pages 439–450,1994.
[KELS62] Tom Kilburn, David B. G. Edwards, Michael J. Lanigan, and Frank H. Sumner.One-Level Storage System. IRE Trans. Electron. Comput., 11(2):223–235, 1962.
[KFG15] Yusuf Onur Koçberber, Babak Falsafi, and Boris Grot. Asynchronous MemoryAccess Chaining. PVLDB, 9(4):252–263, 2015.
[Kim15] Hideaki Kimura. FOEDUS: OLTP Engine for a Thousand Cores and NVRAM. In

Proc. ACM SIGMOD, pages 691–706, 2015.
[Knu98] Donald Ervin Knuth. The Art of Computer Programming, Volume III: Sorting and

Searching, 2nd Edition. Addison-Wesley, 1998.
[KR79] H. T. Kung and John T. Robinson. On Optimistic Methods for ConcurrencyControl. In VLDB, page 351, 1979.

118 BIBLIOGRAPHY

[LAK16] Hyeontaek Lim, David G. Andersen, and Michael Kaminsky. Towards Accurateand Fast Evaluation of Multi-Stage Log-structured Designs. In Proc. USENIX
FAST, pages 149–166, 2016.

[Lam78] Leslie Lamport. Time, Clocks, and the Ordering of Events in a DistributedSystem. Communications of the ACM, 21(7):558–565, 1978.
[LBD+11] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M.Patel, and Mike Zwilling. High-Performance Concurrency Control Mechanismsfor Main-Memory Databases. PVLDB, 5(4):298–309, 2011.
[LFAK11] Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky. SILT: AMemory-Efficient, High-Performance Key-Value Store. In Proc. SOSP, pages1–13, 2011.
[LHKN18] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann.LeanStore: In-Memory Data Management beyond Main Memory. In Proc. ICDE,pages 185–196, 2018.
[LHO+19] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and ThomasWillhalm. Evaluating PersistentMemory Range Indexes. PVLDB, 13(4):574–587,2019.
[LHWL20] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. Dash: ScalableHashing on Persistent Memory. PVLDB, 13(8):1147–1161, 2020.
[Lin10] Linux Foundation. DPDK. https://www.dpdk.org/, 2010. Accessed: 2020-09-01.
[Lin15] Linux Foundation. LIBNVDIMM: Non-Volatile Devices. https://www.

kernel.org/doc/Documentation/nvdimm/nvdimm.txt, 2015. Ac-cessed: 2020-09-01.
[LJW+19] Ruicheng Liu, Peiquan Jin, Zhangling Wu, Xiaoliang Wang, Shouhong Wan, andBei Hua. Efficient Wear Leveling for PCM/DRAM-Based Hybrid Memory. In

IEEE HPCC/SmartCity/DSS, pages 1979–1986, 2019.
[LLO19] Lucas Lersch, Wolfgang Lehner, and Ismail Oukid. Persistent Buffer Manage-ment with Optimistic Consistency. In Proc. DaMoN (ACM SIGMOD Workshop),pages 14:1–14:3, 2019.
[LLS13] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. LLAMA: ACache/Storage Subsystem for Modern Hardware. PVLDB, 6(10):877–888,2013.
[LLS+17] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H. Noh.WORT: Write Optimal Radix Tree for Persistent Memory Storage Systems. In

Proc. USENIX FAST, pages 257–270, 2017.
[LOLS17] Lucas Lersch, Ismail Oukid, Wolfgang Lehner, and Ivan Schreter. An analysisof LSM caching in NVRAM. In Proc. DaMoN (ACM SIGMOD Workshop), pages9:1–9:5, 2017.
[Lom93] David B. Lomet. The Case for Log Structuring in Database Systems. In Proc.

HPTS, pages 136–140, 1993.

BIBLIOGRAPHY 119

[Lor77] Raymond A. Lorie. Physical Integrity in a Large Segmented Database. ACM
TODS, 2(1):91–104, 1977.

[LOSL17] Lucas Lersch, Ismail Oukid, Ivan Schreter, and Wolfgang Lehner. RethinkingDRAM Caching for LSMs in an NVRAM Environment. In ADBIS, volume 10509,pages 326–340, 2017.
[LSOL20] Lucas Lersch, Ivan Schreter, Ismail Oukid, and Wolfgang Lehner. Enabling LowTail Latency on Multicore Key-Value Stores. PVLDB, 13(7):1091–1104, 2020.
[LXCW19] Mengxing Liu, Jiankai Xing, Kang Chen, and Yongwei Wu. Building ScalableNVM-based B+tree with HTM. In Proc. ICPP, pages 101:1–101:10, 2019.
[LZY+10] Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek,Onur Mutlu, and Doug Burger. Phase-Change Technology and the Future ofMain Memory. IEEE Micro, 30(1):143, 2010.
[MHL+92] C. Mohan, Don Haderle, Bruce G. Lindsay, Hamid Pirahesh, and Peter M.Schwarz. ARIES: A Transaction Recovery Method Supporting Fine-GranularityLocking andPartial RollbacksUsingWrite-Ahead Logging. ACMTODS, 17(1):94–162, 1992.
[Mic17] Micron Technology, Inc. Micron Advances Persistent Memory with 32GBNVDIMM. https://investors.micron.com/news-releases/news-

release-details/micron-advances-persistent-memory-32gb-
nvdimm, 2017. Accessed: 2020-09-01.

[Mic18] Micron Technology, Inc. NVDIMM. https://www.micron.com/
products/dram-modules/nvdimm, 2018. Accessed: 2020-09-01.

[Mic20] Micron Technology, Inc. 3D XPoint Technology. https://www.micron.
com/products/advanced-solutions/3d-xpoint-technology,2020. Accessed: 2020-09-01.

[MWMS14] Nirmesh Malviya, Ariel Weisberg, Samuel Madden, and Michael Stonebraker.Rethinking Main Memory OLTP Recovery. In Proc. ICDE, pages 604–615, 2014.
[NCC+19] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H. Noh, and Beomseok Nam.Write-Optimized Dynamic Hashing for Persistent Memory. In Proc. USENIX

FAST, pages 31–44, 2019.
[NIK+17] Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey III, Dhruva R.Chakrabarti, and Michael L. Scott. Dalí: A Periodically Persistent Hash Map. In

Proc. DISC, volume 91 of LIPIcs, pages 37:1–37:16, 2017.
[OBL+14] Ismail Oukid, Daniel Booss, Wolfgang Lehner, Peter Bumbulis, and ThomasWillhalm. SOFORT: AHybrid SCM-DRAMStorage Engine for Fast Data Recovery.In Proc. DaMoN (ACM SIGMOD Workshop), pages 8:1–8:7, 2014.
[OBL+17] Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolfgang Lehner, ThomasWillhalm, and Grégoire Gomes. Memory Management Techniques for Large-Scale Persistent-Main-Memory Systems. PVLDB, 10(11):1166–1177, 2017.
[OCGO96] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. TheLog-Structured Merge-Tree (LSM-Tree). Acta Inf., 33(4):351–385, 1996.

120 BIBLIOGRAPHY

[OCXH14] Yi Ou, Lei Chen, Jianliang Xu, and Theo Härder. Wear-Aware Algorithms forPCM-Based Database Buffer Pools. In Web-Age Information Management -
WAIM2014 InternationalWorkshops: BigEM, HardBD, DaNoS, HRSUNE, BIDASYS,volume 8597 of Lecture Notes in Computer Science, pages 165–176. Springer,2014.

[OGG+15] John K. Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin Lee,BehnamMontazeri, Diego Ongaro, Seo Jin Park, Henry Qin, Mendel Rosenblum,StephenM. Rumble, Ryan Stutsman, and Stephen Yang. The RAMCloud StorageSystem. ACM TOCS, 33(3):7:1–7:55, 2015.
[OLN+16] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and WolfgangLehner. FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree forStorage Class Memory. In Proc. ACM SIGMOD, pages 371–386, 2016.
[OO14] Diego Ongaro and John K. Ousterhout. In Search of an Understandable Con-sensus Algorithm. In Proc. USENIX ATC, pages 305–319, 2014.
[Ouk18] Ismail Oukid. Architectural Principles for Database Systems on Storage-Class

Memory. PhD thesis, Dresden University of Technology, Germany, 2018.
[Ovs68] Stanford R. Ovshinsky. Reversible Electrical Switching Phenomena in Disor-dered Structures. Phys. Rev. Lett., 21:1450–1453, Nov 1968.
[PAA+17] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,Prashanth Menon, Todd C. Mowry, Matthew Perron, Ian Quah, Siddharth San-turkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun Wu,Ran Xian, and Tieying Zhang. Self-Driving Database Management Systems. In

Proc. CIDR, 2017.
[PLMA17] Georgios Psaropoulos, Thomas Legler, Norman May, and Anastasia Ailamaki.Interleaving with Coroutines: A Practical Approach for Robust Index Joins.

PVLDB, 11(2):230–242, 2017.
[PPM16] Kisalaya Prasad, Avanti Patil, and Heather Miller. Programming Models forDistributed Computing: Futures and Promises. http://dist-prog-book.

com/chapter/2/futures.html, 2016. Accessed: 2020-09-01.
[PSU+70] A Pohm, C Sie, R Uttecht, V Kao, and O Agrawal. Chalcogenide Glass BistableResistivity (Ovonic) Memories. IEEE Transactions on Magnetics, 6(3):592–592,1970.
[PWGB13] Steven Pelley, Thomas F. Wenisch, Brian T. Gold, and Bill Bridge. StorageManagement in the NVRAM Era. PVLDB, 7(2):121–132, 2013.
[RKO14] Stephen M. Rumble, Ankita Kejriwal, and John K. Ousterhout. Log-structuredMemory for DRAM-based Storage. In Proc. USENIX FAST, pages 1–16, 2014.
[RO92] Mendel Rosenblum and John K. Ousterhout. The Design and Implementationof a Log-Structured File System. ACM TOCS, 10(1):26–52, 1992.
[Sau17] Caetano Sauer. Modern Techniques for Transaction-Oriented Database Recov-

ery. PhD thesis, Kaiserslautern University of Technology, Germany, 2017.

BIBLIOGRAPHY 121

[Scy15a] ScyllaDB Inc. ScyllaDB. https://www.scylladb.com/, 2015. Accessed:2020-09-01.
[Scy15b] ScyllaDB Inc. Seastar. http://seastar.io/, 2015. Accessed: 2020-09-01.
[SDUP15] David Schwalb, Markus Dreseler, Matthias Uflacker, and Hasso Plattner. NVC-Hashmap: A Persistent and Concurrent Hashmap For Non-Volatile Memories.In Proc. IMDM (VLDB Workshop), pages 4:1–4:8, 2015.
[SGG14] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System

Concepts Essentials, 2nd Edition. Wiley, 2014.
[SGH18] Caetano Sauer, Goetz Graefe, and Theo Härder. FineLine: Log-StructuredTransactional Storage and Recovery. PVLDB, 11(13):2249–2262, 2018.
[SKD+16] David Schwalb, Girish Kumar, Markus Dreseler, Anusha S., Martin Faust, AdolfHohl, Tim Berning, Gaurav Makkar, Hasso Plattner, and Parag Deshmukh.Hyrise-NV: Instant Recovery for In-Memory Databases Using Non-VolatileMem-ory. In Proc. DASFAA, volume 9643, pages 267–282, 2016.
[SMA+07] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos,Nabil Hachem, and Pat Helland. The End of an Architectural Era (It’s Time fora Complete Rewrite). In VLDB, pages 1150–1160, 2007.
[Spo14] Spotify. Sparkley: Simple Constant Key/Value Storage Library, for Read-heavy Systems with Infrequent Large Bulk Inserts. https://github.com/

spotify/sparkey, 2014. Accessed: 2020-09-01.
[SS10] Justin Sheehy and David Smith. Bitcask: A Log-Structured Hash Tablefor Fast Key/Value Data. https://riak.com/assets/bitcask-intro.

pdf, 2010. Accessed: 2020-09-01.
[SSSW08] Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley Williams.The Missing Memristor Found. Nature, 453(7191):80–83, 2008.
[STPA16] Utku Sirin, Pinar Tözün, Danica Porobic, and Anastasia Ailamaki. Micro-architectural Analysis of In-memory OLTP. In Proc. ACM SIGMOD, pages387–402, 2016.
[Tec18] Viking Technology. DDR4 NVDIMM. https://www.vikingtechnology.

com/products/nvdimm/ddr4-nvdimm/, 2018. Accessed: 2020-09-01.
[Tob16] Tobias Klima. Using Non-volatile Memory (NVDIMM-N) as Byte-AddressableStorage in Windows Server 2016. https://channel9.msdn.com/

events/build/2016/p470, 2016. Accessed: 2020-09-01.
[TZK+13] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.Speedy Transactions in Multicore In-Memory Databases. In Michael Kaminskyand Mike Dahlin, editors, Proc. SOSP, pages 18–32, 2013.
[VKW+13] Vish Viswanathan, Karthik Kumar, Thomas Willhalm, Patrick Lu,Blazej Filipiak, and Sri Sakthivelu. Intel Memory Latency Checker.

https://software.intel.com/content/www/us/en/develop/
articles/intelr-memory-latency-checker.html, 2013. Accessed:2020-09-01.

122 BIBLIOGRAPHY

[vRLK+18] Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann, TakushiHashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and Mitsuru Sato. Manag-ing Non-Volatile Memory in Database Systems. In Proc. ACM SIGMOD, pages1541–1555, 2018.
[vRVL+19] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and AlfonsKemper. Persistent Memory I/O Primitives. In Proc. DaMoN (ACM SIGMOD

Workshop), pages 12:1–12:7, 2019.
[VTRC11] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H.Campbell. Consistent and Durable Data Structures for Non-Volatile Byte-Addressable Memory. In Proc. USENIX FAST, pages 61–75, 2011.
[VWA+12] Hoang TamVo, ShengWang, Divyakant Agrawal, Gang Chen, and Beng Chin Ooi.LogBase: A Scalable Log-structured Database System in the Cloud. PVLDB,5(10):1004–1015, 2012.
[WFLH18] Chenggang Wu, Jose M. Faleiro, Yihan Lin, and Joseph M. Hellerstein. Anna:A KVS for Any Scale. In Proc. ICDE, pages 401–412, 2018.
[WJ14] Tianzheng Wang and Ryan Johnson. Scalable Logging through EmergingNon-Volatile Memory. PVLDB, 7(10):865–876, 2014.
[WK16] Tianzheng Wang and Hideaki Kimura. Mostly-Optimistic Concurrency Controlfor Highly Contended Dynamic Workloads on a Thousand Cores. PVLDB,10(2):49–60, 2016.
[WLL18] Tianzheng Wang, Justin J. Levandoski, and Per-Åke Larson. Easy Lock-FreeIndexing in Non-Volatile Memory. In Proc. ICDE, pages 461–472, 2018.
[Wri83] William E. Wright. Some File Structure Considerations Pertaining to MagneticBubble Memory. Computer Journal, 26(1):43–51, 1983.
[XJXS17] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. HiKV: A Hybrid Index Key-Value Store for DRAM-NVM Memory Systems. In Proc. USENIX ATC, pages349–362, 2017.
[XS16] Jian Xu and Steven Swanson. NOVA: A Log-structured File System for HybridVolatile/Non-volatile Main Memories. In Proc. USENIX FAST, pages 323–338,2016.
[YKH+20] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and StevenSwanson. An Empirical Guide to the Behavior and Use of Scalable PersistentMemory. In Proc. USENIX FAST, pages 169–182, 2020.
[YWC+15] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, andBingsheng He. NV-Tree: Reducing Consistency Cost for NVM-based SingleLevel Systems. In Proc. USENIX FAST, pages 167–181, 2015.
[Zak81] M. Zaki. Magnetic Bubble Memory Structures for Relational Database Man-agement Systems. International Journal of Computer & Information Sciences,10(5):341–358, 1981.

BIBLIOGRAPHY 123

[ZAP+16] Huanchen Zhang, David G. Andersen, Andrew Pavlo, Michael Kaminsky, LinMa, and Rui Shen. Reducing the Storage Overhead of Main-Memory OLTPDatabases with Hybrid Indexes. In Proc. ACM SIGMOD, pages 1567–1581,2016.
[ZH18] Pengfei Zuo and Yu Hua. A Write-Friendly and Cache-Optimized HashingScheme for Non-Volatile Memory Systems. IEEE TPDS, 29(5):985–998, 2018.
[ZHW18] Pengfei Zuo, Yu Hua, and Jie Wu. Write-Optimized and High-PerformanceHashing Index Scheme for Persistent Memory. In Proc. USENIX OSDI, pages461–476, 2018.
[ZTKL14] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov. Fast Databaseswith Fast Durability and Recovery Through Multicore Parallelism. In Proc.

USENIX OSDI, pages 465–477, 2014.

124 BIBLIOGRAPHY

A
PIBENCH

We designed PiBench to allow an unified and fair comparison of different persistent datastructures, and easy adoption by future work. As Figure A.1 shows, the data strucure beingtested must be compiled into a shared library and linked to PiBench following a definedAPI, or through a wrapper that translates requests from PiBench’s API. The API consists ofa pure abstract class that encapsulates common operations (insert, lookup, delete, scan,update) and a create_index function for instantiating the benchmarked data structure.To use PiBench, the user only needs to derive a class that implements the API. PiBenchthen issues requests against the instantiated object.
PiBench executes a load phase and a run phase, like YCSB [CST+10]. It provides variousoptions for customization, such as key/value sizes, the number of records to be loaded,the numbers and types of operations to be executed, and ratio of each type of operation.Keys and values are generated randomly following a chosen distribution and seed to allowreproducible executions. PiBench supports three random distributions as defined by Grayet al. [GSE+94]: uniform, self similar, and zipfian. Since the random distributionsgenerate integers in a contiguous range, with the skewed distributions favoring smallervalues, we apply a multiplicative hashing function [Knu98] to each generated integer toscatter the keys across the complete integer domain, thus avoiding frequently accessedkeys to be clustered together. A prefix can be prepended to keys to analyze the impactof key compression and comparison methods. PiBench uses multiple threads to issuerequests and relies on the data structure under evaluation to handle concurrent accesses.
PiBench dedicates a thread to periodically collect statistics, such as the number of com-pleted operations within a specified time window. This allows a better understanding ofperformance over time by enabling standard deviation to be easily calculated in addition tothe average throughput. Finally, we use the Processor Counter Monitor (PCM) library [Int19]and ipmwatch1 to collect hardware counter metrics (such as memory accesses and cachemisses). As shown in Figure A.2, PCM measures memory traffic between CPU caches andboth DRAM and DCPMMs at 64B granularity. The DCPMMs rely on a buffer layer to holdhot data [Int20d, YKH+20]. We use ipmwatch to measure the traffic between the bufferand the media itself, which happens at 256B granularity. Finally, PiBench is open-source2
and available at a web application3.

1Available as part of Intel VTune Amplifier 2019 since Update 5.2https://github.com/sfu-dis/pibench3https://pibench.org/

125

PiBench

Pro
ces

sor
Cou

nter
 Mo

nito
r

ipm
wat

ch
Mon

itor
Thr

ead
Glo

bal
Sta

ts
Key GeneratorValue GeneratorOperation Generator

Thread1
Stats

Key GeneratorValue GeneratorOperation Generator
Threadn
Stats

libwrapper.so

libbztree.so

libfptree.so

libnvtree.so

prefix

prefix

Figure A.1: Overview of the PiBench architecture. Independent worker threads issue re-quests to data structures and amonitor thread aggregates them in specified time intervals.

DRAM DCPMM
Buffer

Cache
64 B

256 B
PCM

ipmwatch

Figure A.2: Tools used by PiBench to measure memory traffic. PCM measures traffic onthe memory bus, which happens at a cache line granularity (64B). The ipmwatch tool isDCPMM specific, and it measures the traffic between the on-chip buffer and the underlyingpersistent media, which happens at a granularity of 256B.

126 Appendix A PiBench

CONFIRMATION

I confirm that I independently prepared the thesis and that I used only the references andauxiliary means indicated in the thesis.

Dresden, den 30. Oktober 2020

127

	Introduction
	Background
	Non-Volatile Memory
	Types of NVM
	Access Modes
	Byte-addressability and Persistency
	Performance

	Related Work
	Case Study: Persistent Tree Structures
	Persistent Trees
	Evaluation

	Log-Structured Merge-Trees
	LSM and NVM
	LSM Architecture
	LevelDB

	Persistent Memory Environment
	2Q Cache Policy for NVM
	Evaluation
	Write Performance
	Read Performance
	Mixed Workloads

	Additional Case Study: RocksDB
	Evaluation

	B+Trees
	B+Tree and NVM
	Category #1: Buffer Extension
	Category #2: DRAM Buffered Access
	Category #3: Persistent Trees

	Persistent Buffer Pool with Optimistic Consistency
	Architecture and Assumptions
	Embracing Corruption

	Detecting Corruptions
	Possible States

	Repairing Corruptions
	Performance Evaluation and Expectations
	Checksum Overhead
	Runtime and Recovery

	Discussion

	Index+Log Key-Value Stores
	The Case for Tail Latency
	Goals and Overview
	Execution Model
	Reactive Systems and Actor Model
	Message-Passing Communication
	Cooperative Multitasking

	Log-Structured Storage
	Networking
	Implementation Details
	NVM Allocation on RStore
	Log-Structured Storage and Indexing
	Garbage Collection
	Logging and Recovery

	System Operations
	Evaluation
	Methodology
	Environment
	Other Systems
	Throughput Scalability
	Tail Latency
	Scans
	Memory Consumption

	Related Work

	Conclusion
	Bibliography
	PiBench
	Introduction
	Non-Volatile Memory
	Challenges
	Non-Volatile Memory & Database Systems
	Contributions and Outline

	Background
	Non-Volatile Memory
	Types of NVM
	Access Modes
	Byte-addressability and Persistency
	Performance

	Related Work
	Case Study: Persistent Tree Structures
	Persistent Trees
	Evaluation

	Log-Structured Merge-Trees
	LSM and NVM
	LSM Architecture
	LevelDB

	Persistent Memory Environment
	2Q Cache Policy for NVM
	Evaluation
	Write Performance
	Read Performance
	Mixed Workloads

	Additional Case Study: RocksDB
	Evaluation

	B+Trees
	B+Tree and NVM
	Category #1: Buffer Extension
	Category #2: DRAM Buffered Access
	Category #3: Persistent Trees

	Persistent Buffer Pool with Optimistic Consistency
	Architecture and Assumptions
	Embracing Corruption

	Detecting Corruptions
	Possible States

	Repairing Corruptions
	Performance Evaluation and Expectations
	Checksum Overhead
	Runtime and Recovery

	Discussion

	Index+Log Key-Value Stores
	The Case for Tail Latency
	Goals and Overview
	Execution Model
	Reactive Systems and Actor Model
	Message-Passing Communication
	Cooperative Multitasking

	Log-Structured Storage
	Networking
	Implementation Details
	NVM Allocation on RStore
	Log-Structured Storage and Indexing
	Garbage Collection
	Logging and Recovery

	System Operations
	Evaluation
	Methodology
	Environment
	Other Systems
	Throughput Scalability
	Tail Latency
	Scans
	Memory Consumption

	Related Work

	Conclusion
	Bibliography
	PiBench

