TECHNISCHE
@ UNIVERSITAT
DRESDEN

Leveraging Non-Volatile Memory in Modern
Storage Management Architectures

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universitat Dresden
Fakultat Informatik

eingereicht von
Lucas Lersch, M.Sc.
geboren am 6. November 1990 in Porto Alegre, Brasilien

Gutachter: Prof. Dr.-Ing. Wolfgang Lehner
Technische Universitét Dresden
Fakultat Informatik
Institut far Systemarchitektur
Lehrstuhl fur Datenbanken
01062 Dresden

Prof. Dr.-Ing. Dr. h. c. Theo Hérder
Technische Universitét Kaiserslautern
Fachbereich Informatik

Lehrgebiet Informationssysteme

AG Datenbanken und Informationssysteme
67653 Kaiserslautern

Tag der Verteidigung: 30. Oktober 2020

Dresden, den 30. Oktober 2020

To my parents: Suzana and Nelson.

ABSTRACT

Non-volatile memory technologies (NVM) introduce a novel class of devices that com-
bine characteristics of both storage and main memory. Like storage, NVM is not only
persistent, but also denser and cheaper than DRAM. Like DRAM, NVM is byte-addressable
and has lower access latency. In recent years, NVM has gained a lot of attention both in
academia and in the data management industry, with views ranging from skepticism to
over excitement. Some critics claim that NVM is not cheap enough to replace flash-based
SSDs nor is it fast enough to replace DRAM, while others see it simply as a storage device.
Supporters of NVM have observed that its low latency and byte-addressability requires
radical changes and a complete rewrite of storage management architectures.

This thesis takes a moderate stance between these two views. We consider that, while
NVM might not replace flash-based SSD or DRAM in the near future, it has the potential to
reduce the gap between them. Furthermore, treating NVM as a regular storage media does
not fully leverage its byte-addressability and low latency. On the other hand, completely
redesigning systems to be NVM-centric is impractical. Proposals that attempt to leverage
NVM to simplify storage management result in completely new architectures that face
the same challenges that are already well-understood and addressed by the traditional
architectures. Therefore, we take three common storage management architectures as a
starting point, and propose incremental changes to enable them to better leverage NVM.
First, in the context of log-structured merge-trees, we investigate the impact of storing data
in NVM, and devise methods to enable small granularity accesses and NVM-aware caching
policies. Second, in the context of B+Trees, we propose to extend the buffer pool and
describe a technique based on the concept of optimistic consistency to handle corrupted
pages in NVM. Third, we employ NVM to enable larger capacity and reduced costs in a
index+log key-value store, and combine it with other techniques to build a system that
achieves low tail latency. This thesis aims to describe and evaluate these techniques in
order to enable storage management architectures to leverage NVM and achieve increased
performance and lower costs, without major architectural changes.

ACKNOWLEDGMENTS

While this thesis carries a single name as its author, it is actually the result of the contribu-
tions and support of many people during the years that led to it.

First and foremost, it has been a privilege to be mentored and supervised by Prof. Dr.-Ing.
Wolfgang Lehner. Not only has Wolfgang contributed significantly to my professional
growth, but he has also been incredibly supportive on a personal level helping me to face
the challenges and get through the obstacles | have faced along the way. Furthermore, it is
truly inspiring to witness the positive impact that Wolfgang has in the life of its students.

Second, | would like to thank Prof. Dr.-Ing. Dr. h. ¢ Theo Harder for reviewing this thesis.
Prof. Harder was one of the people who inspired me to pursue a PhD degree, by granting
me the opportunity to participate in his research group through an exchange program in
2012 during my bachelor’s and later master’s degree programs.

| am also immensely grateful for the opportunity to conduct this work in close collaboration
with SAP, as part of the SAP HANA Database Campus. Ivan Schreter had a major role in
supervising my work and teaching me a lot about software development. Arne Schwarz
has been fundamental in leading the SAP HANA Database Campus and ensuring that
the other students and | had the necessary tools, equipment, and environment required
for us to focus on our research work. | would like to extend my gratitude to Alexander
Bohm and Norman May for helping making the goals of SAP HANA Database Campus a
reality. | would also like to thank the Intel colleagues Thomas Willhalm, Roman Dementiev,
Otto Bruggeman and Heinrich Teiken for all of the support they provided me while | was
conducting my research.

| would specially like to express my gratitude to two colleagues whom | also have the
privilege of calling friends. First, it was while working with Caetano Sauer during my
master’s degree program that | was inspired to pursue a PhD degree. Not only has he
graced me many times with insightful technical discussions, but Caetano has also been
there to offer his support during my most difficult of times, to which | am most grateful. My
gratitude to Caetano is also extended to his wife Irina and daughter Aria, for always being
so kind and welcoming. Second, | would like to thank Ismail Oukid for enabling me to do
my PhD as part of the SAP HANA Database Campus. Once | was given the opportunity, he
continued to guide my work, even through our occasional heated debates. | look forward
to working with Ismail again in the future.

| am also grateful to my colleagues at SAP, who have not only taught me a lot on a
professional level, but also made my PhD years a lot more fun. Although | have shared

a limited time with Iraklis, Marcus, Michael R., Robert, David, and Elena, they all served
as role models for ideal PhD candidates. | was privileged to start my PhD journey with
Georgios, who always contributed to the socialization of the group, and Frank, who always
was willing to help me by sharing his deep technical knowledge. Florian has shown me how
important it is to insist on high standards. Matthias amazed me with his incredible broad
knowledge of things. Thomas has supported me immensely not only on a professional
level, but also personal one through engaging discussions. Stefan has been my favorite
person to share both my frustrations and achievements during our daily afternoon breaks.
Robin has made otherwise stressful days brighter with his sense of humor, good music
taste, and by surprising me on how much denial a person can sustain about “The Last
Jedi” being a horrible movie and a mistake in the “Star Wars” sequel trilogy. | also had
the privilege to witness Tiemo and Michael B. transition from master’s students to PhD
candidates, and | look forward to seeing them achieve great things. It was also a pleasure
to have met Mehdi and Jonas in the final months of my PhD and | wish them success.

On a personal level, | would like to thank my friends, both near and far, who have supported
me and gave me the strength to endure this journey. As a representative of these friends,
Gilson was a always close and supportive one. In supply-chain management, it is often
said that the last mile is the most difficult one when delivering products. This seems to
also have been the case of my PhD time, not only due to its own challenges, but also
due to external events. | am grateful to Diana for having made this last mile a lot easier.
Finally, | would like to thank all my family members who have supported me unconditionally
throughout my whole life. | feel truly privileged to have had all the aforementioned people
offering their support and encouragement, not only while | conducted my research and
wrote this dissertation, but in my personal life as well.

Lucas Lersch
Heidelberg, 23. April 2021

CONTENTS

1 INTRODUCTION 13
1.1 Non-Volatile Memory e 14
1.2 Challenges e 15
1.3 Non-Volatile Memory & Database Systems 16
1.4 Contributionsand Qutline 17

2 BACKGROUND 19
2.1 Non-Volatile Memory 19

2.1.1T Types of NVM o o 19
2.1.2 AccessMOodes 21
2.1.3 Byte-addressability and Persistency 22
2.1.4 Performance 23
2.2 Related Work 25
2.3 Case Study: Persistent Tree Structures 30
2.3.1 PersistentTrees 31
2.3.2 BEvaluation. 34

3 LOG-STRUCTURED MERGE-TREES 45
3.1 LSMand NVM . . . 45
3.2 LSM Architecture 46

3.2.1 LevelDB 47
3.3 Persistent Memory Environmento 49
3.4 2Q Cache Policy forNVM 51
3.5 BEvaluation 53
3.5.1 Write Performance 53
3.5.2 Read Performance 54
3.5.3 MixedWorkloads, 56
3.6 Additional Case Study: RocksDB 57
3.6.1 Bvaluation. 58

CONTENTS 9

4 B+TREES 61

4.1 B+Tree and NVM 61
4.1.1 Category #1: BufferExtension 62
4.1.2 Category #2: DRAM Buffered Access 63
4.1.3 Category #3: PersistentTrees 63

4.2 Persistent Buffer Pool with Opftimistic Consistency 64
4.2.1 Architecture and Assumptions 65
422 Embracing Corruption 67

4.3 Detecting Corruptions 69
43.1 Possible States 70

4.4 Repairing Cormuptions o 73

4.5 Performance Evaluation and Expectations 74
451 ChecksumOverhead, 76
452 RuntimeandRecovery 79

4.6 DISCUSSION . . . o o o o o e e e e e e e 80

5 INDEX+LOG KEY-VALUE STORES 83

5.1 The Case forTailLatency 84

52 Godlsand Overview 85

53 ExecutionModel 85
5.3.1 Reactive Systems and ActorModel 85
5.3.2 Message-Passing Communication 86
5.3.3 Cooperative Multitasking 87

5.4 Log-Structured Storage 89

55 Networking Q0

5.6 Implementation Details Q1
5.6.1 NVM AllocationonRStore 91
5.6.2 Log-Structured Storage andIndexing 92
5.6.3 Garbage Collection 94
5.6.4 LoggingandRecovery 97

5.7 System Operations 98

5.8 Evaluation 99
5.8.1 Methodology. 99
5.8.2 Environment 99
583 OtherSystems 100
5.8.4 Throughput Scalability 101

10 CONTENTS

585 TailLatency 103

5.8.6 SCaNs . .. 104

5.8.7 Memory Consumption 106

5.9 RelatedWork 107
6 CONCLUSION 109
BIBLIOGRAPHY 113
A PIBENCH 125

CONTENTS 11

12 CONTENTS

INTRODUCTION

Storage managers are in the core of database systems. They are critical for achieving
high performance in the overall system by enabling efficient access to slower storage
devices which usually become the bottleneck. Furthermore, storage managers are also
responsible for providing the A (atomicity) and D (durability) of the ACID properties [HR83],
thus preventing data loss and corruption. As a consequence of being so critical, storage
management has to be constantly revisited in order to properly leverage modern hardware
and keep the pace with the ever growing data processing demands.

A good example of this constant revisit is the The Five-Minute Rule series, which surveys
once per decade the advances in modern hardware and their implications in database
systems. In the original paper from 1987 [GP87], Jim Gray and Gianfranco Putzolu con-
sidered metrics of DRAM and HDD, such as latency, bandwidth, and cost, to calculate the
break-even point at which the cost of keeping a page in memory matches the cost of doing
I/0 to read the page from HDD. They introduced the rule of thumb that named the series:
“Pages referenced every five minutes should be memory resident”. In 1997, Jim Gray and
Goetz Graefe revisited the work in view of technological improvements of HDDs: ten-fold
increase in access speeds, hundred-fold increase in capacity, and ten-thousand-fold de-
crease in costs [GG97]. In 2007, Goetz Graefe investigated the impact of a novel technology
by the time: flash [Gra07]. While it was still in its early stages and many questions were
still open, it was a promising technology. The main take-away was the prediction that
flash would be used to fill the gap between DRAM and HDD, which has since been proven
correct. More recently, in 2017, Appuswamy et. al. revisited the discussion in view of now
well-established NAND flash-based solid-state storage devices (SSD) [ABGA17]. The initial
challenges imposed by flash in 2007, namely reduced lifetime and higher costs, are long
gone and, as a consequence, SSDs became the main storage device, thus relegating HDDs
to a high-density storage medium for infrequently accessed data. The performance gap
between DRAM and SSDs is reduced even further with the advent of PCle NVMe SSDs,
also referred to as enterprise SSDs. The work also scratches the surface of a novel storage
technology rising on the horizon: non-volatile memory (NVM).

It is still too early to revisit the series in view of NVM. Even if the technology is currently
available, it is not yet as established as DRAM, SSDs, or HDDs. Many works are exploring
ways to properly leverage NVM in the context of database systems and answering open
questions. The advancements made by these works will pave the way to the next chapter
in the The Five-Minute Rule series. This dissertation aspires to be one of these works.

13

1.1 NON-VOLATILE MEMORY

Many different underlying technologies (PCM [PSU*70], carbon nanotubes [DVTBH13],
ReRAM [Chu19], STT-MRAM [HYY*05, H*08], battery-backed DRAM) and names (non-
volatile memory, NVRAM, storage class memory, persistent memory) belong to a novel
class of storage devices and are often used interchangeably. Although they might have
different properties, they all refer to byte-addressable persistent media that blurs the
boundary between main memory and storage. This is the main reason why history will not
simply repeat itself with a faster media, as it was the case with flash-based SSDs. NVM
has a higher potential of disrupting modern software stacks.

Works dating from as early as the 1980s entertained the idea of such a technology and its
impacts in system architectures [Zak81, Cha78, Wri83, DGS80]. However, the assumption
was mostly theoretical [Chu71] or unpractical due to technological limitations or prohibitive
costs, existing only in the form of niche accelerators [Mic17, Tec18]. Recent technologi-
cal advancements made this technology real and more accessible. More prominent is
the 3D XPoint technology?, developed by Intel and Micron [Mic20, Eva15]. Intel currently
commercializes 3D XPoint both as regular Optane PCle NVMe SSD [Int20b] and Optane
DC Persistent Memory Modules (DCPMM for short) [Int20c]. The latter is the one we
focus on in this work. As a result, there is renewed attention to this area of research as
it promises to deliver the long-awaited features required to blur the boundaries between
memory and storage. But how are these boundaries blurred? Or in other words, what does
byte-addressable really mean? Since this term is often used with different meanings, it is
appropriate to discuss and make explicit the definition used in this work.

Common consensus usually defines main memory (DRAM) as byte-addressable and
storage (HDD and SSD) as block-addressable. This definition is often based on the fact
that the programmer can access a single byte in DRAM. However, from this point of view,
common file system interfaces also allow the programmer to read a single byte from a
file. It is true that the underlying file system is actually reading a whole block (usually 4 kB)
from storage into memory in order to provide access to that single byte, but that is also
the case in modern CPU architectures, in which a block (usually much smaller and referred
to as cache line) is read from memory into the CPU caches. In other words, conceptually
there is no difference, as in both cases data is always transferred at larger granularities,
be it a block, page, or cache line. Therefore, this definition is too loose and considered
inadequate to define byte-addressability. Our definition focus more on the access path
rather than on the access granularity. Whenever we refer to byte-addressability, we mean
that NVM is attached directly to the same bus as regular DRAM and therefore it is also
accessed through the CPU caches and shares the same virtual memory space.

In addition to byte-addressability, NVM also introduces other attractive characteristics. In
comparison to modern DRAM, 3D XPoint is cheaper [Aco19] and prices are expected to
drop within the next years. It is also denser, in the sense that the largest DRAM module
commercially available is 128 GB while Intel has already announced a single DCPMM of
up to 1TB. The latency is higher than that of DRAM, but within the same order magnitude
and, therefore, lower than NAND flash. The bandwidth, is better than NAND flash, but still
far from that of DRAM. Finally, 3D XPoint also has a higher write endurance than modern
NAND flash. All these advantages, however, come at a cost.

"In this work we opted for using the term non-volatile memory, or NVM for short.
2An analysis has shown that 3D XPoint is based on phase-change memory (PCM) [Cho17].

14 Chapter 1 Introduction

1.2 CHALLENGES

The opportunities mentioned also entail challenges, following the “no free lunch” conjecture.
In the case of NVM,, it is beneficial to consider the challenges under two different scopes:
reading from NVM and writing to NVM.

In terms of reading, the challenge lies in investigating NVM performance characteristics in
order to properly fit it into the storage hierarchy. For years, similar questions have being
investigated by many works in the context of tape, HDDs, SSDs, and DRAM. In the case
of byte-addressable NVM, these works only cover part of the problem. In the example of
the The Five Minute Rule mentioned previously, the rule only dictates which pages should
be evicted from DRAM, but it does not focus so much on which pages should be moved
to DRAM. Fair enough, before NVM this was never really a concern, since there was no
choice, as a page always had to be read from persistent storage to DRAM in order to be
accessed. Even if a decision was made to evict a page immediately after reading it from
storage, the high 1/0 cost was already paid. In the case of NVM, pages can be directly
accessed without any additional I/0. Therefore, NVM introduces a new dimension that
should be considered when optimizing data placement and buffer policies.

Writing directly to NVM is hard. Database systems rely on persistent data to always
be consistent in some way. To achieve a desired degree of consistency, it is required
full control of what and when is made persistent. For example, transactional recovery
algorithms require log records to be persisted prior to the updated page (a.k.a. write-ahead
logging). The challenge comes from the fact that, while systems have full control over
data movement between memory and traditional storage, this is not the case with NVM.
Since NVM can be accessed directly by the CPU, corruption and data loss may occur for
many different reasons, such as updated data staying in the CPU cache and being lost
at a power failure, or the CPU arbitrarily evicting (and therefore persisting) cache lines in
the wrong order. In other words, as opposed to the traditional memory-storage interaction,
there is no way of pinning a cache line to prevent it from being evicted by the CPU.

Figure 1.1 better illustrates the challenge with an example. The left-hand side shows the
memory layout of a sorted array in NVM that spans two cache lines (indicated by the
different shades of gray). The first position of the array indicates the current size, while
each remaining record is represented by an integer. Three steps are required for inserting
a new record 3: move records 4-9 one position to the right in order to make space, insert
record 3 in the appropriate position, increment the size from 5 to 6. A failure might occur
at any intermediate state of this operation and upon restart the sorted array may be found
in one of different states illustrated on the right-hand side. In state (1), the operation
completed successfully before the failure and the array is found in a consistent state. All
the other states are inconsistent. In 2), the records 9 and 7 were moved one position to the
right, the CPU arbitrarily evicted the second cache line, and the failure occurred. In), the
insertion completed, but the cache lines were evicted and the power failure occurred before
the size was updated. Finally, in @), the insertion completed, the size was updated, but only
the first cache line was evicted before the failure, while the second portion of the array
remained in its original state. The example shows how such a simple and fundamental
operation can easily lead to data being corrupted when NVM is used as persistent storage.
To a certain extent, addressing this challenge is in the core of many modern works that
propose architectures, data structures and algorithms in the context of NVM.

1.2 Challenges 15

EEEEN

Insert 3 o[5[1]2 4_

PN << (L[i
Size Records @|6]1112]3 _

Figure 1.1: Possible states if a failure occurs while inserting a record in a sorted array in
NVM (figure inspired by [CJ15]).

1.3 NON-VOLATILE MEMORY & DATABASE SYSTEMS

Many works investigate NVM in the context of databases. They either focus on individual
components of the system, such as data structures [CJ15, OLN16, ALML18], memory
allocators [CCA*11, BCB16, OBL™17], logging schemes [HSQ14, WJ14, APP16], or on the
database architecture as a whole. These works can also be categorized based on their
initial assumptions and expectations regarding NVM. In this dimension, we observe that
two categories can be identified: a conservative approach and a more radical approach.

Conservative approaches simply treat NVM as a faster SSD by accessing it through regular
file system interfaces [GXH ™11, PWGB13, EGA*18]. These approaches are commonly seen
in industry, under the consideration that NVM is not well-established enough to justify
expensive re-architecting efforts. The main advantage is that NVM is used transparently
as a caching layer between DRAM and SSD, thus leveraging all devices in the modern
storage hierarchy and avoiding the previously mentioned challenge of directly writing to
NVM. Therefore, these systems are NVM-agnostic, as they behave exactly the same way,
from an architectural point of view, both in the presence and absence of NVM.

On the other hand, radical approaches are NVM-centric, in the sense that they propose
novel techniques with the goal of fully leveraging NVM characteristics to achieve higher
performance. Recent works in the research community proposing novel database architec-
tures fall in this category [Kim15, OBL*14, PAAT17]. Furthermore, an extreme assumption
is that NVM performance and cost will lead to the extinction of modern DRAM and storage
technologies, and drive the adoption of what is known as single-level systems. The notion
of single-level systems is not new [KELS62] and refers to the idea of having no separa-
tion between volatile data and persistent data. While this assumption is far-fetched, it is
made by many works [YWC™15, CJ15, WLL18, ALML18], as it opens interesting research
questions. However, both conservative and radical approaches have drawbacks.

Conservative approaches have two main disadvantages. First, the lower latency, one of
the major selling points of NVM, might not be observed, as access to persistent media
may be dominated by kernel and file system operations, which become relatively more
expensive when compared to I/0 costs on modern SSDs. Second, it does not leverage byte-
addressability and still imposes unnecessary data movement between DRAM and NVM. In
the case of radical approaches, the main disadvantage comes from the fact that they are
too optimistic regarding a quick and wide adoption of NVM and therefore the proposed
architectures are very different from traditional systems. As a consequence, there is no

16 Chapter 1 Introduction

obvious way to migrate from a well-established traditional architecture to NVM-centric
approaches, since they do not consider the modern storage hierarchy comprised of DRAM,
SSD, HDD, and even tape. This becomes an issue since we consider that, as the time of
writing and for the near future, NVM will not replace either DRAM or SSD, and therefore
it must coexist harmonically with these other devices. Furthermore, the alternative of
developing a complete new system from scratch is often unfeasible in practice due to high
development costs. Therefore, we argue that moderate approaches are required.

Two principles should guide moderate approaches. First, they should focus on transforming
systems designed for traditional devices (DRAM, SSD, HDD) into systems that leverage all
aspects of NVM, mainly the byte-addressability and persistency. This is done to a certain
extend by hybrid data-structures [OLNT16, XJXS17], which integrate NVM into regular
memory data structures in order to make them persistent. While these data structures are
often used as containers and building blocks, it is important to also look at this principle
from the perspective of a more complete system. Second, the changes required should
not be so disruptive that the architectural behavior of the system is completely changed.
In other words, the architecture should not become dependant on the presence of NVM.

1.4 CONTRIBUTIONS AND OUTLINE

As mentioned in the beginning of this chapter, storage management in database systems
is likely to be the area most impacted by the advent of NVM. Following the previously
mentioned moderate approach, we investigate the impact of NVM in the three most
common modern architectures for storage management: LSM, B+Tree and index+log [IC20].
For each one of them, we take the current state-of-the-art architecture as a starting point
and explore potential use-cases, trade-offs, opportunities, and challenges in view of NVM.
The goal is to leverage NVM as more than simply faster storage, while avoiding the, at
times prohibitive, effort to design and implement a completely new architecture. In the
following, we provide an overview of the organization of this dissertation by giving an
overview of each chapter and their respective contributions?:

+ Chapter 2 lays the general technical background on NVM required for the understating
of the next chapters. We also cover related work and conclude with our case study
on persistent data structures [LHO™19], in which we revisit persistent tree structures
proposed by prior work. Since these persistent trees were originally evaluated on
emulation platforms, we re-implement and re-evaluate them on real NVM hardware as
a way of setting the expecations of its real performance and behavior. The required
background specific to each following chapter is introduced in the chapter itself.

« Chapter 3 explores the synergy between NVM and log-structured merge-tree (LSM)
systems [LOLS17, LOSL17]. We take LevelDB as a first case study and propose a
persistent memory environment, Pmemenv, that enables LevelDB to directly access
NVM. We also analyze the caching behavior and propose a 2Q Cache Policy for NVM
to better leverage the byte-addressability. Finally we complement with a more recent
case study on RocksDB (a more modern system) and on real DCPMM.

3Many of the contributions have been peer-reviewed and published in the referenced papers.

1.4 Contributions and Outline 17

+ Chapter 4 investigates opportunities in the context of B+Tree architectures. We pro-
pose an extended buffer pool with an optimistic consistency model [LLO19]. The
optimistic consistency model relies on a checksum algorithm and recovery infras-
tructure common to most database systems, therefore requiring minor architectural
modifications. This introduces a knob that enables the system to choose a trade-off
between more NVM (lower costs and faster recovery) or more DRAM (faster perfor-
mance). We present our algorithm and discuss all possible corner cases, as well as
empirically evaluate the overhead and discuss end-to-end performance expectations.

+ Chapter 5 presents RStore, a multicore key-value store with an index+log architec-
ture [LSOL20]. RStore focus on use-cases requiring low tail-latency, such as web
caching, real-time systems, and metadata management. We introduce the building
blocks of RStore and how to integrate NVM in order to enable high performance and
lower costs. We show results of isolated evaluations to back our design decisions,
as well as an end-to-end evaluation and comparison with similar modern systems.

+ Chapter 6 concludes our work by summarizing the key findings of each chapter and
providing directions for future work.

The author of this thesis is responsible for the conception, implementation, evaluation,
analysis, and the interpretation of the results for each of the contributions presented. The
author is also the main author of the works upon which this dissertation is based on.
Nevertheless, the author is thankful to all co-authors that contributed substantially to these
works. Many of the ideas proposed had constant feedback and input through discussions
with Wolfgang Lehner, Ivan Schreter, and Ismail Oukid. Xiangpeng Hao and Tianzheng
Wang contributed with the full implementation of BzTree and with partial implementation
of the framework used for the persistent trees evaluation discussed in Section 2.3. Thomas
Willhalm contributed with suggestions and analysis of the results collected through hard-
ware counters. Caetano Sauer contributed with clarifications about transactional recovery
in the context of the buffer pool with optimistic consistency model in Chapter 4. Thomas
Bach contributed with discussions about the probability of data loss due to checksum
collisions, on that same chapter. The RStore system in Chapter 5 was built by the author
on top of the Reflex project at SAP, idealized and implemented by Ivan Schreter. Reflex
provides the following building blocks: message-passing communication, cooperative
multitasking, memory management, and networking. The author contribution lies on the
design, implementation, and evaluation of NVM in that system.

18 Chapter 1 Introduction

BACKGROUND

In this chapter, we cover the background on NVM required for the understanding of the
following chapters. We also survey related work that has explored opportunities to leverage
NVM in the context of database systems and storage management. Finally, we conclude
with an empirical analysis of persistent data structures in order to better exemplify the
challenges of NVM and solutions proposed, as well as to set realistic expectations of the
performance of NVM.

2.1 NON-VOLATILE MEMORY

Non-volatile memory (NVM)' is a novel class of technologies that has been regarded
as the next evolution step for persistent storage. The technologies in this class exhibit
characteristics of both storage and main memory. More precisely, they provide persistency
and high density while also being byte-addressable and offering a latency much closer to
that of modern DRAM (albeit often higher). While these characteristics are common to
most types of NVM technologies, they might vary slightly between them.

2.1.1 Types of NVM

There are two main groups of NVM technologies. The first group refers to technologies
based on flash memory, commonly known as NVDIMMSs. These devices are motivated
by the observation that the recent improvements in throughput and capacity of modern
NAND-flash SSDs have shifted the bottleneck from the storage device itself to the PCle
bus. Therefore, to avoid the high latency (tens of ps) and limited bandwidth (tens of GBps)
of PCle, these devices are interfaced via the same memory bus used for DRAM modules.
The Storage Networking Industry Association (SNIA) currently standardize two types of
NVDIMM. The NVDIMM-F type defines a flash-only DIMM, similar to regular PCle SSDs,
but connected to the memory bus. The access latency of devices of this type is lower

'Also referred to as non-volatile RAM (NVRAM), storage class memory (SCM), or persistent memory (PM).

19

than that of PCle NAND-flash SSDs, but still much higher that that of DRAM. They also
present capacity and cost similar to those of modern SSDs. The main disadvantage is that
NVDIMM-F devices are block-addressable rather than byte-addressable, which is one of the
main advantages of other NVM devices. The second type is NVDIMM-N, which combines
both DRAM and flash storage in a single module. Only the DRAM can be accessed during
normal operation. With the aid of an on-chip battery or capacitor, the DRAM content is
written to flash during a power failure, and restored during restart. NVDIMM-N devices
have the advantage of achieving a performance similar to that of DRAM and of being
byte-addressable, but have small capacities (in the tens of GB range) and high costs.
Examples of these devices are the ones commercialized by Viking Technology [Tec18]
and Micron [Mic18]. In general, NVDIMMs today are considered niche accelerators when
compared to PCle NAND-flash SSDs.

The second group of NVM includes devices based on materials other than NAND-flash,
with the most prominent being phase-change memory (PCM) [LZY*10, PSUT70], spin-
torque transfer magnetic RAM (STT-MRAM) [DWS*08, HYY*05, H08], and resistive RAM
(ReRAM) [GKC™11, SSSW08, Chul11]. PCM has its roots in research conducted in the
1960s [Ovs68] and is based on the property of certain materials, such as germanium,
antimony and tellurium, to persist a phase change when the right current is applied to them.
In industry, PCM has been researched by IBM, HGST, Micron, and Intel. STT-MRAM makes
use of the spin property of electrons, as opposed to conventional semiconductor elec-
tronics that make use of the charge property. It relies on the magnetic retention property
of certain materials to store information. Reads rely on sensing the resistant difference
between two states of this material, while writes are based on the spin-torque transfer
effect to change the orientation of the magnetization. Companies like Samsung, Qual-
comm, Crocus Technology, Everspin, and Intel have demonstrated works on STT-MRAM
technologies. Finally, ReRAM relies on applying high enough voltage to materials that do
not conduct electric current. This will force a phenomen called dielectric breakdown, which
damages the material. In certain materials, this damage is reversible and the controlled
defects caused can be used to represent bits in a binary system. HP Labs is the main
company researching ReRAM. Table 2.1 compares the performance characteristics of
single-level cell flash, DRAM, and the NVM technologies discussed?.

Recent technological advancements lead by Intel and Micron resulted in the development
of 3D XPoint® [Mic20]. 3D XPoint is based on PCM [Cho17] and is currently considered
the NVM technology with the most potential to succeed and to be widely adopted. Intel
commercializes 3D XPoint under the market name of Optane. Two lines of Optane products
exist. First, Optane is sold in PCle SSD format, similar to the NAND-flash variant, but offer
latencies an order of magnitude lower. Second, Optane DC Persistent Memory Modules
(DCPMM) are dual in-line memory modules (DIMMs) like DRAM, and thus are connected
directly to the memory bus. While Optane SSDs offer a much lower latency than NAND-
flash SSDs, they are still interfaced with PCle and are block-addressable, while DCPMMs
are byte-addressable. Furthermore, DCPMM is the NVM technology more accessible in
the market and has received support both in Windows [Tob16] and Linux [Lin15] systems.
For these reasons, in this work we focus on DCPMM and often use the more general term
“NVM” to refer to it. Nevertheless, our findings are not specific to DCPMM and can be
applied to other NVM technologies that exhibit access modes.

2In the real world, certain reported numbers might vary due format-specific functionalities, such as wear-
leveling techniques employed in SSDs.
®Pronounced “three dee cross point”.

20 Chapter 2 Background

Parameter SLC Flash DRAM PCM STT-MRAM ReRAM

Read Latency 25us 50ns 50ns 10ns 10ns
Write Latency 500 ps 50 ns 500ns 50 ns 50 ns
Byte-addressable No Yes Yes Yes Yes
Endurance 10%-10° >101° 108-10° >101° >101!
Density High Low Medium Low High
Cost $ SRS $S $8S 88

Table 2.1: Comparison of flash, DRAM, and modern NVM technologies.

2.1.2 Access Modes

Enabling modern systems to access NVM requires changes at different levels. At the
hardware level, Intel introduced support for DCPMM in the Cascade Lake processor family.
The DCPMM can be exposed in two different modes. In the memory mode, DCPMM
is treated as volatile memory. This mode has the benefit of significantly increasing the
perceived amount of memory available, while being completely transparent to the operating
system and applications. To amortize memory accesses due to the higher latency of
DCPMM, the DRAM present in the system is used as a cache. Therefore, NVM is not
treated as byte-addressable media as its contents must always be cached in DRAM instead
of being directly accessed by the CPU. Furthermore, in memory mode, data on DCPMM
becomes inaccessible after a restart, thus not leveraging the persistency of NVM.

In the app direct mode, DCPMM is exposed as a device, similar to a HDD or SSD. It then
can be formatted and mounted with a file system. At the software level, applications
have two ways of interacting with this file system. First, as shown on the left-hand side of
Figure 2.1, applications can manage files through the regular file system interfaces, such
as read() and write(). In this case, DCPMM is treated as a very fast block device and
has the advantage that no modifications to the software are required. Like other storage
devices, operations to files on DCPMM are done at a page granularity (usually 4 kB) and
buffered in DRAM. The second way is shown on the right-hand side of Figure 2.1. If the file
system is mounted with the special DAX flag, the application might map the file to its virtual
memory address space with mmap (). The DAX flag indicates that the DCPMM is directly
accessed and prevents intermediate buffering, such as the operating system page cache.
As a consequence, load and store instructions done to the mapped address space are
reflected directly to the DCPMM device. This has the advantages of avoiding expensive
system calls, of reducing the transfer granularity from pages to cache lines (64 B), and
of requiring only a single copy of the data, since it is not buffered in DRAM. It is worth
noting that, while both DRAM and NVM share the same virtual memory address space, the
application can distinguish their respective memory regions, and therefore control where
to place data. Finally, while accessing persistent media through load and store instructions
introduce challenges that require the software to be properly adapted, we consider this to
be the only way to fully leverage NVM and achieve optimal performance. Therefore, in this
thesis we only assume the scenario in which DCPMM is configured in app direct mode and
files are mapped to the virtual memory address space of applications.

2.1 Non-Volatile Memory 21

Application

-

-~
—— -~
] iy
- ~
- -
—— —
- -
—_——— e ——

_— -

DRAM
Virtual Memory - :
Fil Fil
Address Space : ile :
read() : :
write() gmmap()g User Space
_______ Kernel Space
File System
NVM File File

Figure 2.1: NVM Access.

2.1.3 Byte-addressability and Persistency

As previously mentioned, when configuring the DCPMM in the app direct mode and man-
aging it through a file system with the DAX flag enabled, applications are able to directly
map files in NVM to the virtual memory address space and access them through load and
store operations. The DAX flag guarantees that the operating system or file system will
not employ any intermediate buffering, thus ensuring that operations are always persisted
in NVM. While the DAX flag removes the volatility from the access chain at the software
level, there is still volatility to be considered at the hardware level, as the path from CPU
registers to NVM is long and mostly volatile.

As shown in Figure 2.2, Intel CPUs employ store buffers and three levels of caches to
hide the latency of memory accesses. Each physical core has its own L1 and L2 caches,
while the L3 cache is shared between all the cores. Accessing NVM through load and
store operations implies that data in NVM is transferred to the CPU caches, just like DRAM.
This traffic happens in cache lines of 64 B. This leads to three problems. First, the CPU
caches are volatile and therefore store operations are not guaranteed to be persistent
after they were executed. Second, since most CPUs employ out-of-order execution, store
operations might be reordered. Third, from the software point of view, cache lines are
arbitrarily evicted and, therefore, persisted back to NVM. Traditionally the software has
little control over the CPU caches, and, in such scenario, it is impossible to enforce store
ordering and data durability, which are the main requirements to ensure consistency.

To aid software developers, Intel has introduced the hardware instructions CLFLUSHOPT
and CLWB, which, when combined with SFENCE, can provide memory ordering and durability.
While it is not possible to prevent a cache line from being evicted from the CPU cache, the
CLFLUSHOPT and CLWB instructions eagerly force cache lines to be flushed and, therefore,
persisted. While both instructions are used to flush cache lines, the only difference is
that CLFLUSHOPT will also evict it from the CPU cache and CLWB will retain the cache line
in the CPU cache. The SFENCE instruction is a memory barrier that serializes all pending

22 Chapter 2 Background

C
/ Mo{‘ Core Core Mowﬁ
Store Buffer (Store Buffer I
)
_/

{ L1) (L1)
SFENCE .
+ { L2 (L2 J SFENCE
+ (L3) .
SFENCE Volatile

Persistent
' | NVM Controller |‘_ ersisten

A
4

NVM Device

Figure 2.2: The volatility chain from the CPU to NVM.

stores, thus preventing undesired reordering. Therefore, as seen in the left-hand side of
Figure 2.2, a typical pattern for persisting a store operation to NVM (represented by the MOV
instruction) is to explicitly follow it by three instructions: SFENCE, CLFLUSHOPT or CLWB, and
another SFENCE. The first SFENCE ensures that the stores completed, the CLFLUSHOPT or
CLwB will trigger a cache line flush to persist the store, and the last SFENCE will ensure the
previous CLFLUSHOPT or CLWB completed before resuming. In addition to these instructions,
non-temporal stores (MOVNT) can also be used to bypass the cache by writing to a special
buffer, which is evicted either when it is full, or when an SFENCE is issued. This is shown in
the right-hand side of Figure 2.2. Non-temporal stores are useful when the CPU is simply
writing to a new memory location without previously reading the data and loading its cache
lines, such as when streaming data in a log-structured manner.

Finally, it is worth noting that, while cache line transfers between CPU caches and NVM
happen in a granularity of 64 B and are atomic, current x86 CPUs only guarantee that 8 B
stores are atomic, i.e., complete within a single CPU cycle*. While it is unlikely that a cache
line will be evicted during a store operation larger than 8 B, algorithms and data structures
should take that into consideration to avoid partial writes and guarantee correctness. This
is usually achieved by atomically updating an 8 B variable to reflect larger stores, such as
a pointer (in the case of shadowing) or the tail of a log. In the context of NVM, this 8 B unit
is commonly referred to as p-atomic.

2.1.4 Performance

In order to give a good overview of the performance characteristics of DCPMM, we have
measured its latency and bandwidth using Intel Memory Latency Checker(v3.9) [VKW*13].
The hardware used for the measurements is shown in Table 2.2. We first compare the
latency of DCPMM to the latency of CPU caches and DRAM. The processor has 24 physical

“Not to be confused with atomic visibility, which can be achieved at larger sizes by the cache-coherency
protocol when using hardware instructions such as compare-and-swap(CMPXCHG16B).

2.1 Non-Volatile Memory 23

Processor Intel Xeon Platinum 8260L CPU @2.40 GHz

Main Memory 96 GiB DDR4 @2666 MHz (6 x 16 GiB modules)
NVM Intel Optane DCPMM 1.5 TiB (6 x 256 GiB modules)
Operating System Linux 5.3.4-3

Table 2.2: Hardware used for measuring DCPMM performance characteristics.

Level Sequential Access Random Access
L1 1ns Tns
L2 7ns 7ns
L3 20ns 20ns
DRAM 75ns 85ns
DCPMM 175ns 300ns

Table 2.3: Latency for accessing different levels of the memory hierarchy.

cores and 48 logical cores. The L1 caches are divided in instruction cache and data
cache, each one having a capacity of 32kB. Each L2 cache has a capacity of 1024 kB
and the shared L3 cache has a capacity of 36 608 kB. The access latencies are shown in
Table 2.3. The main observation is that DCPMM not only has higher latencies, but they
differ significantly between sequential and random accesses. This is explained by buffering
being employed internally in the DCPMM device, as reported by Intel [Int20d]. While traffic
between CPU caches and DCPMM happens in a 64 B granularity, just like DRAM, internally
the DCPMM employs buffering at a 256 B granularity. In other words, it is beneficial to
collocate data on DCPMM in units of 256 B to explore spatial locality. It is also worth
mentioning that the reported DCPMM latency refer to read operations. As previous studies
have also noted [IYZ119], precisely measuring the write latency of DCPMM is difficult. For
supporting DCPMM, Intel CPUs rely on a feature called asynchronous DRAM refresh (ADR).
The ADR triggers a hardware interrupt to the memory controller to flush write-protected
data buffers in the case of a power failure. While stores that linger in the ADR domain are
“safe”, currently there is no way to detect when they physically reach the DCPMM itself.

Figure 2.3 compares the bandwidth under two and six DCPMMs with a varying number
of threads. The CPU supports six channels, each of which has two slots, one for DRAM
and one for NVM. Therefore, the number of DCPMMs also indicates the number of mem-
ory channels. Similar to DRAM, adding more DCPMMs significantly increases the read
bandwidth, while the impact for write bandwidth is relatively smaller. It is worth noting
that in most cases using two threads is enough to saturate the DCPMM write bandwidth.
Nevertheless, having as many DCPMMs as possible is not always better, as the optimal
setup highly depends on the use-case. As an example, one might benefit from less DCP-
MMs in favor of more DRAM modules, since the amount of available memory slots is
limited per CPU. In such case, this would imply trading the lower costs and increase in
bandwidth of DCPMM for a more expensive setup and larger DRAM capacity, benefiting
from its lower latency access. DCPMM exhibits peak sequential read and write bandwidth
of 40 GB/s and 10 GB/s, respectively. These are respectively ~3x and ~11x times lower
than those of DRAM. This gap widens even more for random read and write bandwidth
to respectively ~8x (7.4 or 7.4 GB/s) and ~14x (5.3 GB/s) lower bandwidth than DRAM.
Given the performance gap between DRAM and DCPMM, it becomes more important to
leverage more memory channels (i.e., equip more DCPMMs) to reach the peak bandwidth.

24 Chapter 2 Background

-®- DRAM Seq. (x6) - DCPMM Seq. (x6) -8 DCPMM Seq. (x2)
@® DRAM Rnd. (x6) B DCPMM Rnd. (x6) & DCPMM Rnd. (x2)

102 |

w
Pra)
S
e
5 101k
= F
2 [I
‘g :8838383&8383838382383838883 g

o | [SHBEBBEBBERBEREY

1 4 8 16 1 4 8 16
Threads # Threads
(a) Read. (b) Write.

Figure 2.3: DRAM and Optane DCPMM bandwidth when a server is fully (x 6 modules)
and partially (x 2 modules) populated.

2.2 RELATED WORK

The advances in the recent years raised the interest in NVM technologies both in academia
and industry. Many interesting works proposed data structures, algorithms, and architec-
tures in different contexts. While most of the contributions and the concepts explored can
be used as building blocks for more complex systems, in this section, we limit to review
the related work of more complete storage management systems in the context of NVM.

Storage Management in the NVRAM Era

Pelley et al. [PWGB13] explore the impact of NVM (referred to as NVRAM) in traditional
database architecture. Rather than leveraging NVM in the context of the modern storage
hierarchy comprised of DRAM, SSD, HDD, and even tape, the work assume that NVM will
replace all existing persistent storage devices. Therefore, as a starting point, they use NVM
as a drop-in replacement for disk and analyze how it impacts the database architecture.
The first dimension considered refers to reading from NVM. Even if the performance
of NVM is higher than that of other storage media, the authors assume that caching is
still required due to its higher latency. Three alternatives are proposed: Software Buffer,
Hardware Buffer, and DRAM Replication. The Software Buffer approach relies on caching
hot pages in DRAM through a buffer manager, as in conventional databases. The Hardware
Buffer alternative involves removing the buffer manager and rely solely on CPU caches
to hide the higher latency of NVM. Finally, the DRAM Replication also relies on removing
buffer management by having a complete replica of the database in DRAM to serve read
requests. Like the authors, we consider that, while Hardware Buffer and DRAM Replication
strategies can simplify the software stack my removing buffer management, they are
impractical in most scenarios due to the limited capacity of CPU caches and to the large
DRAM requirements, respectively. Therefore, having a portion of DRAM managed by a
Software Buffer to cache hot pages is still the best strategy.

2.2 Related Work 25

Since a Software Buffer in DRAM is used to read and modify pages, the second dimen-
sion considered by the authors refers to writing the pages back to NVM. The strategies
considered are: Traditional WAL/ARIES, In-Place Updates, and NVRAM Group Commit. To
enable Traditional WAL/ARIES, the authors introduce two operations, persist_wal() and
persistent_page (), to enable atomic propagation of log records and pages to NVM, re-
spectively. The authors note that, while it is a simple approach, the software overhead of
logging and page flushing becomes the bottleneck if NVM is used as the main storage
device. As an alternative, the In-Place Update strategy is proposed. It eliminates redo
logging by employing a force strategy (i.e., flushing all updated pages at commit). Trans-
actions employ private undo log records, which are persisted to NVM until the transaction
commits, thus enabling the transaction to roll back after a failure. Finally, the authors
also propose the NVRAM Group Commit strategy, which extends the In-Place Update
by batching multiple transactions and applying their updates at once to a copy of the
whole database. The authors consider NVRAM Group Commit to be the best strategy, as
it amortizes the overhead associated with committing single transactions.

While we agree with the authors that Software Buffer is a good strategy, we make a few
observations regarding writing to NVM. In the Traditional WAL/ARIES approach, the authors
argue that logging and the asynchronous page flushing are the main source of overhead.
We point out that, while the authors assume that shadow paging is used to atomically flush
pages to NVM, this is not required, since the WAL suffices to guarantee the consistency of
the database and recover pages in case of partial writes. The overhead of WAL can also
be significantly reduced with better logging protocols, as discussed later in this section.
Furthermore, the In-Place Update and NVRAM Group Commit are proposed to eliminate
redo logging. However, both strategies employ shadow paging during commit time, which
was previously pointed out as a main overhead in the context of asynchronous page
flushing. Removing the redo log also implies lack of support for media recovery. Therefore,
we consider that a well-implemented Traditional WAL/ARIES approach can reduce the
mentioned overheads and perform better than the proposed alternatives.

Managing Non-Volatile Memory in Database Systems

Similar to the Software Buffer strategy discussed previously, van Renen et al. [VRLK*18]
propose a buffer manager to leverage the benefits of NVM. The authors point that DRAM is
still required to hide the higher latencies of NVM but that page-based DRAM caching leads
to unnecessary memory traffic. Therefore, unlike Pelley et al. [PWGB13], they propose to
leverage NVM in the context of a more complete storage hierarchy comprised of DRAM and
SSD, and to reduce the traffic between DRAM and NVM from pages to smaller granularities,
such as cache lines or “mini pages”. The authors also employ many state-of-the-art tech-
niques, such as pointer-swizziling [GVK*14], and further discuss replacement strategies.
The main advantages of the proposed buffer manager are its simplicity, which makes it
easy to be integrated into existing systems, and its capacity to leverage other storage
devices. Nevertheless, while the unnecessary traffic between DRAM and NVM is reduced,
it is not completely eliminated, as NVM is never directly accessed by the CPU.

26 Chapter 2 Background

FOEDUS

The FOEDUS is a transactional system [Kim15] designed to leverage many-core servers and
NVM. Like Pelley et al. [PWGB13], the author assumes a scenario in which NVM completely
replaces other storage devices and coexists solely with DRAM. It proposes a B+Tree
variation called Master Tree and relies on the concept of dual pages. Each page has two
copies: a read-only state in NVM and a volatile state in DRAM. This technique resembles
shadow paging, but it stores the address of both versions of a page in the incoming page
pointers, rather than in a separate mapping data structure. FOEDUS employs a redo-only
distributed logging scheme [TZK*13, ZTKL14]. A “log gleaner” process propagates the
updates to the NVM pages by asynchronously replaying the log records. While FOEDUS
employs many state-of-the-art techniques, the author assumes that NVM is accessed
through the regular file system interface, thus not leveraging its byte-addressability and
being the main drawback of the proposed architecture.

Write-Behind Logging

Motivated by the observation that write-ahead logging becomes the main bottleneck in
many scenarios, Arulraj et al. propose an NVM-aware commit protocol called write-behind
logging (WBL) [APP16]. They assume a database system consisting of only DRAM and
NVM and multi-version concurrency control (MVCC) [LBD*11, KR79]. During transaction
execution, changes are written to a DRAM copy of the database. At commit, dirty records
are flushed individually to NVM, following a force strategy. Since MVCC is used, records
are always written to a new location in NVM. Nevertheless, uncommitted updates might
be propagated to NVM if a failure occurs during commit. To determine loser transactions,
a group-commit interval is defined by two timestamps (¢, ¢4), such that all transactions
with timestamp lower than ¢, have successfully committed, and no transactions with
timestamp higher than ¢, have executed yet. These timestamps are written to a log after
all the changes older than ¢, have been propagated to NVM, hence “write-behind”. The
recovery consists of reading the log to determine the (c,,c,) intervals that define the loser
transactions. Following MVCC, records modified by loser transactions are then ignored by
new transactions, later being removed by a garbage collection process.

The authors show benefits over write-ahead logging (WAL) in terms of memory consump-
tion and reduced traffic to NVM. However, we note that WAL is a protocol for update-in-place
strategies, which is not the case of MVCC. In other words, the multiple copies of a record
stored in a MVCC system already resemble the before- and after-images stored in log
records in WAL. Furthermore, while WAL can be eliminated in MVCC systems by using
WBL, we point that WAL is often leveraged to enable other functionalities, such as remote
replication, database auditing, and partial transaction rollback. Therefore, in addition to
being limited to MVCC, WBL makes the support of these functionalities more cumbersome.

2.2 Related Work 27

SAP HANA

SAP HANA [FML™12] is a modern database system that targets hybrid enterprise applica-
tions consisting of both transactional and analytical workloads. It follows an in-memory
column-store architecture and exploits modern hardware, such as multiple cores, SIMD
instructions, and large main memory and CPU caches. In order to store all database
contents in memory, SAP HANA relies heavily on data compression. To enable a high
compression rate, data has to be often coalesced and organized in efficient formats. There-
fore, SAP HANA employs a delta-main approach: a small delta component ingests new
records and updates and is periodically merged to a larger and read-only main component,
which stores data in a compressed format. Durability is guaranteed through command
logging [MWMS14] and transaction-oriented checkpoints [HR83]. SAP HANA can also
leverage NVM to extend the capacity of the main component [ALR*17]. This is a natural
fit, as the main component is read-only and, therefore, NVM can be accessed directly by
the CPU just like DRAM. Not only DCPMMs are larger than DRAM modules, but they are
also cheaper, leading to lower costs. While runtime performance is impacted by the higher
NVM latency, the startup is significantly faster, as the main component of NVM is persisted
across restarts, thus avoiding large load times from the storage device to memory.

Hyrise-NV

Hyrise-NV [SKD*16] is an NVM-aware version of the Hyrise in-memory database sys-
tem [GKP*10]. Similar to SAP HANA, Hyrise is tailored to hybrid transaction and analytical
workloads and employs the delta-main architecture. In addition to the main component,
Hyrise-NV also persists other data structures, such as the proposed nvBTree, used as
secondary indexes. Hyrise-NV relies on append-only strategies and multi-version storage
to update data transactionally and guarantee consistency. Furthermore, since write-ahead
logging is not employed, metadata of currently running transactions is persisted to enable
undo in case of failure.

SOFORT

SOFORT [0BL"14, Ouk18] is a database system developed from scratch to leverage a hybrid
DRAM-NVM environment. Similar to SAP HANA and Hyrise-NV, SOFORT is an in-memory
column-store targeting both transactional and analytical workloads, also following the
delta-main architecture. Differently than other systems that leverage traditional storage
devices, SOFORT relies purely on DRAM and NVM and, therefore, is able to employ a
single-level architecture. In other words, SOFORT only manages persistent objects in the
virtual memory address space, rather than files in a file system. Primary data is stored in
NVM and written/read directly by the CPU. Auxiliary data, such as secondary indexes, can
be placed either in DRAM or in NVM, thus allowing the system to be configured either for
high performance or for lower costs and faster restart.

SOFORT also supports ACID transactions through multi-version concurrency control
(MVCC) [LBD ™11, KR79]. Unlike other approaches that propose to eliminate logging but

28 Chapter 2 Background

still employ it in a smaller granularity, SOFORT is able to achieve that goal by employing a
force strategy and storing the transaction table in a persistent data structure. Therefore,
“transaction objects” are persisted and are used to discard operations tagged with the
MVCC timestamps of transactions that were in-flight when the failure occurred.

The main limitation of SOFORT is the lack of support for other storage devices (HDD and
SSD) in a more complete storage hierarchy. While the proposed architecture may have
benefits in a future where NVM will replace other storage technologies, for the time being,
modern storage technologies, such as SSDs, still have to be considered for most use-cases.
Finally, as also noted by the authors, it is unpractical to adapt existing systems to follow
the same architecture, at it would require heavy software rewrite and architectural changes

Logging

Many of the works discussed so far make the observation that, when leveraging NVM
as the main storage device in a database, logging (typically WAL) becomes the main
bottleneck. Therefore, these works employ different flavors of force strategies with the
goal to completely eliminate logging from the critical path of transactions [PWGB13, APP16,
SKD*16, OBL*14, Ouk18]. Other works go in the different direction of leveraging NVM to
reduce the overhead of logging, rather than eliminating it [CKKS89, AJ89, FHH ™11, GXHT 11,
HSQ14, WJ14]. We focus on two of these works.

Huang et al. [HSQ14] make the observation that NVM is more expensive than other storage
devices (HDD and SSD) and, therefore, restricting the use of NVM to improve logging
performance yields a higher ratio of transactions per dollar than simply replacing all
storage with NVM. The authors propose NV-Logging to improve the traditional ARIES
logging protocol [MHL*92]. The main idea is to reduce the software overhead associated
with centralized log buffers by introducing decentralized transaction-private log buffers.
During transaction processing, log records are created in private DRAM buffers. Upon
commit, the transaction flushes the log records to arbitrary locations in NVM in the form
of “log objects”. To enforce the global LSN order, pointers to these “log objects” are then
appended to a “log entry index” implemented as a circular buffer. While the “log entry index”
still acts as a contention point, its critical-section is much shorter, since only fixed-length
pointers have to be appended, rather than arbitrarily large log records.

Unlike NV-Logging, Wang et al. [WJ14] propose fully-distributed logging for multi-core multi-
socket environments. They note that, while distributed logging reduces the overhead of
logging by spreading log records across multiple physical logs, they are prohibitive due to
the overhead introduced by dependency tracking and additional I/0 required to guarantee
global order of log records. Fortunately, NVM can be leveraged to significantly reduce these
I/0 costs and enable distributed logging. The authors investigate both page-level and
transaction-level log space partitioning and employ a global sequence number based on a
logical clock [Lam78] to uniquely identify log records. The empirical evaluation shows that
transaction-level partitioning is more favorable, as it avoids cross-socket communications.

We agree that leveraging NVM to improve the logging infrastructure will be mandatory for
database systems, and that completely replacing all storage by NVM is currently unfeasible

2.2 Related Work 29

in most scenarios due to its higher cost when compared to SSD and HDD. We also note
that, this approach not only is more cost effective, but it also limits the changes in the
code base to the log manager, thus not requiring drastic changes in the whole database
architecture. Nevertheless, we consider that there are other opportunities to leverage NVM
in database systems, such as NVM-aware buffer management policies.

NOVA

While the works previously discussed were mostly in the context of database systems,
NOVA [XS16] explores NVM in the context of file systems. The goal of NOVA is to enable
efficient access to NVM through the abstraction of regular file system interfaces. The
main motivation is to enable applications to leverage NVM without any changes, rather
than specifically tailoring them to manage NVM through the virtual memory space. NOVA
is a file system in the user-space that follows a hybrid DRAM-NVM architecture and relies
on log-structured writes to provide strong consistency guarantees. The authors claim that
it is able to achieve 22% to 216 x throughput improvement compared to state-of-the-art file
systems, and 3.1x to 13.5x improvement compared to file systems that provide equally
strong data consistency guarantees. We consider that, while specialized applications such
as database systems can benefit more from directly managing NVM, other applications
that do not require high performance can easily leverage some of the performance benefits
of NVM through file systems like NOVA.

2.3 CASE STUDY: PERSISTENT TREE STRUCTURES

Perhaps one of the most prolific categories of works in the context of NVM is comprised
of persistent data structures, such as persistent hash tables [LHWL20, DHK*15, NCC*19,
NIK*17, SDUP15, ZH18, ZHW18] and persistent trees [ALML18, CGN11, CJ15, HKWN18,
LLS™17, OLNT16, VTRC11, YWC™'15, LXCW19]. Works in this category take as a starting
point volatile memory data structures common in existing programming languages (such
as std: :map in C++). NVM is leveraged to make these data structures persistent, but still
maintaining a similar behavior to their volatile counterparts. Therefore, persistent data
structures are simpler when compared to the architecture of storage management system
that employs concepts such as buffer management, ACID transactions, and garbage col-
lection. While they may be inappropriate as a standalone storage manager, they are still
relevant as building blocks for more complex systems. As an example, one could use a
persistent hash table to implement a persistent version of a lock manager in a relational
database system. The techniques employed by these persistent data structures can be
generalized and applied in other scenarios. Therefore, we consider that looking at their
design decisions can aid the reader in better understanding the challenges of NVM.

30 Chapter 2 Background

Architecture Node structure Concurrency

wBTree NVM-only Unsorted Single-threaded
NVM-only Unsorted leaf nodes; .
NV-Tree (optionally hybrid) inconsistent inner nodes Locking
Partially unsorted leaf; Lock-free
BzTree NVM-only sorted inner nodes (PMwCAS [WLL18])
DRAM (inner nodes) Selective
FPTree + NVM (leaf nodes) Unsorted leaf nodes (HTM + locking)

Table 2.4: Comparison of key design decisions of the persistent tree structures analyzed.

2.3.1 Persistent Trees

We limit the scope of persistent data structures to persistent tree variants, since these
are the most commonly used ones in database systems. We pick four candidates con-
sidered to cover a good portion of the design space: wBTree [CJ15], NV-Tree [YWC'15],
BzTree [ALML18], and FPTree [OLN"16]. In the following, we give an overview of each one
of these persistent tree data structures. Table 2.4 summarizes their key design decisions.

Write-Atomic B+Tree (wBTree)

wBTree [CJ15] is a persistent, single-threaded B+Tree that achieves high performance by
reducing cache line flushes and writes to NVM. Traditional B+Tree nodes are sorted for
faster binary search. However, as Figure 2.4a shows, keeping a node sorted requires a shift
of data to make place for the new key, which might leave the node in an inconsistent state
upon crashes, and incurs more (expensive) NVM writes. wBTree solves this problem with
unsorted nodes proposed in prior work [CGN11]. Figure 2.4b illustrates the idea. A bitmap
is used to indicate if each slot contains a valid (green box in the figure) record or not (red
box). The new record is inserted into a free slot (out-of-place), and the bitmap is atomically
modified using 8 B writes to set the validity of the inserted record. Using unsorted nodes
reduces the number of NVM writes and eases implementation, but requires linear search
for lookups, which might be more expensive than a binary search. Nevertheless, as we will
see later, the use of unsorted nodes is a common and effective design in NVM trees.

To enable binary search (thus reducing NVM accesses), wBTree uses an indirection slot
array in each node, as shown in Figure 2.4c. Each entry of the array records the index
position of the corresponding key in sorted order, i.e., the n-th array element will “point” to
the n-th smallest key by recording the key'’s index into the key-value slots. In the example,
after inserting key 5, in step 3 the bitmap needs to be modified so that the third element
records the position of key 7, which is stored as the second element (index 1) in the
key-value storage area. One bit (left-most box in the figure) in the bitmap is reserved to
indicate the validity of the array. wBTree relies on the atomic update of the bitmap to
achieve consistency, and on logging for more complex operations such as node splits.
After inserting the record out-of-place in a free slot, the indirection slot array is flagged as
invalid and updated, as shown in step 3 of Figure 2.4c. In case of a failure, the indirection

2.3 Case Study: Persistent Tree Structures 31

1. Initial state: 1. Initial state: 1. Initial state:

Size:|4 |7 <€ Keys 4|7 =it m. Indirection slot array
3 |a|b €= Values E
alb
417
2. Shift: 2. Append:
— &\ alb 4. Set record and
Slge. 4 Z) 41715 ™\ 2. Append: slot array as valid:
a
albld] 5 atomic of1] | ﬂv
3. Insert (5,d): 3.Update 2= S
size:[4[5]7 bitmap: ai7io al7is
= s e albld albld
3 ald|b 41715
albld 3. Invalidate:
4. Update size: m
Size:14]5]7 [~ —5<
4 lald]b 41715
albld
(a) Sorted node. (b) Unsorted node. (c) Unsorted node with indirection slot array.

Figure 2.4: Comparison of inserting key 5 with value d. Unsorted node reduces writes but
requires linear search for lookup, which can be avoided by using an indirection slot array.

slot array will be detected as invalid and reconstructed upon recovery. Finally, the bitmap
is atomically updated to set both the indirection slot array and the new record as valid.
This last step imposes that the bitmap is not larger than 8 B, the p-atomic unit. When the
indirection slot array is smaller than 8 B, the bitmap could be removed as the indirection
slot array can be atomically updated and serve as the validity flag.

NV-Tree

NV-Tree [YWCT15] proposes the concept of selective consistency, which, as shown in
Figure 2.5, enforces the consistency of leaf nodes and relaxes that of inner nodes. This
design simplifies implementation and reduces consistency costs by avoiding cache line
flushes. Inner nodes, however, have to be rebuilt upon restart, since the copy in NVM might
be inconsistent and unable to guide lookups correctly. We note that inner nodes could
also be placed in DRAM since their consistency is not enforced. Similar to the wBTree, NV-
Tree also uses unsorted leaf nodes with an append-only strategy to achieve fail-atomicity.
Figure 2.6 shows an example of an insertion in an NV-Tree leaf node. The record is directly
appended with a positive flag (or a negative flag in case of a deletion) regardless of
whether the key exists or not. Then, the leaf counter is atomically incremented to reflect
the insertion. To lookup a key, the leaf node is scanned backwards to find the latest
version of the key: if its flag is positive, then the key exists and is visible; otherwise, the
key has been deleted. The inner nodes are stored contiguously to abstract away pointers
and improve cache efficiency. However, this implies the need for costly rebuilds when a
parent-to-leaf node needs to be split. To avoid frequent rebuilds, inner nodes are rebuilt in
a sparse way, which may lead to high memory footprint. As inner nodes are immutable
(except parent-to-leaf nodes) once they are built, threads can access them without locking
and only need to take locks at the leaf and their parents level when traversing the tree.

32 Chapter 2 Background

Consistency of T T T T T T T T T TTTTTTTTTTT S TTTTTTTTT TS

i

inner nodes —>= Contiguous :

relaxed ' [N1] N2 [N3]N4|[N5] Inner |

- I

Selective ! i
consistency Emmmm e ————

Append-only | —a
leaves

Figure 2.5: NV-Tree overview.

Record > (flag[+/-],key)
Bl+5)|[¢7) (-,5)|Fr:e| = BIeseneH 5] BIEHEDEH 5]

Append new record with + flag Atomically increment counter

Insert 5

Figure 2.6: Insertion of a record in an NV-Tree node.

BzTree

BzTree [ALML18] is a lock-free B+Tree for NVM that uses persistent multi-word compare-
and-swap (PMwCAS) [WLL18] to handle concurrency and ease implementation. PMwCAS
is a general-purpose primitive that allows atomically changing multiple arbitrary 8 B NVM
words in a lock-free manner with crash consistency. To achieve this, PMwWCAS uses a
two-phase approach. In Phase 1, it uses a descriptor d to collect the “expected” and “new”
values for each target word, persist the descriptor, and atomically installs (using single-
word CAS) a pointer to the descriptor on each word. If Phase 1 succeeded, Phase 2 will
install the new values; otherwise the operation is aborted with all changes rolled back.

BzTree uses PMwCAS for insert, delete, search, scan, and structural modification opera-
tions which may need to change multiple NVM words. Because of the use of PMwCAS,
while being lock-free, BzTree implementation is easier to understand than typical lock-free
code. PMwCAS ensures that any multi-word changes are done atomically and recovery is
transparent to BzTree, removing the need for customized logic for logging and recovery.

As Figure 2.7a shows, BzTree stores both inner and leaf nodes in NVM. Inner nodes are
immutable (copy-on-write) except for updates to existing child pointers; leaf nodes can
accommodate inserts and updates. Figure 2.7b shows the situation in which a node L
splits and a new pointer must be inserted in the parent node P. Inserting to a parent node
causes it to be replaced with a new one that contains the new key (P’). Then, an update
in the grandparent node G is conducted to point to the new parent node P’. Splits can
propagate up to the root and grow the tree. Records in inner nodes are always sorted,
while records in leaf nodes are not. Initially, records are inserted to the free space serially.
Periodically leaf nodes get consolidated (sorted) and subsequent inserts may continue to
insert into the free space serially. After searching the sorted area (using binary search),
the tree must linearly search the unsorted area to get a correct result. The design rationale
is that inner nodes are not updated as often as leaf nodes and should be search-optimized;
leaf nodes, however, need to be write-optimized.

2.3 Case Study: Persistent Tree Structures 33

Copy-on-write

inner nodes _>i

All nodes in
NVM, lock-free
Append-only
leaves
Leaf layout: | header —_— — |
Metadata Key/Value pairs
(a) Architecture. (b) Split of inner node.
Figure 2.7: BzTree overview.
Inner nodes in DRAM for
performance L12] [34 5 [67] DRAM
Leaf nodes in NVM for +-- =] N7 P[N8 b N8 P[N8 P[N8 P Ng b Ng - NVM
durability

Figure 2.8: FPTree overview.

Fingerprinting Persistent Tree (FPTree)

Unlike the other trees being evaluated, FPTree [OLN*16] uses both DRAM and NVM to
achieve near-DRAM performance. As Figure 2.8 shows, it stores inner nodes in DRAM, and
leaf nodes in NVM. This way, FPTree accelerates lookup performance while maintaining
persistence of primary data (leaf nodes), as only leaf accesses are more expensive during
a tree traversal compared to a fully transient counterpart. The rationale behind is that
while losing leaf nodes leads to an irreversible loss of data, inner nodes can always be
rebuilt from leaf nodes. Since the inner nodes must be rebuilt upon recovery, FPTree trades
recovery time for higher runtime performance.

FPTree uses fingerprints to accelerate search. They are one-byte hashes of in-leaf keys,
placed contiguously in the first cache line of the leaf node. FPTree also uses unsorted
leaf nodes with in-leaf bitmaps [CGN11], such that a search iterates linearly over all valid
keys in a leaf. A search will scan the fingerprints first, limiting the number of in-leaf key
probes to one on average, which significantly improves performance. FPTree applies
different concurrency control methods for the tree’s transient and persistent parts. It uses
hardware transactional-memory (HTM) and node-grained latches for inner and leaf nodes,
respectively. Such selective concurrency design solves the apparent incompatibility of
HTM and persistence primitives required by NVM such as cache line flushing instructions
which always cause HTM transactions to abort directly.

2.3.2 Evaluation

To complement this case study, we look at the impact of different design decisions on the
final performance. It is worth noting that all these data structures were proposed before

34 Chapter 2 Background

NVM was available, and, therefore, they were originally evaluated on different emulation
platforms. While a qualitative comparison was possible, a quantitative comparison was
unpractical. Therefore, as our first contribution, we evaluate the tree structures discussed
on real NVM hardware (DCPMM). We consider that this performance evaluation can serve
to lay down the performance expectations of DCPMM. Furthermore, since the persistent
trees discussed previously were proposed by several authors, they made different assump-
tions about NVM and its programming model, such as how persistent memory is allocated.
As our second contribution and to to enable a fair comparison, we have re-implemented
all of them according to their original design, while assuming the programming model
for memory allocation defined by the PMDK library [Int14]. The environment used for the
benchmarks is the same as previously shown in Table 2.2. Finally, as our third contribution,
we devised a benchmark framework, PiBench, targeted at the specific use-case of per-
sistent data structures. As a contribution to the community and to enable future work to
achieve a fair comparison and reproducible results, we made PiBench available both as an
open-source project® and as a web application®. Further details are shown in Appendix A.

Index Implementations

We highlight important details for implementing the evaluated trees, especially changes
we made either to make them compatible with PMDK’s programming model such that they
can be performed on real NVM, or due to necessary details not covered by the original
works.

wBTree. wBTree originally uses undo-redo logs for failure atomicity [CJ15]. We improved
it with more efficient micro-logs used by FPTree [OLN*16] and implemented it using the
same code template as FPTree's to reduce the impact of different implementations. We
also changed wBTree to use PMDK persistent pointers instead of volatile pointers.

NV-Tree. The original paper [YWC™15] did not cover concurrency, so we implemented latch
coupling. We changed NV-Tree to use PMDK persistent pointers and align records in leaf
nodes to 8 B boundaries; for 8 B keys and values, the size of a record is 24 B with the validity
flag. This is 7 B more than necessary, but gives better performance. Since the consistency
of inner nodes is not enforced, we placed them in DRAM to improve performance.

BzTree. Splits in BzTree may propagate to upper levels, replacing all the nodes along the
path (copy-on-write inner nodes). We prepared all the nodes on the split path and issued a
final PMwCAS at the highest level to atomically swap in the new nodes. For this to work,
we increased the size of PMwCAS descriptor size from 4 to 12 to accommodate enough
memory word changes and new allocations.’

FPTree. The original paper [OLN*16] proposed two versions: a single-threaded version
and a concurrent version. We focus on the concurrent version since we are most interested
in multi-threaded experiments. However, we note that optimizations in the single-threaded
version, such as allocating leaf nodes in groups, could be applied to all trees.

Shttps://github.com/sfu-dis/pibench

®https://pibench.org/

"These strategies were not presented in the original work [ALML18], but has been confirmed by one of the
original authors in private communications.

2.3 Case Study: Persistent Tree Structures 35

Workloads

We evaluate the indexes with individual operations (lookup, insert, update, delete, scan).
All experiments are run under a uniform key distribution. Scans are performed by selecting
a random initial key and then reading the following 100 records in ascending sorted order.
Each run starts with a new tree loaded with 100 million records with 8 B keys and 8 B values.
We then measure and report the tree performance during the run phase, in which 100 million
operations are executed by a specified number of threads. The numbers reported here refer
only to the run phase, excluding the load phase. We use the list of operations completed in
every time window (100 ms) of a single run to calculate the average throughput (depicted
as the bars and points) as well as the standard deviation (depicted as the error bars).

Single-threaded Throughput

Figure 2.9 shows the single-threaded performance under workloads consisting of a single
type of operation. We analyze and discuss the performance of each operation individually.

Lookup. The first important observation is that the persistent trees that place inner nodes
in DRAM (FPTree and NV-Tree) have higher throughput due to the lower latency of DRAM.
FPTree 's fingerprints further reduce cache line accesses in leaf nodes to two in most
cases: one for the fingerprints and bitmap, the other for the potentially matched record.
This contrasts with NV-Tree which uses append-only leaves and requires scanning on
average half of the leaf entries to determine if a record exists and is valid. BzTree employs
a hybrid of sorted and unsorted leaf node format, so it needs to search the unsorted area
linearly if the key is not found in the sorted area. It is worth noting that the performance
benefits of lookup operations are transported to the other operations as well, as they must
perform a lookup prior to additional work.

For insert, update, and delete, we note that all trees enforce the consistency and durability
of single operations using out-of-place writes (possibly within a node) and atomically
flipping a validity bit to “commit” the operation (for BzTree, this is delegated to PMwCAS).
Therefore, these operations must always force the changes to NVM using CLWB, making it
impossible for the CPU caches to amortize the high write latency of NVM. This explains
the lower throughput and the increased standard deviation of these operations when
compared with their lookup counterparts.

Insert. We observe insert performance is directly affected by (1) the amount of flushes per
insert, (2) the needed maintenance work per insert, and (3) the overhead of node splits.
Table 2.5 summarizes the amount of flushes needed by each operation. For all trees,
each insert entails at least one flush for the record being inserted. FPTree and wBTree
keep an 8 B bitmap per node to indicate which records are valid and enable the slot of
invalid records to be reused. FPTree also requires flushing the fingerprints, leading to a
total of three flushes per insert. In addition to the bitmap, wBTree keeps a slotted array
per node to keep the order of records and a single validity bit to indicate the validity of
this slotted array. Therefore, three additional flushes are required by the wBTree (slotted
array, validity bit, validity bitmap), to a total of four flushes per insert. NV-Tree requires
one additional flush to update the size of the node, to a total of two flushes. BzTree uses

36 Chapter 2 Background

Tree/Operation Insert Update Delete

FPTree 3 3 1
NV-Tree 2 2 2
wBTree 4 3 1
BzTree 15 10 7

Table 2.5: Number of cache line flushes per operation.

two double-word PMwCAS operations per insert to reserve space in the leaf node and
make the new insertion visible to other threads, respectively. Each PMwCAS incurs at least
three flushes [WLL18]. In total, BzTree incurs 15 flushes per insert. If the current PMwCAS
conflicts with another on-going PMwCAS, it might incur more flushes as it helps finish
the other operation first. We attribute BzTree’s low insert performance mainly to the high
number of flushes. Finally, in BzTree, FPTree and wBTree, a node split might propagate
all the way up to the root level. However, for NV-Tree the inner nodes must always be
completely rebuilt whenever a split happens in the parent-to-leaf level. When splitting
a leaf node, two new nodes are allocated to split the records of the node that became
full, causing the higher amount of NVM writes. This operation becomes expensive in
comparison to other trees, which has also an impact in the throughput standard deviation.

Update. As opposed to inserts, an update only operates on an existing key. Overall,
the standard deviation for updates is lower than that of inserts, due to the absence of
allocations and splits. NV-Tree performs updates slower than inserts, as it handles updates
as a deletion followed by an insertion. wBTree updates are faster than inserts since each
update requires one fewer flush (3 vs. 4 in Table 2.5), as record order in the node does not
change (the key is not updated). Thus, the slotted array can be updated atomically without
flushing its validity bit, as only the offset of the updated record changes, while the others
remain the same. BzTree's update is faster than its insert operation, due to the absence of
allocation and splits, but it still needs many flushes, leading to lower throughput.

Delete. The throughput of delete operations follows a similar trend to those of lookups.
The reason is that deletion for FPTree and wBTree is basically a lookup followed by flushing
the validity bitmap to invalidate the record deleted. There is no deallocation or merging of
nodes implemented, as data structures are more likely to grow rather than shrink. This
is also the approach taken by implementations of the C++ Sandard Template Library.
In contrast to FPTree and wBTree, NV-Tree requires two flushes per deletion, one for
a tombstone and one for the node size. For BzTree, the process is similar, but it uses
a PMwCAS to mark records invisible which requires multiple flushes, leading to lower
performance.

Scan. Range scans start at a random initial key and read the following 100 records. wBTree
is the only one that directly returns records in sorted order using its indirection slotted
arrays. All the other trees must perform an additional sorting and filtering step to return
the requested records. We can conclude that reading less from NVM (e.g., FPTree) does
not compensate the overhead of sorting and filtering.

2.3 Case Study: Persistent Tree Structures 37

— Bl FPTree R4 NV-Tree B wBTree [E# BzTree
g_ 0.8

© o

S 06 S

X S

~] o

5 04

Q R o

202 N

> o P

o o X

o 00 [X KX XX

= Lookup Insert Update Delete Scan

Figure 2.9: Single-thread throughput under uniform distribution. Placing inner nodes in
DRAM helps much in traversal performance for FPTree and NV-Tree; wBTree performs the
best in range scan as it does not require an extra sorting step.

Multi-threaded Throughput

We now evaluate the performance under multiple threads. We include wBTree’s single-
thread performance for reference as it does not support concurrency. Since we dedicate
one thread to collect the statistics, we scale the number of worker threads until 23 out of
the 24 physical cores available in the CPU. Furthermore, we experiment with 32 and 47
threads to show the behavior of the trees under hyperthreading.

Figure 2.10 depicts the throughput of individual operations under multiple threads and
uniform distribution. It shows a similar trend to the single-threaded experiments. All the
evaluated trees scale as expected for lookup, insert, update, delete and scan operations
using 1-23 threads (no hyperthreading). With hyperthreading (shaded areas in Figure 2.10),
all trees maintain or slightly improve the throughput compared to using 23 threads. In
particular, FPTree is able to leverage hyperthreading significantly better than other trees in
lookup operation.

Figure 2.11 shows the throughput of individual operations under the skewed distribution
(skew factor 0.2). Since a skewed workload accesses a small subset of keys multiple
times, only the first insert/delete for a given key would succeed and all the subsequent
insert/delete operations for the same key would simply be a lookup. Therefore, we omit
these operations under skewed workloads. The results here showed similar pattern to
the ones with the uniform workload: all trees exhibit higher throughput and largely scale
under all operations, except BzTree and FPTree's update operation, which respectively
scales up to 8 and 16 threads and performs worse as we add more threads. There are two
main reasons for BzTree’s behavior. First, because of the use of PMwCAS, a memory word
may store a pointer or actual value. Each NVM read is instrumented to check the type of
the word value, adding additional overhead. Second (and more importantly), the update
operation employs an optimistic approach that retries a PMwCAS until success; it is well
known that optimistic approaches are vulnerable to high contention. FPTree does not
scale beyond 16 threads for a similar reason: it uses HTM (Intel TSX, which is an optimistic
approach) for traversing the inner nodes and acquiring leaf latches. A skewed workload
will incur more conflicts at the leaf level, hence more HTM aborts and lower throughput.

For lookup operations, as we vary the skew factor from 0.1to 0.5 in Figure 2.12a, we see
the throughput dropping for FPTree and BzTree, as lower contention (e.g., skew factor 0.5)

38 Chapter 2 Background

-@- FPTree A~ NV-Tree =% wBTree =-ds= BzTree
- 30 N7y 7 12
por ; a a
koo 24 | kDo kDo 51
o o o
— — —
x 18 X X
o o = 8
a 12 a a
e e e
S 6 =4 S 3r
o 2 e
M o o
. 01 8 1623 32 47 = 01 8 1623 32 47 = 01 8 1623 32 47
Threads # Threads # Threads
(a) Lookup (b) Insert (c) Update
5 18 v 4
o o
o 15} o
° 2 3t
—= 12 —
X X
= 9r % = 2
a a
6 -
£ A £l
> 3 | 35
e -
< <) 1))
= 01 8 1623 32 47 = 01 8 1623 32 47
Threads # Threads
(d) Delete (e) Scan

Figure 2.10: Throughput under uniform distribution. FPTree and NV-Tree leverage DRAM
and perform generally better than pure NVM trees (BzTree and wBTree). All the trees
maintain their throughput with hyper-threading (beyond 23 threads). wBTree s single-
thread throughput is shown for reference as it does not support concurrency.

leads to accesses to more keys and therefore more cache misses and NVM accesses.
NV-Tree does not show obvious changes when we ease the contention. We attribute
this behavior to the fact that it needs to acquire node locks even for read-only workloads,
causing extra inter-core communications and traffic on the memory bus which is often
unscalable for read-only workloads on multiple cores [TZK*13, WK16]. Update operations
exhibit a different trend in Figure 2.12b, as we ease the contention, the throughput increases,
although lower contention leads to larger NVM footprint in general. These results highlight
two factors that affect performance under skewed workloads: (1) the amount of NVM
accesses and (2) contention level. Both factors impact performance, and as we add more
concurrent threads, contention takes over to become the major factor, contrasting with
the single-threaded case where NVM footprint is the dominating factor.

Impact of Programming Model

Persistent data structures face challenges in handling persistence, recovery and con-
currency, which can be resolved using a sound programming model enforced by NVM

2.3 Case Study: Persistent Tree Structures 39

-@- FPTree A~ NV-Tree —#- wBTree =4~ BzTree

w
(o))
(00]

N
~
T
(0)]

O
N

Throughput (x10° op/s)
=
(o]
Throughput (x108 op/s)
IS
Throughput (x108 op/s)
N

01 8 1623 32 47 01 8 1623 32 47 01 8 1623 32 47
Threads # Threads # Threads
(a) Lookup (b) Update (c) Scan

Figure 2.11: Throughput under the skewed distribution (skew factor 0.2). FPTree and
BzTree do not scale for updates due to their use of optimistic concurrency control.

-@- FPTree A~ NV-Tree —#- wBTree -4~ BzTree

@ 32 0
o o
(@] @]
e, 247 2
— — 6_
% X
= 16 P
2 3
L& ¥ e 3 B
o 8} o
> >
o 2
|E o= L < P |'E 0 —% 7 *
0.1 02 03 04 0.5 0.1 02 03 04 0.5
Skew Factor Skew Factor
(a) Lookup (b) Update

Figure 2.12: Throughput under varying skew factors with 23 threads. Higher skew factor
means lower contention.

40 chapter 2 Background

programming libraries, such as PMDK. Specifically, this boils down to the use of persistent
pointers, memory alignment, and an NVM-aware allocator, which, as we show next, incur
space amplification and performance overheads.

Space amplification. Similar to in-memory data structures [ZAP*16], persistent data struc-
tures may occupy a significant amount of memory (NVM and/or DRAM), due to various
design decisions to optimize performance (e.g., alignment) and conform to the required
NVM programming paradigm, in particular the use of 16 B persistent pointers [Int14]. We
quantify this effect in Figure 2.13 by plotting the amount of memory consumed by each
tree. We insert 100 million records of 8 B keys and 8 B values; this corresponds to ~1.5 GB
of raw data. Any consumption beyond this amount would be the metadata, extra alignment
or other allocations (e.g., during a split) needed by the tree. We use statistics from jemalloc
for DRAM (stats.allocated), and the pmempool tool for NVM. The NVM consumption is
precise, and DRAM consumption is an upper bound of the real consumption, as jemalloc
also records other allocations made by our benchmark framework.

As shown in Figure 2.13, all the trees in fact use more than 50% of the space needed for the
raw data; NV-Tree/BzTree use respectively ~2x/10x the raw data size. This is partially due
to the relatively small key/value sizes used (8 B) and the alignment requirement (typically
8 B) in all the trees. Although both FPTree and NV-Tree place inner nodes in DRAM, NV-Tree
requires more DRAM because inner nodes are rebuilt sparsely to amortize rebuild costs.
This means that it will have a different DRAM-NVM ratio depending on the fill ratio of its
inner nodes. BzTree and wBTree consume a negligible amount of DRAM as they are pure
NVM-based. BzTree’s memory consumption is cumulative (of all nodes ever created) and
the highest, due to its use of copy-on-write for inner nodes. We note, however, that this is
the worst case for BzTree, and in realistic workloads with fewer inserts, inner nodes will
not change as often, which should result in lower NVM consumption.

NVM allocation overhead. Compared to their DRAM counterparts, persistent allocators
need to issue cache-line flush instructions, handle recovery and run on slower NVM. To
understand their behavior, we run an experiment using jemalloc on DRAM and PMDK allo-
cator (which is based on jemalloc) on DRAM and NVM. Each thread issues 1024 allocation
requests, each of which allocates 1kB of memory. Figure 2.14 shows the time needed to
finish the test. As we increase the number of threads, no allocator scales, and due to the
extra complexity associated with PMDK allocator (e.g., the use of cache-line flush instruc-
tions and fences), PMDK allocator is 2.9-4.4x slower than jemalloc on DRAM. On NVM,
the PMDK allocator can be up to ~8x slower than itself running on DRAM. These results
signify the high cost of NVM allocations and indicate that persistent data structures should
carefully handle their interactions with NVM allocators. The insert operation interacts with
allocators the most, and we observed non-trivial allocation overhead in all the evaluated
trees. In particular, we found that BzTree spends more than ~41% of CPU cycles on NVM
allocation in insert operations. Compared to other trees, its use of copy-on-write adds
more burden on the NVM allocator because an inner node cannot be updated in-place
when a new key is added to it. We observed similar trends in the other trees.

2.3 Case Study: Persistent Tree Structures 41

—-— Raw size HH DRAM BN NVM

T
&
[@)]

-~ PMDK+DRAM 8
8- PMDK+NVM
| -@- jemalloc_-%

8

10

o
>

_w%

FPTree NV-Tree wBTree BzTree 124 8 16 24
Threads

e
(N)

Gigabytes
Seconds

ON B O
T

L
o

Figure 2.13: Memory consumption after inserting Figure 2.14: Allocation of 1024 blocks
100 million records of 8 B keys and 8 B values. of 1kB with different allocators.

Recovery Time

An important aspect of persistent data structures is their ability to recover consistently
and (near) instantly after a failure or clean shutdown. We test recovery time by loading in
each tree a fixed number of records and then killing the process. Table 2.6 shows the time
in seconds for each tree to recover from a crash after loading 50 million and 100 million
records. wBTree, FPTree and NV-Tree enforce consistency of each single operation, so
recovery consists basically of rebuilding transient data. Both FPTree and NV-Tree place
inner nodes in DRAM and thus these must be rebuilt upon recovery. As expected, the time
for rebuilding inner nodes after inserting 100 million records is about 2 x the time with 50
million records (recovery time scales linearly as all leaf nodes must be read). wBTree and
BzTree reside fully in NVM. Therefore, upon recovery they simply need to open an existing
NVM pool and retrieve the root object. From the root object, all the remaining objects
allocated in the pool can be discovered and reached. BzTree relies on PMwCAS to always
transform the tree from one consistent state to another, without needing a customized
recovery procedure. After opening the existing pool, BzTree delegates its recovery process
to PMwCAS, which completes its own recovery phase by rolling forward or backward
PMwCAS operations that were in-progress when the crash happened. This translates
into scanning the PMwCAS descriptor pool [WLL18] which is fixed-sized (100 kB in our
experiments). Moreover, the amount of in-progress PMwCAS operations at any point in
time is bounded by the number of concurrent threads. Therefore, we see a very small
difference in recovery time under different initial sizes.

These result show that NVM-only trees are able to recovery near instantly (sub-second
recovery time), at the price of lower runtime performance; placing more components in
DRAM may improve runtime performance at the cost of longer recovery time. Neverthe-
less, we note that the recovery time of hybrid trees could be improved, in case of clean
shutdowns, by spilling inner nodes to NVM and copying them back to DRAM upon recovery.

Future of NVM

To conclude our case study, we note that NVM is still at an early stage and yet to become
mainstream. Nevertheless, our experience in this evaluation enabled us to identify two
areas where improvements of the current NVM technologies could have a major impact.

42 Chapter 2 Background

Initial Size (# of records) FPTree NV-Tree wBTree BzTree

50 million 1.77s 415s 0.036s 0.153s
100 million 3.56s 8.45s 0.037s 0.186s

Table 2.6: Recovery time. NVM-only trees (BzTree/wBTree) achieve sub-second recovery
time. DRAM-NVM hybrid trees (FPTree/NV-Tree) trade recovery time for performance.

Bl Normal B +Persistent Cache EZ +DRAM-like

2.0
1.6
1.2
0.8
0.4r
0.0

Throughput (x10° op/s)

FPTree NV-Tree wBTree BzTree

Figure 2.15: Impact of persistent caches and DRAM-like performance on NVM in a sin-
gle thread workload with 50% reads, 25% inserts, and 25% updates with uniform key
distribution.

Persistent CPU caches. Modern CPUs rely on sophisticated, fast volatile caches for good
performance. This introduces the main challenge of carefully flushing cache lines to
NVM while trying to reduce the amount of flushes and NVM accesses. We consider that
enabling CPU caches to become persistent (e.g., by protecting them against power failures
with a capacitor) is the natural next step to simplify software development and increase
performance [WJ14, IKK16]. In such scenario, applications could completely relinquish the
use of instructions such as CLFLUSHOPT and CLWB. However, guaranteeing the ordering of
writes using SFENCE may still be required.

DRAM-like NVM devices. A second advancement would be approaching the performance
characteristics of DRAM. The NVDIMM-N devices discussed in Section 2.1.1 already offer
DRAM performance, but its high cost and DRAM's scalability issues make it prohibitive in
large scale. Devices based on new materials are much cheaper but still lag behind DRAM in
terms of performance. This gap might be closed either by reducing the cost of flash-based
NVM or by enhancing the performance of cheaper alternatives (e.g., via innovations in
materials or more sophisticated caching mechanisms).

Figure 2.15 shows the potential impact of these advancements on the tree structures
considered. We emulate persistent CPU caches (+Persistent Cache) by removing all cache
line flushes from the code path, and emulate fast NVM (+DRAM-1ike) by placing the NVM
memory pool in a DRAM-backed file system (tmpfs). While persistent CPU caches improve
throughput by 1.32/1.27/1.17/1.94 x for FPTree/NV-Tree/wBTree/BzTree respectively, the
main benefit is probably in terms of simplifying the programming model which will also
lead to fewer bugs and savings in development and code maintenance costs. The biggest
gains are achieved by increasing the raw device performance, which further improves
the throughput by a factor of 2.05/1.72/2.17/2.00 for FPTree/NV-Tree/wBTree/BzTree
respectively. This shows that indexes are highly sensitive to device latency and bandwidth.

2.3 Case Study: Persistent Tree Structures 43

44 Chapter 2 Background

LOG-STRUCTURED MERGE-TREES

One of the main challenges of NVM is the lack of control developers have over when
records are persisted, making it hard to ensure consistency when records are updated
in-place. On the other hand, in log-structured architectures, records are always written to a
new location and never overwritten. This property significantly alleviates the challenge
of guaranteeing atomic and consistent writes to NVM. Therefore, log-structured systems
are a very attractive first candidate for exploring opportunities to leverage NVM. This
chapter explores use-cases of NVM in log-structured merge-trees, a storage management
architecture implemented by many modern systems, such as LevelDB, RocksDB, SQLite,
Cassandra, and Bigtable. More precisely, in this chapter we investigate two main questions:

+ What is the impact on LSMs if we replace all persistent storage by NVM?
+ Do LSMs still benefit from DRAM caches when NVM is used as persistent storage?

3.1 LSM AND NVM

The log-structured merge-tree (LSM) [0CG096] was originally proposed in the context of
HDDs with the goal of leveraging the faster sequential writes. The write-optimized nature
of LSMs make them appealing to systems that experience high write and data injection
rates. Systems that must ingest an event log and query the ingested data with acceptable
response time are common examples.

In the context of SSDs, while sequential writes are still usually faster than random writes,
the performance gap is smaller. Nevertheless, LSMs gained a new notoriety due to the
reduced write amplification to persistent media, a major concern due to the limited erase
cycles of SSDs. This has a direct impact in lowering the performance degradation and
increasing the device lifetime. While NVM reduces the gap between random and sequential
accesses even further and it has a longer endurance and lifetime, it can still benefit from
sequential writes and reduced write amplification, even if to a smaller extent. However,
LSMs have an important characteristic that makes them particularly appealing in the
context of NVM: it is easy to guarantee atomicity and durability of arbitrarily large writes.

45

As previously introduced, when directly accessing NVM through load/store operations, the
developer cannot prevent a cache line from being arbitrarily evicted by the CPU. Further-
more, store operations can also be re-ordered by the compiler or the CPU. Under these
circumstances, it becomes challenging for database systems to guarantee a certain level
of consistency, since that requires a careful control of when data is written to persistent
storage. In contrast to update-in-place systems, maintaining consistency and atomicity
in an LSM is easier, as records are always written to a new location in a log-structured
manner, only requiring a small atomic update to reflect the update (such as updating the
tail of the log or a catalog entry pointing to the new location). Log-structured writes also
enable non-temporal stores to be employed to directly stream data from the CPU to NVM,
bypassing the CPU cache. Furthermore, the synergy between NVM and LSM is made even
more explicit by the observation that reading from NVM is faster than writing, while writing
to LSM is faster than reading. In other words, they complement each other nicely.

3.2 LSM ARCHITECTURE

Figure 3.1 illustrates the general architecture of an LSM. Writes in an LSM are made to an
in-memory data structure (Cg) and made durable by logging. When Cq reaches a certain
threshold size, it is merged with a lower level persistent component C; (which can be, for
instance, a tree data structure) and newer writes are made to a brand new Cg instance. This
can be generalized to a hierarchy of multiple persistent components C;..Cy, in such a way
that the size of components grows exponentially in relation to the preceding component
in the hierarchy. The persistent components are immutable. The lookup operation has
to search each component, from the most recent to the oldest, until the record with a
given key is found. A read-only cache holds frequently accessed blocks of the persistent
components in memory, thus reducing the amount of 1/0 required. It is also common
to employ Bloom filters at each component to minimize the amount of 1/0 by avoiding
searching a component that does not contain a given record. Delete operations are done
by inserting a special tombstone record to indicate the absence of a record with a given
key. Range scans are usually more expensive than in a B+Tree, as all components must be
searched, since records in the range can be present in any of them.

In order to prevent slowdown when a merge is triggered during normal processing, an
eager rolling-merge process between components usually runs in the background. Merging
components is required to reclaim space and keep a predictable performance by alleviating
the read penalty introduced by multiple components. The merge process picks blocks of
adjacent components that have overlapping records, eliminates duplicates by removing
older versions of records, and sequentially write the results to a new location, following the
log-structured nature of the LSM. There are many approaches for merging components,
such as leveling and tiering, and picking the right one, as well as tuning the scheduling policy
of merge processes (which portions of which components to merge), is a critical aspect of
LSMs. To summarize, LSMs achieve a better write performance when compared to update-
in-place strategies, since random writes are converted into sequential ones and the amount
of data written to persistent storage is reduced (i.e., decreasing write-amplification).

46 Chapter 3 Log-Structured Merge-Trees

Storage
S [ssT] [ssT] [ssT] [ssT] [ssT] [ssT]
[a.z] [a..Z] [a.fl [g.l [a..d] [e..h]

[ssT] [ssT] = [ssT] [SST

[m.s] [t.z] [i.l] [m..p]
[q.u] [v.Z]

Merge = Merge = Merge

Level O Level 1 Level 2

Figure 3.2: LevelDB architecture represented with the first 4 levels for simplicity.

3.2.1 LevelDB

LevelDB is an open-source, embeddable, persistent key-value store originally developed by
Google. Keys and values are stored as byte arrays and sorted by key. It defines a basic
interface including Put(key,value), Get(key), and Delete(key) operations. While LevelDB
implements the conceptual architecture of an LSM, relevant implementations details and
specific nomenclature is defined for the sake of better understanding of the upcoming
sections. Figure 3.2 shows LevelDB specific architecture.

LevelDB uses a skip-list as its in-memory data structure, called MemTable. The persistent
components are organized as levels starting from Level 0 (most recent) with an increasing
number to older levels. Each level is composed of files called Sorted String Tables (SST).
The layout of an SST is represented in Figure 3.3. An SST has a fixed size of 2 MB and
consists of four types of blocks. A data block, usually 4 kB, contains keys and values in

3.2 LSM Architecture 47

Data Block 1

Data Block n
Meta Block 1

Meta Block n
Meta Index Block

Index Block
Footer

Figure 3.3: Sorted String Table layout.

sorted order (possibly compressed). Additionally, an SST has a single index block used
to locate the data block of a given key (conceptually similar to a B+Tree of height 2).
Optionally, there can be meta blocks to store information such as Bloom filters, in which
case there will also be a meta index block to locate them. Finally, each SST has a small
footer containing information such as checksum, unique identifier, total size and relative
offset of blocks. Therefore, the footer is always read prior to searching a record in an SST.

Whenever the MemTable reaches a threshold size (4 MB by default), it is compressed and
converted into one or more SSTs of Level 0. With the exception of Level 0, SSTs of the
same level do not have overlapping key ranges, meaning that at most one SST per level
has to be read (as shown by the key range covered by each SST in Figure 3.2). When the
number of SSTs in Level n reaches its threshold, they are merged with the SSTs of Level
n+1 that have overlapping key ranges to generate new SSTs. As an example, in Figure 3.2,
the SST in Level 1 marked in green will be merged with the two SSTs in Level 2 marked in
green, since they have overlapping key ranges.

Finally, LevelDB has 7 levels by default, with Level 0 containing a maximum of 4 SSTs, Level
1 containing 10 SSTs, and each level after containing a maximum of factor 10 the number
of SSTs in the previous level. A system catalog keeps track of information on all levels,
e.g., current SSTs and their key ranges. The system catalog is atomically updated to reflect
changes, such as removing and adding SSTs after a merge operation.

Block Cache

By default, LevelDB uses memory-mapped files and the page cache of the operating system
for improved performance. These features are orthogonal and we have ignored them to
better isolate the behavior of LevelDB’s own caching component, since most database
systems also rely solely on their own caching.

In addition to the MemTable, LevelDB implements two DRAM read-only caches: table
cache and block cache. The table cache is used to hold entries containing metadata about
SSTs and index blocks (possibly meta blocks) of SSTs recently accessed. The block cache
holds exclusively the data blocks from SSTs. In order to improve concurrency, both caches
are composed of 32 shards (default), and each shard implements least recently used (LRU)

48 Chapter 3 Log-Structured Merge-Trees

LevelDB
| File Operations |

A A A
v y Envionment ¢ l _____
E POSIX Windows mac0S P i
l DRAM] l DRAM] l DRAM] m e’E e 1 :
HDD / SSD NVM

Figure 3.4: LevelDB environments for accessing storage.

as the default block replacement policy. A read operation must first check if the given key
is present in the MemTable. If not, then it will locate the candidate SST in the next level
based on the SST key ranges contained in the system catalog. Once the relevant SST is
found, the table cache and block cache are searched for the corresponding index block
and data block, respectively. If any of these blocks is not found, they are read from storage
into the cache before resuming the operation.

3.3 PERSISTENT MEMORY ENVIRONMENT

In the context of NVM, the first question to be answered is: what is the impact on LSMs
if we replace all persistent storage (usually SSD) by NVM? Our first contribution is the
investigation of this impact. To that aim we extend LevelDB to provide direct access to
NVM. As shown in Figure 3.4, LevelDB originally accesses storage by issuing file operations
(open, create, rename, delete, read bytes, write bytes) to an abstract environment. The
goal of this abstract interface is to provide easy portability to different operating systems
by only implementing the required file operations, as well as allowing custom behaviors
on file operations (such as monitoring). We rely on this interface to implement a custom
environment to directly access NVM: Pmemenv.

Pmemenv is implemented with the aid of the Intel's Persistent Memory Development Kit
(PMDK) [Int14] and it acts as a lightweight file system in the user space. It is tailored
specifically for accessing and managing LevelDB's files directly in NVM. This contrasts
with usual interface, where the application has to go through the kernel space to access
persistent storage. Pmemenv has two main advantages over general purpose file systems.
First, it enables zero-copy reads, meaning that data can be read directly from NVM without
loading it to DRAM. Second, it enables read and write operations to NVM at a cache-line
granularity (64 B) instead of whole block (usually 4 kB).

PMDK enables users to create a persistent memory pool by creating a file an NVM-aware
file system and mapping the file to the application virtual memory, allowing direct access
to the underlying storage. The application can then manage objects in the persistent
memory pool through the PMDK allocator interface, which hides the complexity required
to properly enforce the order of write operations. PMDK also uses a lightweight logging
scheme to guarantee the fail-safe atomicity of persistent allocations. A persistent pointer

3.3 Persistent Memory Environment 49

Sl l E class Transient SST {
SST 56 | * | . InENreferencesy;
ssT_198] = p:” Lock mutex;
ssT 23 []
- . (other runtime metadata)
Hash Table .’~.. : void*’ persistent sst; :
id > Transient_SST* i) _e” :
(_SST*) L DRAM
-
___________________:’t __________________
—_— L g NVM
c »” " i class Persistent SST {
ol = =3 int sst id;
1 - SST‘ H int write offset;
4 - . 1 -
1 ,/ "4 . [
- ,/’,f' kY . (other persistent metadata)
ot o e s
R ~ 1 (data blocks)
t \\ \~‘~ ‘.‘ : (meta blocks)
1 S PO (meta index block)
SST SST L
o [(index block)
n . (footer)
R ;

Figure 3.5: Pmemenv architecture.

for each allocated object is stored in a collection (implemented as a data structure, such
as a linked list) located in a fixed memory region of the pool. The user is able to iterate
over this collection and retrieve every allocated object in the persistent memory pool, thus
preventing persistent memory leaks. PMDK also offers transactional support to enable
more complex atomic memory operations than simple allocation and deallocation of
blocks of memory. These memory transactions, however, are not used by Pmemenv.

Figure 3.5 illustrates the general architecture of Pmemenv. It comprises two main parts:
an in-memory hash table and a persistent memory pool. Every SST is composed of a
transient part and a persistent part. The hash table is used to map the unique identifier of
an SST to its transient part. The transient part of an SST includes non-critical metadata
that is only required during runtime, such as reference counters, mutexes, and status flags.
The transient part also contains a pointer indicating the location of the persistent part
in the persistent memory pool’. The persistent part contains critical data required by
basic operations and to rebuild the hash table during restart. In our implementation, the
persistent part of an SST is composed of the unique identifier, the current append offset,
and the remaining data and index blocks shown in Figure 3.3. The PMDK library already
stores the size of allocated persistent memory blocks, therefore, even if this is critical data,
we do not store it and rely on the library to provide this information. In case of a system
failure, the hash table can be rebuilt by iterating over the collection of pointers pointing to
the allocated SSTs and retrieving the SST identifiers. The metadata in the transient SST
part is set to default values and the pointer is set to the corresponding address in the
persistent memory pool.

The separation of SSTs into transient and persistent parts allows metadata to be moved
between them, enabling the system to possibly slide a persistence bar to choose which
parts to make persistent [OBL*14]. In one extreme scenario, all data, metadata, and data
structures are allocated in the persistent memory pool. This would reduce the recovery

"Note that both DRAM and NVM share the same virtual memory space.

50 Chapter 3 Log-Structured Merge-Trees

time to a minimum at a possible performance cost and additional complexity. While an
interesting direction to be explored by future work, we omit more detailed discussions to
focus on the challenges discussed in the following sections.

Finally, since all writes to SSTs are log-structured (i.e., append-only), they can use non-
temporal stores to bypass the processor cache. Writes of an arbitrary number of bytes to
an SST are protected from partial writes by updating the current write offset of the SST
(8 B), which is guaranteed to be an atomic operation. The MemTable log and other auxiliary
files, such as the catalog of SSTs, are also managed by Pmemenv the same way as SSTs.

3.4 2Q CACHE POLICY FOR NVM

LevelDB implements LRU as the default replacement policy for each shard of the table
cache and block cache. In other words, whenever the cache is full and a miss occurs, the
least-recently accessed block is evicted to make space for the requested one. However,
when the SSTs are in NVM, the processor is able to directly read these blocks without
copying them to DRAM. On one hand, DRAM has lower latency and enables faster access.
On the other hand, not only the caching components introduce additional complexity, but
there is also an overhead for copying data from NVM to DRAM when a miss occurs. This
overhead might not be worthwhile when compared to the cost of simply accessing the
data directly in NVM. Therefore, the second question we investigate is: can LSMs still
benefit from DRAM caches when byte-addressable NVM is used as persistent storage?

Ideally, we would like the cache replacement policy to keep track of accesses not only to
cached blocks, but also to un-cached ones. This would enable the policy to make a better
decision whether it is advantageous to copy a given block to DRAM, avoiding a hotter block
to be evicted as a consequence of a miss to a colder one. As an example, this behavior
would prevent a table scan from trashing the cache by evicting all of its contents.

The 2Q replacement policy [JS94] considers similar goals. While the original 2Q was
proposed in the context of main memory and hard disks, we have adapted the concept
to NVM in order to enable zero-copy reads from NVM. In other words, we use 2Q as a
cache admission policy, or placement policy, rather than as a replacement policy. Similar
to the original proposal, our 2Q policy has two components: AM and A71. AM holds cached
blocks and is managed by some replacement policy (LRU in our case). A1 does not hold
any blocks, but only keeps track of accesses to un-cached blocks (i.e., blocks read directly
from NVM). Since only references to blocks are kept, the space consumption of A1 is
minimal. The size of A1is tunable and references are kept in a FIFO queue.

Algorithm 3.1 shows the pseudo-code for the two main functions of the replacement policy.
The function Fix is called to request access to a block. If the block is already cached, it is
directly returned (line 3). Otherwise, if it is not going to cause another block to be evicted
or if there was another reference to it in the recent past (line 5), the block is transferred
to DRAM (line 6). If the block was accessed recently, it means that it is probably hot and
is a good candidate to be copied to DRAM. If both conditions are false, the block is read
directly from NVM and a reference to it is added to A1 (line 9-10). A hash table is used for
efficiently looking up blocks on AM and A1. The function Victim is called when the cache

3.4 2Q Cache Policy for NvM = 51

Algorithm 3.1: 2Q policy for NVM pseudo-code.

1 function Fix (block_id)
if AM.contains(block_id) then

| return AM.get(block_id)
else
if /AM.full() OR A1.contains(block_id) then
AM.load(block_id)
return AM.get(block_id)
else
Al.add(block_id)
return NVM.get(block_id)
end if
end if
end

O 0 N o A~ W DN

- =
- O

- =
H~ WN

function PickVictim()
block_id < AM.remove_lru()
17 | Al.add(block_id)

18 end

R g—
o O

is full and we need to pick a block for eviction. The block picked is the least-recently used
one (line 16), but a reference to it is additionally added to A1 (line 17). Since A1is a FIFO
with a limited size, it discards its oldest reference when a new one is inserted.

Figure 3.6 shows the runtime of a binary search over a block of 4 kB of integers in three
scenarios: DRAM, NVM (latency approximately 4 x that of DRAM), and simulating a miss
of LRU in a DRAM cache over NVM storage. In the breakdown of the cost of an LRU miss,
it is possible to see the constant overhead introduced by the cache component (fix, unfix,
eviction, etc), as well as the huge cost of copying data from NVM to DRAM. The binary
search represented in the breakdown is faster than the one in DRAM, because the data
was already cached by the CPU caches during the transfer (i.e., the cost is amortized). The
cache miss in the LRU policy has a constant cost comprised of lookup, eviction, and copy
of a block to DRAM. The additional cost required by the policy exceeds by far the cost of
simply doing the binary search in NVM. The 2Q policy introduces two different scenarios
for a cache miss: the first scenario has a lower cost as it simply adds a reference to the
FIFO and reads directly from NVM, while the second scenario is similar to LRU and has a
higher cost. In an NVM context, a well-tuned 2Q policy should prefer to pay the lower miss
cost for blocks not frequently accessed and the higher miss cost for blocks expected to
be frequently accessed in the near future. While most proposed replacement strategies
(LRU, LFU, CLOCK, etc) focus on improving the hit ratio, the idea of being able to choose
between two different miss costs adds a new dimension. Assuming that the hit ratio is
determined by the replacement strategy and the cache size, a smaller 2Q cache is likely
to have more misses than a larger LRU cache. However, if most of the 2Q misses pay
the lower cost, similar or even better performance than LRU can be achieved with a lower
DRAM consumption. This introduces the non-intuitive idea that a higher hit ratio does not
necessarily translate to better performance, as the costs for misses might differ.

52 Chapter 3 Log-Structured Merge-Trees

2Q Miss Costs

I Fix / Lookup
= Insert / Evict
B Transfer

I Binary Search
= Unfix

Runtime (us)
o = N w SN ()] (0)]

DRAM NVM LRU Miss

Figure 3.6: Average runtime of binary search over 4kB of integers.

3.5 EVALUATION

We use the Intel NVM Emulation platform that emulates an NVM device by accessing a
dedicated area of DRAM with a higher, tunable latency. The higher access latency to DRAM
is achieved through a special BIOS. A full description of this system can be found in [Dul16].
The system is equipped with two Intel Xeon E5 processors. Each one has 8 cores, running
at 2.6 GHz, and featuring 32 kB L1 data and 32 kB L1 instruction cache as well as 256 kB
L2 cache. The 8 cores of one processor share a 20 MB last-level cache. The system has
64 GB of DRAM and 192 GB of emulated NVM. The emulated NVM device is mounted with
the ext4 file system with DAX support. In the experiments, we set the latency of NVM to
360 ns, approximately 4 times the latency of DRAM (90 ns). Considering HDD/SSD is out
of the scope of this work, since all experiments are based on the assumption that the
storage device can be directly accessed through the CPU caches. The system runs Linux
with kernel version 4.4.21. We use PMDK (v1.2)2 and LevelDB (v1.19). All the source code
was compiled using GCC 4.8.5. We disabled the memory mappings of SSTs and operating
system caching in LevelDB. Compression and filtering of SSTs (bloom filters) are also not
used. The MemTable is set to its default size of 4 MB. All requests to LevelDB are made
from a single thread.

3.5.1 Write Performance

We first analyze runtime and latency of two approaches for writing to NVM: through the
ext4 file system with Direct Access (DAX) support (as a drop-in replacement for HDD/SSD)
and through Pmemenv. As mentioned in Section 3.3, the file system manages these
operations at a block granularity (usually 4 kB), while Pmemenv allows finer control over
written data. This implies that, in a scenario where durability of single operations must
be guaranteed, Pmemenv is able to write only the changed cache lines. However, most
systems implement some sort of group commit to hide write latencies. LevelDB enables
this by batching many Put operations in a WriteBatch that is accumulated in DRAM and is
later made durable as a single Put. We consider scenarios with different WriteBach sizes.
Additionally, we investigate if batching writes in DRAM still offers benefits for Pmemenv.

20riginally named NVML, the name change to PMDK was announced on December 11, 2017.

3.5 Evaluation 53

-@- ext4+DAX =A- Pmemenv -@- ext4+DAX =A- Pmemenv

)
= 103

@ 9

v 103} @ 102

- 5

‘g o 10!

x o
§ 100

102 1 1 e 1 1 1 1
1 10 100 1000 1000 1 10 100 1000 1000
Group Size (# Writes) Group Size (# Writes)
(a) Runtime (b) Average Latency

Figure 3.7: Insertion of 100 million key-value records with varying WriteBatch size.

FileSystem 1 10 100 1000 10000
ext4 + DAX 23 56 161 586 4750
Pmemenv 12 39 125 517 4749

Table 3.1: Standard deviation of average latency in Figure 3.7b in microseconds.

We run a write-only workload of the Yahoo! Cloud Serving Benchmark (YCSB) [CST*10]
with 100 million key-value records, where each key is 16 B and each value is 112 B, giving a
total of 128 B per record. The results are depicted in Figure 3.7.

First, for a group size of one, the ext4+DAX configuration has to persist data at the gran-
ularity of pages via fsync, which incurs a high cost if single operations are to be made
durable. Pmemenv is able to avoid the kernel path and to persist data at a much smaller
granularity, which reduces the overhead related to write operations. Increasing the group
size drastically improves the performance of ext4+DAX (16 times faster when increasing
group size from 1to 100), as the cost of fsync is amortized across many insertions. For
Pmemenv, an improvement of approximately 50% in runtime is observed when increasing
the group size from 1to 10. For larger group sizes the difference is not significant.

Grouping insert operations in batches introduces a trade-off between throughput (runtime)
and latency, as the first requests to arrive in a group are delayed. Figure 3.7b shows the
average latency of single insert requests for different group sizes. The standard deviation
can be observed in Table 3.1. For smaller group sizes (1to 100) in ext4+DAX, the increased
latency is justified by the large gains in runtime, making the batching of operations an
obvious choice for most applications. However, for Pmemenv, this trade-off is not so
clear and the decision of sacrificing latency for better runtime might become a matter
of service level agreements, like response time required by applications. Finally, not only
Pmemenv presents lower runtime and lower average latency than ext4+DAX, but also a
lower standard deviation for group sizes 1to 100, which translates to a more predictable
performance over time.

3.5.2 Read Performance

We also analyze if better performance can be achieved by dedicating a portion of DRAM
for caching hot data. Since writes in LevelDB are made in a separate data structure,

54 Chapter 3 Log-Structured Merge-Trees

140 3000
[T, b

S 105 l S 2250+
= Index Blocks LI .
S 70+ o 1500 %
a a ®
] Data Blocks 0]
Y 35 @ Y 750
< l <

07 1 2 3 4 5 6 07 1 2 3 4 5 6

10° 10* 104 10° 10* 10° 10 10° 10* 104 10° 10* 10° 10

Blocks Blocks
(a) Uniform (b) Skewed

Figure 3.8: Distribution of accesses to blocks.

the remaining caching components benefit mainly read operations. Therefore, we have
considered read-only YCSB workloads to better outline the performance impact. Each
workload issues 50 million lookups over 10 million key-value pairs. Before each workload
is executed, the caches are warmed up by executing read requests until they become
completely full. The warmup time is not considered. We analyze two different scenarios:
uniform and skewed distribution (80% of requests to 20% of the records) of key requests.
It is worth noting that each Get request for a key translates into two block requests, one
for the index block and one for the data block. Hence, even a uniform distribution of keys
presents a skewed distribution of block accesses. Figure 3.8 illustrates the number of
accesses of each block sorted from the most to the last accessed.

Figure 3.9 presents the runtime of both read-only workloads for different system config-
urations. The X axis represents which portions of SSTs are cached in DRAM. We start
with a No Cache approach, where the caching components were completely removed and
all SSTs are read directly from NVM through pmemenv. Later, we gradually increase the
DRAM consumption by statically placing portions of every SSTs in DRAM. The Footers
scenario has the footers of all SSTs in DRAM. The footer of an SST contains pointers
to the index blocks, as well as checksums and additional status flags. Footers are fre-
quently accessed (it is where each read in an SST starts) and, since they are relatively
small (around 64 B), keeping all of them in DRAM improves performance at a minimal
cost of memory consumption. Next, IndexBlocks considers holding the index blocks of
all SSTs in DRAM. For our workloads, every index block is approximately 18 kB and there
are around 500 SSTs, giving a total of about 10 MB additional DRAM consumption (less
than 1% of the total size). The observed performance gains are significant and justify the
additional memory consumption. At this point, we can conclude that a careful placement
of frequently accessed data in DRAM is beneficial despite the low latency of NVM.

However, so far we have only statically placed data in DRAM or NVM, there is no caching
component involved. In addition to keeping all index blocks in DRAM, we introduce a
caching component for the data blocks, which enables the system to dynamically adapt
by keeping frequently accessed data blocks in DRAM. The scenarios 7% Blocks and 710%
Blocks cache the indicated amount of data blocks. The interesting observation for LRU
(default cache policy in LevelDB) is that dedicating additional DRAM harms the system’s
performance initially. While the performance improves with more DRAM (70% Blocks),

3.5 Evaluation 55

B Static [LRU B 2Q (5%) B Static [LRU B 2Q (5%)

__ 500 __ 500
L 400 L 400
£ 300 £ 300
= 200 £ 200
Z 100 Z 100
1 x. x x X <, 1 x. x x X <,
"G % 2 %, O "G % 2 %, O
(¢ ° (¢ °
6@ Q:S‘ 'f&{) /CF %O 6@ Q:S‘ 'f&{) /CF @{)O
Cached Objects Cached Objects
(a) Uniform (b) Skewed

Figure 3.9: Runtime of read-only workload.

larger amounts of DRAM would be required to achieve the same performance of caching
only index blocks. This is explained by the cost of cache misses in LRU: lookup, eviction,
and transfer of block from NVM to DRAM. If cached data is not accessed enough times,
this cost is high compared to the alternative of directly accessing data in NVM and avoiding
the overhead caching. As discussed in Section 3.4, the cost of transferring data to DRAM
is only worthwhile if the policy can predict that this block will be accessed frequently in
the near future.

To alleviate the high cost of misses, we have implemented 2Q to enable a more lightweight
policy. We have set the A1 size to 5% of the AM size. Our initial goal with 2Q is to avoid
the observed behavior where the system gets slower when more DRAM is dedicated for
caching. In contrast to LRU, there is always some performance improvement with larger
caches for data blocks. This comes from the fact that 2Q avoids evicting a cached block
and moving a new block to DRAM when a miss occurs. Finally, the All scenario represents
the runtime with the whole dataset cached in DRAM. It is possible to see in Figure 3.9b
that the 2Q cache with enough DRAM to hold 10% of the data blocks can achieve similar
performance of holding all blocks in DRAM.

3.5.3 Mixed Workloads

Based on the observations from the previous experiments, we analyze the overall behavior
of the system in workloads containing both updates and lookups. Two mixed workloads
with skewed access are considered: 25% and 50% of updates. We also run the experiments
with varying NVM latencies to show that the behavior is the same regardless of the
slowdown/speedup incurred by higher/lower latencies.

Similar to previous results, we start with a NoCache approach and gradually dedicate
more DRAM for caching purposes. The Group Size 10 has enough DRAM for holding 10
update operations and persist them as a single WriteBatch. Later, in addition to that, we
reserve enough DRAM to hold All Indexes. Finally, we hold up to 10% of the data blocks
in a 2Q cache. Figure 3.10 presents the gradual performance gains achieved in each of

56 Chapter 3 Log-Structured Merge-Trees

EINo Cache [@+Group Size 10 [E+All Indexes BE+10% Data Blocks 2Q(5%)

600 600

0 500 r 0 500 r

o 400 o 400

_g 300 g 300

= 200+ = 200 |

< 100 < 100

g 180 360 700 0 180 360 700

NVM Latency (ns) NVM Latency (ns)
(a) 25% Updates (b) 50% Updates

Figure 3.10: Runtime of skewed mixed workload.

these steps. The biggest improvement happens when keeping all index blocks in DRAM.
Not only index blocks are frequently accessed, but their additional DRAM consumption
is minimal, making it realistic to hold all of them in DRAM and avoiding any replacement
policy overhead. Regarding data blocks, while a block cache with 2Q replacement policy
offers some benefits in terms of performance, it is up to the user to decide if the cost
of additional DRAM justify these gains when compared to eliminating the block cache
completely and always accessing data blocks directly in NVM. We consider that enabling
the system to manage hot and cold data is important and better caching policies can
probably achieve this behavior with even better performance.

3.6 ADDITIONAL CASE STUDY: ROCKSDB

The techniques proposed in the previous sections were evaluated in 2016. By the time,
real NVM hardware was not available, and therefore we followed the approach of most
works of basing our evaluation in emulation platforms. Since then, much has changed.
Not only NVM hardware became available and accessible in the form of Intel Optane
DC Persistent Memory Modules, but libraries and kernel modules for managing NVM
also evolved and improved significantly. Nevertheless, the assumptions upon which the
proposed techniques were based still hold, such as the NVM latency being higher but within
the same order of magnitude of DRAM. Therefore, to prove that the concepts introduced
are still applicable, we have implemented and evaluated them in a more modern use-case
and more recent hardware environment.

Instead of LevelDB, we take RocksDB as a new case study. RocksDB is developed by
Facebook and was originally forked from the LevelDB project. In the past few years,
RocksDB performance has improved significantly on top of LevelDB, while still following the
same LSM architecture. Furthermore, new functionalities and options were added, which
enabled RocksDB to be used as the storage engine for more complex SQL systems, such
as MySQL (under the name of MyRocks) and MongoDB (under the name of MongoRocks).

Like LevelDB, RocksDB assumes that the main storage media is SSD (potentially HDD)

and does not leverage NVM. Rather than leveraging NVM for the main storage, as in our
initial approach with LevelDB, we opted for a more moderate approach on RocksDB by

3.6 Additional Case Study: RocksDB 57

Evict

memtable Block Cache| (FRY) - -a- v LRU J
(DRAM) (DRAM) > [ST
memtable Block Cache |l Persistent Block Cache I
. (DRAM) (DRAM) |1 (NVM)
° I_____T____IEwct - ___ 1
2 | Persi (LRU) o ® Evict
9] ersistent Block Cache N 2Q vic
= I (SLC SSD) & (LRU)
i| - ' : i
3 1 =
= 5
" Storage L - Storage
1 (TLC SSD) i (TLC SSD)
(a) Regular persistent block cache. (b) Persistent block cache with Pmemenv and 2Q.

Figure 3.11: Overview of the main components of the RocksDB architecture.

leveraging NVM in the persistent block cache component. The persistent block cache is an
optional component of RocksDB and, like the block cache, it holds frequently accessed
blocks from the main storage and serves as an intermediate caching layer3, as shown in
Figure 3.11a. While the block cache is implemented in DRAM, one of the intended uses of
the persistent block cache is to leverage SLC SSDs, which are faster and more expensive,
to cache frequently accessed blocks from the main storage, which is usually stored in
regular TLC SSDs. Therefore, blocks in the persistent block cache are stored in files and
managed through the regular file system interface.

In order to leverage NVM instead of SLC SSD, we implemented an NVM-aware persistent
block cache by employing both the Pmemenv and the 2Q placement policy introduced in
the previous sections, as seen in Figure 3.11b. This not only avoids the overhead of file
system interfaces and allows blocks in the persistent block cache to be accessed directly,
but it also guarantees that only hot blocks are migrated to the DRAM block cache through
2Q, while blocks accessed less frequently are accessed directly in NVM. Differently than
the Pmemenv on LevelDB, we re-implemented the Pmemenv in the persistent block cache
of RocksDB without the aid of PMDK, since cache operations are not complex enough to
justify a more sophisticated library. Still, we access NVM through the same way: mapping
a file on a DAX file system to the virtual memory space of our application (RocksDB).

3.6.1 Evaluation

We use the environment shown in Table 3.2 to evaluate the impact of Pmemenv and the
2Q placement policy in the persistent block cache of RocksDB. We initially load RocksDB
with 1 billion records with keys of 8 B and values of 100 B. The total size of the dataset is
110 GB and stored on SSD. Since both the block cache and the persistent block cache serve
only read requests, we run a workload consisting only of Get operations to stress these
components. We focus on two cache configurations. In the first scenario, no persistent

3Unlike LevelDB, we configure RocksDB to make no distinction between index blocks and data blocks.
Therefore index blocks are also cached by the same block cache and persistent block cache, rather than by a
dedicated table cache.

58 Chapter 3 Log-Structured Merge-Trees

Processor Intel Xeon Platinum 8260L CPU (35.75MB Cache, 2.40 GHz)

Main Memory 96 GiB DDR4 2666 MHz (6 x 16 GiB modules)

NVM Intel Optane DCPMM 1.5 TiB (6 x 256 GiB modules)
SSD Intel SSD DC P3700 Series 1.6 TiB (PCle 3.0 x4, NVMe)
RocksDB 6.2.2

Operating System Linux 5.3.4-3

Compiler gce-8.2.1

Table 3.2: Server used for RocksDB benchmarks.

0

a 10

o

S 8

—

X 6

)

sg_ 4

o 2

>

e o

= DRAM-only DRAM+NVM DRAM+NVM
(Pmemenv+2Q)

Configuration

Figure 3.12: Throughput achieved by a single thread in a read-only workload.

block cache is used, only the regular DRAM block cache with a size of 10 GB. In the second
scenario, we reduce the size of block cache from 10 GB to 2 GB, and redirect the costs to a
persistent block cache in NVM. For that, we assume a DRAM price of 11,70 USS/GB and
an NVM price of 5,40 US$/GB#, which leads to a persistent block cache with capacity of
17 GB. The goal is to have the same cost in both scenarios, so we can focus on comparing
the performance achieved in each case.

Figure 3.12 shows the throughput achieved by a single thread in three scenarios. The
DRAM-only represents the scenario previously described with a block cache of 10 GB and no
persistent block cache. DRAM+NVM represents the scenario in which a block cache of 2 GB
is used together with a persistent block cache of 17 GB, but the persistent block cache is the
one provided by RocksDB, i.e., it is not NVM-aware and accesses NVM through the regular
file system interfaces, just like a regular SSD. Finally, the DRAM+NVM (Pmemenv+2Q)
represents the same memory distribution, but with our custom implementation of the
persistent block cache, which uses Pmemenv and the 2Q placement policy. We see in
the DRAM+NVM case that, while simply employing NVM in the regular persistent blocks
cache already yields improvements, those are rather small. On the other hand, making the
persistent block cache NVM-aware through the Pmemenv and 2Q significantly improves the
throughput in comparison to the DRAM-only approach. Figure 3.13 extends this evaluation
to a scenario with multiple threads, showing that the throughput improvements still hold.

Finally, we evaluate the benefits of NVM in terms of a warm startup. Whenever RocksDB is
started (either after a normal shutdown or a failure), requests are issued and the block

4A single DRAM module of 128 GB costs approximately 1500 US$, while an Intel Optane DCPMM with the
same capacity is estimated to cost 695 USS [Aco19].

3.6 Additional Case Study: RocksDB 59

-@ DRAM-only A~ DRAM+NVM (Pmemenv+2Q)
400

300

>
>
>

200

>

100

1 4 8 12 16 20 24 28 32 36 40 44 48

Throughput (x103 op/s)

Threads

Figure 3.13: Throughput achieved by multiple threads in a read-only workload.

- — DRAM-only Pmemenv+2Q

g 10f

S 8t

—

X 6k

: \/_M“
a 4r

<

(@)} 2+ ‘

>

o

— 0 11 1 1 1 1 1 1 1 1 1

= 0 30 60 90 120 150 180 210 240 270 300 330

Time (s)

Figure 3.14: Time elapsed to warm up the block cache and reach the peak performance.

cache is slowly warmed up until it is completely populated, at which point the system
achieves its peak performance. However, the blocks in the persistent block cache survive
across shutdowns and can be accessed immediately, enabling a faster peak-performance
startup. Figure 3.14 shows this scenario, with the throughput in the Y axis and the elapsed
time in the X axis. The two scenarios depicted are the DRAM-only with a block cache of
10 GB of DRAM and the Pmemenv+2Q with a block cache of 2 GB of DRAM and persistent
block cache of 17 GB of NVM. Initially we see the peak performance of both systems for
the read-only workload with a single thread. We then shutdown and restart both systems
at the 30 s mark. The filled areas below the curves indicate the time elapsed from the
startup until the peak performance is reached. The Pmemenv+2Q takes only 15 s, since
only the 2 GB of the block cache have to be populated and most requests can be served
immediately from the persistent block cache. Meanwhile, even if the throughput reaches
acceptable levels in the first few seconds after startup, the DRAM-only requires 280 s to
finally reach its peak throughput. Therefore, the conclusion is that the concepts introduced
by Pmemenv and 2Q can be directly applied to the persistent block cache of RocksDB,
allowing not only a higher throughput for the same cost, but also enabling the system to
achieve its peak throughput much sooner after a restart.

60 Chapter 3 Log-Structured Merge-Trees

B+TREES

The B+Tree is one of the most traditional storage management architectures. In com-
parison to an LSM, a B+Tree does not require regular garbage collection or other sorts
of internal reorganization, since records are commonly update in place. This leads not
only to better a performance of point lookup and range scan operations, but also to a
more robust behavior, as the system does not slowdown because of merge processes
lacking behind. These are some of the characteristics that make B+Tree architectures
attractive in the context of relational databases. However, the update-in-place nature of
B+Trees makes it impractical to leverage NVM as the main persistent storage, since data
can easily be corrupted. Previous attempts to leverage NVM on B+Trees give up at least
one of three aspects: NVM byte-addressability, NVM persistency, or B+Tree update-in-place
strategy. Therefore, in this chapter we investigate how all three of them can be achieved
by proposing a buffer pool architecture, discussing implementation details, empirically
evaluating the overhead, and elaborating on the performance expectations of the proposed
approach. The goal of this chapter is to answer the following questions:

+ How can B+Trees leverage both persistency and byte-addressability of NVM?
« How to handle corruptions of update-in-place strategies?

4.1 B+TREE AND NVM

Due to its ubiquity in database systems [Com79], previous works have investigated oppor-
tunities to leverage NVM in the context of B+Trees. The main challenge stems from two
B+Tree properties: records are updated in-place and records are stored in sorted order
within each node (or “page”). Updating records in B+Tree nodes in NVM while respecting
these properties can lead to data being corrupted and lost. This is a similar scenario to
the example in Figure 1.1 in Section 1.2, in which the sorted array can be seen as a B+Tree
node. We classify the works that address this challenge in three categories illustrated in
Figure 4.1 and discuss them in the following.

61

Category #1 Category #2 Category #3

: Buffer Pool : I Buffer Pool :
I DRAM ! I DRAM !
L — = —— _I b e e R 1
Cache line] “Mini page”
Page NVM NVM
ﬂ Page OR

NVM TN

DRAM

S

N

NVM
Main Storage Main Storage Main Storage
(SSD / HDD) (NVM) (SSD / HDD)
(a) Buffer Extension (b) DRAM Buffered Access (c) Persistent Trees

Figure 4.1: The three categories of B+Tree architectures proposed by previous works.

4.1.1 Category #1: Buffer Extension

Systems organize their records in a B+Tree format on persistent media (traditionally HDD
and SSD), with each node being represented by a page. Since pages need to be read from
storage to memory to be accessed, a portion of DRAM is used as a buffer pool to hold these
pages. In this scenario, previous works proposes to leverage the lower costs and higher
density of NVM to extend the buffer pool capacity [CJY15, OCXH14, LUJW'19], as shown
in Figure 4.1a. The observation is that a larger buffer pool enables more pages to be on
byte-addressable media and, therefore, avoid expensive 1/0 to traditional storage devices.
While not often discussed, this scenario can also benefit from NVM-aware buffer pool
policies to properly place pages either in DRAM or NVM, such as the 2Q policy presented
in Section 3.4. Furthermore, some of the works in this category also focus on wear leveling
and reducing write amplification, which are concerns similar to the ones in the early days
of flash memory, but not often considered in the context of NVM [OCXH14, LJWT19].

Since the buffer pool (or a part of it) resides in NVM, buffered pages are preserved across
system restarts and, therefore, could be accessed instantly. However, as previously dis-
cussed, the pages in NVM can be corrupted if a failure occurs during an update. Therefore,
a pessimistic assumption is made by discarding all contents in NVM during restart and
treating it as a fresh buffer pool by reading the original pages from the main storage
device after recovery procedures. In other words, the persistency of NVM is not leveraged
(represented by the stripped lines of NVM in Figure 4.1a). This is the main weakness of
these approaches. The main advantages are the reduced costs (by employing cheaper
NVM instead of DRAM) and low implementation effort (since NVM is treated like DRAM).

Finally, we note that a similar behavior to the works in this category can be achieved at the
hardware level, by configuring the DCPMM in memory mode, as discussed in Section 2.1.2.
However, in such case, NVM is not exposed to the application, thus preventing the buffer
manager from applying custom replacement and migration policies.

62 Chapter 4 B+Trees

4.1.2 Category #2: DRAM Buffered Access

As shown in Figure 4.1b, rather than extending the buffer pool, works in this category
assume that the buffer pool resides solely in DRAM and NVM is used either as the main
storage device (left-hand side of Figure 4.1b) [Kim15, PWGB13] or as a caching layer be-
tween DRAM and the main storage on HDD or SSD (right-hand side of Figure 4.1b) [VRLK™18].
The common point between these two approaches is that the system never accesses
NVM directly, but it copies pages to the DRAM buffer pool before operating on them. As
a result, the system has full control over page propagation to NVM, since they are only
done explicitly by copying a page from DRAM to NVM, similar to the regular interaction
between memory and storage. This control over writes to NVM enables the system to take
measures, such as copy-on-write, to prevent pages from being corrupted by partial writes
from DRAM to NVM, as in the case where not all the affected cache lines are correctly
persisted. If NVM is used as a caching layer (right-hand side of Figure 4.1b), keeping the
pages consistent enables the system to directly read them from NVM after a restart, thus
avoiding the 1/0 to the main storage and enabling a warmer restart.

Leveraging the persistency of NVM is the main advantage of the approaches in this
category. On the other hand, the main disadvantage is the unnecessary data movement
between DRAM and NVM, since pages in NVM could be directly accessed by the CPU.
An alternative employed by van Renen et al. [VRLK™18] is to leverage the fine-granularity
access of NVM rather than page-based access. These fine-grained accesses can be either
the size of a single cache-line (typically 64 B) or multiple cache-lines (also referred to as
“mini-pages”). While this reduces the unnecessary movement of data, it does not eliminate
it completely and further complicates memory management in the buffer pool, since it
must manage pages of multiple sizes. In other words, the byte-addressability of NVM is not
fully leveraged, according to our definition of byte-addressability discussed in Section 1.1.

4.1.3 Category #3: Persistent Trees

We have previously discussed works in this category in Section 2.3. As shown in Figure 4.1c,
some variants of persistent B+Trees place all nodes in NVM [CJ15, YWC 15, ALML18],
while hybrid variants place only leaf nodes in NVM and inner nodes in DRAM, under the
observation that inner nodes can be rebuilt from leaf nodes during restart [OLN*16]. Nev-
ertheless, in both cases nodes in NVM are updated directly, since these B+Trees are plain
data structures with no buffer management or more traditional recovery procedures. Con-
sequently, simple operations, such as the insertion or update of a record, might cause data
corruption. To prevent that, the typical approach taken is to ensure that the data structure
is consistent at all times by carefully enforcing the order of writes through hardware in-
structions such as SFENCE, CLFLUSHOPT and CLWB. These hardware instructions introduce
not only overhead, but also additional complexity on the implementation, compared to
classical textbook implementations of data structures. Furthermore, persistent B+Trees
still have to prevent records from being updated in-place, as there is no way to protect
against partial writes. Therefore, copy-on-write strategies, such as shadow paging [Lor77],
are used when updating the B+Tree nodes. An alternative is to leverage the fine-granular
access of NVM and keep records within nodes unsorted, in such a way that they are always
written to a new position within the same node. A validity bitmap in the header of the node

4.1 B+Tree and NVvM 63

Category Persistency Byte-Addressability Update-In-Place

Buffer Extension No Yes Yes
DRAM Buffered Access Yes No Yes
Persistent Trees Yes Yes No

Persistent Buffer Pool with

Optimistic Consistency ves ves ves

Table 4.1: Categories of B+Tree architectures that leverage NVM.

can then be atomically updated to indicate which records are valid. Even if this avoids the
overhead of making a complete copy of the page (as it is the case in shadow paging), it
still breaks the update-in-place property, even if in a smaller granularity. One could argue
that, as contradicting as it may sound, these alternatives employ shadown “paging” on the
record-level, rather than on the page-level. Therefore, while persistent B+Trees leverage
both the persistency and byte-addressability of NVM, they introduce additional complexity
and negatively impact operations that rely on the sorted order of records, such as tree
traversals and sorted range-scans.

4.2 PERSISTENT BUFFER POOL WITH OPTIMISTIC CONSISTENCY

While the categories previously discussed have advantages, they do no provide three im-
portant properties at once: persistency, byte-addressability, and update-in-place. Table 4.1
summarizes the approaches and their characteristics. We propose a new approach to
achieve all these properties: Persistent Buffer Pool with Optimistic Consistency.

Our approach is motivated by the following observations. First, like Category #1 and
Category #2, we consider that a buffer pool is the perfect abstraction for managing the
interaction between all devices in the storage hierarchy. Category #3 does not consider
other devices (such as SSD and HDD) and does not enable dynamic placement of data (such
as migrating hot nodes to DRAM when the workload changes). Second, like Category #1
and Category #3, directly accessing NVM is required to fully leverage its byte-addressability
and treat it as more than faster storage. Therefore, the unnecessary data movement
introduced by Category #2 is not optimal. Third, like Category #2 and Category #3, data
persisted on NVM should be leveraged during system restart. Ignoring persisted data and
starting from a clean state, as in Category #1, is simply using NVM as cheap memory.

We consider that NVM is not only cheap memory and not only faster storage, it is actually
both and should be treated accordingly. On a high level, we propose to use NVM to extend
the buffer pool (similar to Category #1) but still directly accessing it (like Category #3) and
leveraging persisted pages upon restart (like Category #2). Rather than preventing data
corruption by obsessively enforcing a fine-grained consistency for every write to NVM, we
just “hope” that corruption will not happen’, but still put in place mechanisms to detect and
recover them during restart. As a result, NVM is treated as both memory (during runtime)
and storage (during recovery).

"Hence “optimistic consistency”.

64 Chapter 4 B+Trees

4.2.1 Architecture and Assumptions

Figure 4.2 shows an overview of the architecture we propose for implementing the Persis-
tent Buffer Pool with Optimistic Consistency. The main assumption is that the B+Tree is
used in a transactional environment and accessed through a buffer pool. We also assume
a no-force/no-steal strategy [HR83]. The no-force implies that pages in the buffer pool
are not flushed to the main storage at commit time. Therefore, durability is guaranteed
by physiological write-ahead logging (WAL), as defined by the ARIES protocol [MHL92].
The no-steal entails that pages in the main storage will not contain updates made by loser
transactions. This is possible under the observation that the buffer pool capacity can be sig-
nificantly increased with NVM, up to the point where the complete working set of pages fits
in the buffer pool and no pages need to be evicted to the main storage mid-transaction. This
simplifies recovery, as undo log records are only required during normal processing (in case
of transaction abort) and can be discarded afterwards, without the need of being written
to the WAL. Many systems implement the no-force/no-steal strategy, usually by employing
transaction-private redo/undo log buffers [DKO*84, MWMS14, TZK*13, SGH18]. Finally,
we assume modern transactional recovery techniques based on WAL [GGS16, Sau17], such
as instant recovery and instant restart, with single-page recovery being the main require-
ment [GK12]. Further buffer management techniques, such as pointer swizzling [GVK*14]
and low overhead replacement policies [LHKN18] are desired, but not required. The focus
of our approach is handling corruption that might occur when a failure happens while
updating pages directly in the NVM portion of the buffer pool.

As Figure 4.2 shows, the buffer pool is extended with NVM. The ratio between DRAM and
NVM can be configured by the user, with one extreme being DRAM-only (faster runtime,
higher price, slower recovery) and the other extreme being NVM-only (slower runtime,
lower price, faster recovery). The WAL is optionally stored in NVM for better performance,
following approaches proposed by related work [CKKS89, AJ89, FHH ™11, GXH* 11, HSQ14,
WJ14]. For simplicity, we do not elaborate on which alternative is used, as this is orthogonal
to the rest of the architecture. We also note that for reducing costs, the system should
periodically migrate log records from the WAL in NVM to a log archive on cheaper devices,
such as SSD, HDD, and tape. For better performance, SSD is also used for the main storage.

During normal processing, a page to be updated will be either on the main storage (SSD)
or in the buffer pool (NVM or DRAM). Figure 4.3 shows the life cycle of a page. In case the
page is on SSD, it is loaded to the NVM portion of the buffer pool. In case the page is in
DRAM, there is a hit and the page is updated normally. If the page is in NVM, one of two
actions can occur. First, the page can be identified as “hot” by a placement policy, such as
the 2Q discussed in Section 3.4, in which case it is copied to DRAM and updated there.
Second, the page can be simply “warm”, in which case the update is done directly to NVM.
More elaborated policies can be explored to further improve page placement, such as
deciding if a page on SSD should be read to NVM or directly to DRAM, or if a page evicted
from DRAM should be discarded or copied to NVM. To focus on a simple presentation,
we do not discuss these policies in detail, however they have been discussed by related
work [APM19, VRLK 18] and are an interesting direction for future work.

A solution to avoid corruption when updating the page directly in NVM is to employ similar

techniques to Persistent Trees by combining copy-on-write techniques with the hardware
instructions SFENCE, CLFLUSHOPT and CLWB, as discussed in Section 4.1.3. This has two

4.2 Persistent Buffer Pool with Optimistic Consistency 65

................... Write seesssssseiennn

1. Update page 1. Update page
2. Addlog record : v Read vy, i 2. Update checksum
: i 3. Add log record

Log Archive
(SSD/HDD/Tape)

Main Storage
(SSD)

Figure 4.2: Architecture overview of our proposed persistent buffer pool. The user can
tune the ratio between DRAM and NVM used by the buffer pool. Reads and writes from/to
the buffer pool are done practically in the same way, not mattering if the page resides on
the DRAM portion or the NVM portion. Furthermore, pages persisted in the NVM portion
are leveraged for a warm restart, thus enabling a faster peak-performance recovery.

2Q

Hot
(DRAM)

Buffer Pool

Main Storage

Fetch Page

Figure 4.3: Typical life cycle of a page that migrates through different devices.

66 Chapter 4 B+Trees

[RT] [R>] R3]

64 B 64 B 64 B 64 B CPU Cache
_____________ Buffer Pool
DRAM NVM
[R1] [R3f .
= [Rn]

Figure 4.4: A single record the size of a cache line (64 B) of each page is updated. The
updated records are lost if there is a failure. Pages in the NVM portion of the buffer pool
are corrupted even if the transactions committed.

major drawbacks. First, it does not only break the update-in-place property of pages
in NVM (as previously discussed), it also potentially requires pages in NVM to have a
different format and be treated differently than pages in DRAM. For example, regular pages
in DRAM can keep records sorted, while pages in NVM are log-structured and have an
additional atomic bitmap to validate updates. This complicates buffer management and
introduces additional overhead, as pages must be converted from one format to another
whenever they are moved between devices. While the overhead of converting between
page formats might be negligible when compared to the cost of SSD I/0, this overhead
becomes relatively higher when compared to the cost of copying a page between NVM
and DRAM. The second drawback is that writes to NVM cannot be amortized by the CPU
caches, since updated cache lines must be eagerly flushed with CLFLUSHOPT and CLWB. This
exposes writes to the higher latency of NVM and incurs an even higher runtime overhead.
These drawbacks arrive as a consequence of protecting the system from corruption at all
costs. We propose to go in an opposite direction by acknowledging that corruptions are
inevitable and embrace them as part of our buffer pool design.

4.2.2 Embracing Corruption

Updating pages directly in NVM without enforcing any kind of consistency will lead to
pages being corrupted eventually. Allowing these corruptions to happen might sound
unfeasible in the real world. However, this approach is motivated by three observations.

First, failures are rare. This is important, considering that corruptions can only occur if a
partial-write happens as a consequence of a failure, such as a power outage or an abrupt
system crash due to software errors. If systems fail too often, the issue must be addressed
at a different level, such as replacing the hardware. Therefore, the overhead of neurotically
enforcing the consistency of each small update to a page in NVM is undesirable.

Second, the number of pages that can be corrupted is bound. This claim is backed by a

thought experiment. A corruption happens if we update a record in a page in NVM and this
update is lost after a failure because it was not evicted (partially or completely) from the

4.2 Persistent Buffer Pool with Optimistic Consistency 67

volatile CPU cache. In other words, the update was never persisted to NVM. Assume the
B+Tree nodes are 4 kB and that a single record the size of a cache line (64 B and also the
transfer unit between CPU cache and NVM) is updated on each node in NVM. Figure 4.4
illustrates this scenario. Considering the cache size of a modern CPU is approximately
40 MB?, the maximum number of updated records that the cache can hold is given by:

40MB

——— = 655 360 d
64 B /record records (pages)

Since we assumed that each updated record belongs to a different page, that is also the
maximum number of pages that were corrupted by lost updates after the failure. Note that
CPU caches are multi-way set associative and holding a single cache line for each page is
unlikely. In reality, cache lines are evicted much sooner by the CPU and persisted back to
NVM due to associativity conflicts, leading to fewer pages being corrupted. Nevertheless,
we make a pessimistic and conservative assumption to strengthen our argument. Consid-
ering that the smallest DCPMM commercialized by Intel is 128 GB, if it is completely used
by the buffer pool, the total number of 4 kB pages it can hold is given by:

128 GB

4kB/page = 33 554 432 pages

In such a scenario, a maximum of 2% of the pages in the buffer pool can be corrupted in the
worst case (655360 of 33554432). This is generalized by Equation (4.1), which states that
the percentage of corrupted pages in the worst case is proportional to the ratio between
the size of the CPU cache and the size of NVM used by the buffer pool. Since the size of
CPU caches is much smaller and more constant? than the size of NVM, in most scenarios
the maximum number of corrupted pages will be a small fraction of all the pages in the
buffer pool. Figure 4.5 further aids in visualizing this relation by showing the percentage
of pages that can be corrupted in the worst case (Y axis) when increasing the size of NVM
dedicated to the buffer pool (X axis). As in the previous thought experiment, we assume a
CPU cache of 40 MB and pages of 4 kB.

Size of CPU Cache
P ~ 4.1
Corrupted Pages ~ oo N Buf fer Pool (4.1)

As seen, the relative number of pages that can be corrupted in the worst case drastically
drops for large NVM capacities. Such large buffer pools are common, even in the context of
DRAM, given the ever-increasing demands of data processing. However, it is worth noting
that, even if the number of pages that can be corrupted is low, it can still be much higher
than acceptable industry standards®. Finally, this leads to our third and most important
motivation: corrupted pages can still be detected and recovered. The main insight is
that the corrupted pages are in the buffer pool, not in the main database storage. In a
transactional environment, the atomicity and durability are already guaranteed by WAL,
therefore issuing CLFLUSHOPT or CLWB after each update to a page in the buffer pool is not
necessary, as the log serves as the single source of truth. In the following we elaborate on
the techniques used for detecting and recovering corruptions.

2For example, the Intel Xeon Platinum 8260L CPU has 35.75 MB of last-level cache (L3).

3The capacity of DRAM and NVM can be increased by acquiring more and/or larger modules. Meanwhile,
expanding the capacity of the CPU caches requires acquiring a completely new CPU.

4As an example, Amazon S3 is designed for 99.999999999% (11 9's) of data durability.

68 Chapter 4 B+Trees

100

60 |
40}
20}

Corrupted Pages (%)

7 16 32 64 128
Buffer Pool NVM Size (GB)

o

Figure 4.5: Percentage of pages in the buffer pool that can be corrupted in the worst case.

4.3 DETECTING CORRUPTIONS

We saw that pages in the NVM portion of the buffer pool can be corrupted because updates
might not have been properly persisted. Consequently, during restart after a failure, these
pages will still be in the buffer pool, but their state is unknown. They can either be consistent
and ready to be accessed, or corrupted. Since we want to leverage the persistency of NVM,
we must identify the state of a page prior to accessing it. Fortunately, this can be done by
leveraging the existing checksum that many database systems store in the header of each
page, thus not requiring radical changes to the system architecture.

Traditionally, the checksum of a page is calculated and updated when the page is written
from volatile memory (DRAM) to persistent storage (SSD/HDD). When a page is fetched
from persistent storage to the buffer pool, its checksum is calculated again and compared
to the checksum stored within the page. The goal is to detect page corruptions caused
by media failures, such as a bad HDD sector. In the case of NVM, the insight is that the
corruption that may happen due to non-persisted cache lines can be generalized to a media
failure, just like in the case of SSD and HDD. Therefore, we rely on the checksum already
present in the page headers when updating pages in NVM.

During runtime, whenever a page in the NVM portion of the buffer pool is updated, the
system calculates the new checksum for the whole page and updates it. This is the
only difference to pages in the DRAM portion, which have their checksum calculated and
updated only when they are flushed to persistent media, rather than for every update. This
difference is also shown in Figure 4.2. In addition to the checksum, other fields in the page
header are the unique page identifier (PID) and the page log sequence number (pLSN), as
in the ARIES algorithm [MHL"92]. For every update to the page, the LSN is updated to
correlate the state of the page with respect to the logged update. It is worth noting that
neither the updated record, the new LSN, or the new checksum are eagerly flushed from
the CPU cache back to the page in NVM. Eventually the CPU will naturally evict the affected
cache lines and they will be persisted. This is an important advantage, as it allows these
updates to be amortized by the CPU cache and not be exposed to the higher NVM latency.

During restart after a failure, recovery routines take place, starting by log analysis. During
the log analysis phase, the WAL is scanned starting from the last checkpoint towards its

4.3 Detecting Corruptions 69

E State #1 State #2 State #3 State #4

: """""""" 1 5das64 | PID:1 5das64 | PID:1 f4238u | PID:1 f4238u | PID:1
1 CPU Cache ! A | TSN:3] A | A |
1

|f4238u | LSN:4 | Kevin | 1
L — e —] [Kevin] [Harry | [Kerry] [Kevin]
i Buffer Pool |
1
1 I t4238u | PID:1 ei5p98 | PID:1
! REDD) ! LSN:4] ISN:5]
i 5das64 | PID:1 i
: LSN:3| .. : I Harrz I David
1 1
: I Harrz :
1 1
e —— F |

(a) Update to a page in NVM (b) Possible states after a failure

Figure 4.6: The states a page may be found in the NVM portion of the buffer pool during
restart. The dark gray area indicates the header of the page, which contains the checksum,
PID, and pLSN, among other fields.

end. At the end of log analysis we know what was the state of the database right before
the crash, such as dirty pages and active transactions. In the context of our proposed
buffer pool architecture, the most important information retrieved during log analysis is
the eLSN (expected LSN) of each page, which is the LSN of the last committed updated.
After log analysis, we assume modern instant recovery takes place [GGS16]. The system
starts to accept requests right after log analysis and pages are recovered on-demand the
first time they are accessed. If a page being accessed was on the DRAM portion of the
buffer pool, it was completely lost and it must be recovered by retrieving an older version
of the page from the main storage and replaying the relevant log records to it. However,
in the case a page accessed is discovered in the NVM portion of the buffer pool, it might
be in a consistent state and it could be accessed right away, without requiring any further
recovery. In order to decide the state of such page, the checksum of the page is calculated
and compared to the checksum stored in the page header. The result of this comparison,
together with the LSN stored in the page header, defines the state of the page.

4.3.1 Possible States

Figure 4.6 shows a simple scenario with all the possible states a page in NVM may be
found during restart. Figure 4.6a shows a single record of a page in NVM being updated
from “Harry” to “Kevin”. As previously mentioned, the system increments the pLSN and
calculates and updates the new checksum. Since there are no guarantees of which cache
lines were persisted, a failure might happen at any point and the page can be found in the
states shown in Figure 4.6b during restart. Figure 4.7 shows the decision tree to determine
the state of the page. In the following, we elaborate on each one of these states

State #1: Corrupted Page

In this case, not all updated cache lines were evicted from the CPU cache. Figure 4.6b
shows two possible scenarios. First (top), only the updated record and the new pLSN were

70 Chapter 4 B+Trees

CC = Calculated Checksum State #2:

SC = Stored Checksum
pLSN = Page LSN Outdated Page

eLSN = Expected LSN

State #1:
Corrupted Page

State #2:
Dirty Update

State #3:
"| Silent Corruption

Page
Request

State #4:
Valid Page

Figure 4.7: Decision tree to determine the state of a page in NVM during restart.

evicted. Second (bottom), only the new checksum and the pLSN were evicted. While other
situations are possible, the relevant part is that the calculated checksum of the page will
not match with the checksum stored within the page, therefore the page is corrupted.

State #2: Outdated Page & Dirty Updates

In this case, the calculated checksum and stored checksum match. However, while this
guarantees that the page is not corrupted, it does not guarantee the correct version of
the page. Therefore, the pLSN stored in the page must be compared to the eLSN retrieved
during log analysis. They will not match in two situations. First (top), the pLSN is lower than
the eL3sN, since none of the updated cache lines were evicted from the CPU cache, meaning
that the page is in a physically consistent, but outdated state. Second (bottom), the pLSN
is higher than the eLSN, since all updated portions of the page were evicted from the CPU
cache, but the transaction that made these updates did not commit before the failure,
therefore the page is physically consistent but contains dirty updates. This distinction is
relevant because, while in both cases the page cannot be accessed and must be recovered,
their recovery procedure is slightly different, as discussed later in Section 4.4.

State #3: Silent Corruption

In this case, not all updates were evicted from the CPU cache, represented by only the
first two characters of the updated record being evicted, leading to “Kerry”, which is a
corrupted state. However, it could be that the calculated checksum of this corrupted
state matches the checksum stored in the page due to hash collisions in the checksum
algorithm. This is known as a silent corruption, as the checksum cannot detect it. Thisis a
worst-case scenario, as data loss will be unnoticed. However, this is a common trade-off
for checksum-based approaches that are utilized at many levels of the hardware and
software stack. The critical point is the probability of the worst-case occurring. As we will
show in the following, the probability is lower than the probability for silent data loss in
other scenarios that are accepted in practice. Even considering the low probability, one
could, in pedantic scenarios, analyze the whole WAL to detect silent corruptions. However,

4.3 Detecting Corruptions 71

the probability that reading the WAL leads to an error might be higher than having a silent
corruption in the NVM portion of the buffer pool.

We note that the calculated checksum of the page is only compared to the checksum
currently stored in the page header (stored checksum). This means that if the calculated
checksum collides with any checksum that the page had in the past, this will not be a
problem, as long as it is different from the current stored checksum. A checksum of 64 bit
has 264 distinct values. Assuming a hash function that uniformly distributes the results
across the domain, the probability of the calculated checksum being the same as the stored
checksum in a single page is given by:

1
P(collision for a single page) = 561 ™ 5.4 x 10720

Therefore, the inverse of that is the probability of having no collision in a single page, which
is given by:

1
P(no collision for a single page) = 1 — 564
As previously mentioned in Section 4.2.2, the number of pages that can be corrupted is

bound and a CPU cache of 40 MB can corrupt up to 655360 pages per failure. Therefore,
the probability of having no collision in any of these pages is given by:

1 655360
P(no collision in any page) = <1 — 264)

This leads to the inverse probability, which is the probability of having a collision in at least
one page:

1 655360
P(collision in at least one page) = 1 — (1 — 264> ~ 3.5x 1071

Considering industry standards that typically require 11 9’s of durability (i.e., 10! probabil-
ity of data loss) [Ama06], the probability of a silent corruption for each crash is acceptable.
To further strengthen the argument, the probability of at least one page being corrupted in
n pages is given by:

1 n
P(collision in at least one page in n pages) = 1 — (1 - 264>

We can now calculate how many pages need to be considered as events to have a 50%
chance of a corruption. The following equation shows how many pages have to be cor-
rupted:

72 Chapter 4 B+Trees

n
05 =1 — (1— 2;) . n = 1.28 x 10" pages

Based on the assumption that 655360 is the number of pages that can be corrupted
per failure in the worst case, the number of failures that need to happen to reach a 0.5
probability of at least one page being corrupted is:

19
% ~ 1.95 x 10'3 failures
It is worth noting that hash collisions are only a problem if they happen exactly before
a failure, not during normal runtime. If we assume that 10 failures happen in a year, it
takes 10!? years for a single server to be exposed to a 50% chance of a silent corruption.
Considering estimations that modern cloud providers have fleets of approximately 1 million
servers, it would still take 10° years. Finally, these probabilities are a pessimistic and
hypothetical worst-case scenario. In practice, the assumed events will not happen, such as
the CPU cache holding a single cache line of each page. Therefore, since the probability of
silent corruption is smaller than in other cases that are accepted in practice, we transitively
conclude that our case is acceptable.

State #4: Valid Page

Finally, in this case all the updated cache lines were evicted from the CPU cache and
persisted to NVM. When the page is requested for the first time and discovered in the
NVM portion of the buffer pool, the calculated checksum will match the stored checksum
and the pLsSN will match the eLSN retrieved during log analysis. Therefore, the page can be
accessed without further recovery procedures. For buffer pools with large NVM capacities,
most pages are expected to be in this state.

4.4 REPAIRING CORRUPTIONS

This section describes the recovery algorithm of the Persistent Buffer Pool with Optimistic
Consistency. As previously mentioned, after a failure the log analysis phase takes place and
once it completes, pages can be requested and are recovered on-demand. Algorithm 4.1
shows the pseudo-code of the two main functions: Fix and RecoverPage. The Fix function
is called whenever a page is requested by its page_id. In case this is the first access to
the page after the failure, the recovery procedure is triggered (line 2-4). Otherwise, the Get
function (line 7) executes regular buffer management procedures, such as fetching the
page from main storage and pinning it to memory to prevent early eviction.

The RecoverPage function starts by identifying if the page being requested was in the

NVM portion of the buffer pool at the time of the failure. This is done by querying an
allocation table which is stored in a fixed position in the beginning of the NVM space (line

4.4 Repairing Corruptions 73

11). The allocation table maps page identifiers to the location offset of the respective pages
within the pool. In the case the page is not found in NVM, it was potentially in DRAM, thus
requiring regular recovery procedures by fetching it from main storage and replaying the
relevant log records (line 28-30). Otherwise, a pointer to the page is retrieved from the
allocation table (line 12) and the page checksum is calculated (line 13) and compared to
the checksum stored within the page in order to identify its state (line 14).

As previously discussed, State #3 is unlikely and therefore ignored. In case the checksums
do not match, the page is corrupted and must be recovered (State #7). Since we cannot
make further assumptions about its state, the algorithm discards the page, fetches an
older version from main storage, replays the relevant redo log records, and finally returns
the page (line 15-16). If the checksums match, the pLSN is compared to the eLsN. If they are
equal, the page is in the correct version (State #4) and can be returned immediately (line 25).
If the pLSN is higher than the eLsSN, then the page contains updates made by uncommitted
transactions. Given the no-steal/no-force strategy of the buffer pool, rolling back changes
is not possible since UNDO information is never persisted to the WAL, therefore the page
must be discarded, an older version is fetched from the main storage, and the log records
are replayed to “roll forward” the page to its most recent and consistent state (line 15-23),
like in State # 1. If the pLSN is lower than the eLSN, the page is in an old state and missing
updates made by committed transactions, thus only requiring the log records generated
by those transactions to be replayed directly on it (line 23). This case has the advantage
of saving an additional I/0 operation by leveraging the page found in NVM rather than
fetching an older version from the main storage, thus being potentially faster. Finally, the
recovered page is returned (line 25).

The original single-page recovery [GK12] was proposed in the context of traditional databases
with volatile memory buffer pool (DRAM), persistent main storage (HDD/SSD), and regular

database backups. The original proposal consists of repairing corrupted pages on the

main storage by fetching an older version of the page from a backup location and replaying

the log records. The advantage of the proposed Persistent Buffer Pool with Optimistic

Consistency is that it relies on an existing and effective recovery technique rather than

re-inventing the wheel. Single-page recovery is generalized by applying the same concept

in a different context: the main storage is to the persistent buffer pool the same thing that

the backup is to the main storage.

4.5 PERFORMANCE EVALUATION AND EXPECTATIONS

This section empirically evaluates the main overhead introduced by the Persistent Buffer
Pool with Optimistic Consistency: calculating checksums. We also discuss and propose
alternatives to reduce this overhead. Finally, we elaborate on the end-to-end performance
expectations of the the overall system.

74 Chapter 4 B+Trees

Algorithm 4.1: Pseudo-code for the Fix and RecoverPage functions.

1 function Fix (page_id)

2 if IsFirstAccess (page_id) then

3 | return RecoverPage (page_id)

4 | endif

5 // Return a pointer to the page in the buffer pool, potentially

6 // fetching it from the main storage if a page miss occurs

7 return Get (page_id)

8 end

9

10 function RecoverPage (page_id)

1 if IsOnNVM (page_id) then

12 page + Get (page_id)

13 checksum < CRC64 (page)

14 if checksum != page.getChecksum() then // State #1
15 page < Fetch (page_id) // Fetch page from main storage
16 ReplayLog (page) // Apply log records
17 return page

18 else

19 if page. LSN != GetExpectedLSN (page_id) then // State #2
20 if page. LSN > GetExpectedLSN (page_id) then // Dirty update
21 ‘ page < Fetch (page_id)

22 end if

23 ReplayLog (page) // Dirty update or outdated
24 end if

25 return page // State #2 or State #4
26 end if

27 else // Page was in DRAM and was lost
28 page < Fetch (page_id) // Fetch page from main storage
29 ReplayLog (page) // Apply log records
30 return page

31 end if

32 end

4.5 Performance Evaluation and Expectations 75

Processor Intel Xeon Platinum 8260L CPU (35.75MB Cache, 2.40 GHz)

Main Memory 96 GiB DDR4 2666 MHz (6 x 16 GiB modules)

NVM Intel Optane DCPMM 1.5 TiB (6 x 256 GiB modules)
Operating System Linux 5.3.4-3

Compiler gce-8.2.1

Table 4.2: Server used for micro benchmark.

4.5.1 Checksum Overhead

To achieve the three characteristics discussed in the beginning of this chapter (persistency,
byte-addressability, and update-in-place), we propose calculating the checksum for the
whole page for each record inserted, updated, or deleted. This creates an overhead which
might not be negligible and has a direct impact in the final performance of the system.
The overhead depends on the size of the record being updated. If the record is large
and spans a significant portion of the page, the overhead is proportionally lower. In
the case of insertions, the sorted order of records in a B+Tree node must be kept, and
therefore, in average, half of the page will be accessed anyway for moving other records
to accommodate the new one. A similar situation happens with deletions. On the other
hand, updating a record does not require other records to be moved, and, therefore, the
overhead of calculating the checksum becomes relatively higher. To provide a strong
argument, we look at the worst-case scenario of updating a small record. We evaluate and
compare different strategies through a micro-benchmark. The micro benchmark consists
of measuring the time required for updating a random record in a random page stored
in a persistent buffer pool of 10 GB of NVM using a single thread. We calculate the CRC
checksum through fast vectorized hardware instructions provided by Intel SSE 4.2 [Int20a].
Table 4.2 shows the configuration of the server used for the micro benchmark.

Three strategies are initially considered. First, “No Checksum” simply updates the record in
the NVM page. Since consistency is not enforced and there is no way to detect corrupted
pages, this implies that all pages in NVM must be discarded after a failure, thus not
leveraging the NVM persistency at all. This serves as our baseline, as pages are updated
like in DRAM, not requiring any additional work, thus being the fastest way to update a
record. Second, “Copy To DRAM” consists of copying the whole page from NVM to a DRAM
buffer prior to the update. The record is then updated in DRAM, thus avoiding corruption in
NVM. We note that “No Checksum” and “Copy To DRAM” are equivalent to the way pages
in NVM are updated in the Category #1 and Category #2 discussed in Section 4.1. The
Category #3 is not considered, as the page format and update method are significantly
different, requiring out-of-place updates and explicit cache-line flushes. Finally, “Checksum”
represents our proposed technique and consists of updating the record in NVM, calculating
the checksum for the whole page, and writing the new checksum to the header of the
page. Figure 4.8 shows the runtime of each approach (Y axis) while varying the size of the
record updated (X axis). Different page sizes are also considered (Figures 4.8a to 4.8d).
For further clarity, the slowdown of each approach relative to “No Cache” is also calculated
and shown in Table 4.3.

We make three observations. First, as expected, the “No Cache” approach has the same
performance in all scenarios, since larger records are likely to still be buffered by the

76 Chapter 4 B+Trees

B No Checksum [Copy To DRAM [Checksum [l Partitioned Checksum

20
o 15t - - -
Z
(O}
£ 10¢ i i i
s
 Sr B B |:I l] l:I B
¢ 8 64 512 8 64 512 8 64 512 8 64 512
Update Size (B) Update Size (B) Update Size (B) Update Size (B)
(a) Page of 4kB (b) Page of 8kB (c) Page of 16 kB (d) Page of 64 kB

Figure 4.8: Runtime of updating a record in NVM for each approach considered.

Slowdown Factor
Page Size Update Size | Copy To DRAM Checksum Partitioned Checksum
8B 2.7 4.0 1.3
4kB 64B 2.5 3.7 1.3
512B 2.0 4.0 1.6
8B 4.5 6.5 2.0
8 kB 64B 4.2 5.7 1.9
512B 3.3 5.5 1.7
8B 8.3 10.9 2.6
16 kB 64B 7.8 9.5 2.4
512B 6.0 8.4 2.0
8B 31.3 36.8 4.9
64 kB 64B 28.4 33.4 4.1
512B 21.8 26.6 4.4

Table 4.3: Slowdown of each approach calculated by dividing their respective runtime in
Figure 4.8 by the runtime of updating the record in NVM (“No Checksum”). Lower is better.

4.5 Performance Evaluation and Expectations 77

Header 5dase4 68fe9a | der891] ai13bl Partitioned
PID:1[TSN:3] vzot13 | 12asih|21hti4 Eheale
PID:1TTSN:3] ecksums
Kevin Kevin

Figure 4.9: Partitioned checksum.

DCPMM. This aligns with previous works that reported that DCPMM employ its own on-
chip caches to buffer accesses to the underlying media in units of 256 B [VRVL"19, IYZ119].
Furthermore, the size of the page in this case plays no role. Second, both “Copy To DRAM”
and “Checksum” become slower for large page sizes, since they require accessing the
whole page (either while copying to DRAM or while calculating the checksum). Third and
most important, “Checksum” performs worse than “Copy To DRAM” in all cases. This shows
that, computing the checksum for the whole page is more expensive than simply copying
the page to DRAM. Even if the difference is small, one could argue that the high runtime
overhead defeats the purpose of the Persistent Buffer Pool with Optimistic Consistency.
Therefore, we propose a simple alternative: partitioned checksums.

Calculating the checksum for a whole 4 kB page is too expensive if only 8 B are updated.
Therefore, the motivation of partitioned checksums is reducing the amount of data that has
to be read for calculating the checksum. As Figure 4.9 shows, instead of a single checksum
for the whole page (left-hand side), the page is logically divided in smaller partitions and
each partition has its own checksum (right-hand side). In the scenario in fig. 4.9, if the
record “Kevin” is updated, only two checksums (green and red) need to be calculated. This
significantly reduces the overhead, as shown by the “Partitioned Checksum” results in
Figure 4.8 and Table 4.3, in which 8 checksums per page are used. It is worth noting that,
while multiple checksums are used, the unit of recovery, repair, and corruption detection is
still a page. Therefore, if one of the checksums of a page does not match the checksum
calculated for its respective partition, the whole page is considered corrupted.

The number of checksums used for each page can be set as a system parameter. The trade-
off introduced in this case is between additional space requirement (more checksums)
and higher overhead for updating pages directly in the NVM portion of the buffer pool
(less checksums and larger partitions). Table 4.4 shows the space overhead introduced
by having 32 checksums of 8 B each ® in the different page sizes previously discussed.

Finally, it is worth remembering that the overhead shown in our evaluation is the worst-case
scenario of small updates to a page. Furthermore, this overhead only refers to updating a
single record in a page in NVM. This situation is expected to happen sporadically, since a
good placement policy, such as the 2Q discussed in Section 3.4, should migrate frequently
modified pages to DRAM. Such pages not only avoid the checksum overhead, but also
benefit from the lower latency of DRAM. In addition to partitioned checksums, future work

5This would fit exactly in the reported 256 B buffer unit of DCPMM.

78 Chapter 4 B+Trees

Page Size Space Overhead Partition Size

4kB 6.2% 128 B
8kB 3.1% 256B
16 kB 1.5% 512B
64 kB 0.3% 2048B

Table 4.4: Trade-off between space overhead and partition size (higher runtime overhead)
for multiple page sizes with 8 B and 32 checksums per page.

might as well explore alternatives to reduce the checksum overhead, such as increasing the
optimism by calculating the checksum of a page after a certain number of changes. This
would introduce a new trade-off between a higher number of corrupted pages (checksums
calculated less often) and higher runtime overhead (checksums calculated more often).

4.5.2 Runtime and Recovery

This section discusses the expected end-to-end behavior of the Persistent Buffer Pool with
Optimistic Consistency. We compare this to traditional ARIES recovery [MHL"92], as well
as to modern Instant Recovery [GGS16]. We note that Instant Recovery is not orthogonal to
ARIES, but rather it builds on top of it to improve the recovery time by enabling on-demand
recovery. Similarly, the Persistent Buffer Pool with Optimistic Consistency also extends
the techniques introduced by ARIES and Instant Recovery. Therefore, the approaches
discussed here are not competitors per se, but improvements on top of each other.

Figure 4.10 shows the expected behavior when recovering from a failure. The ARIES system
starts by executing transactions until a failure happens, at which point the system is offline
and the throughput drops to zero. The three recovery phases take place, indicated by the
gray areas. Log analysis starts by scanning the recovery log from the last checkpoint until
its end. It collects information about the state of the system right before the failure, such
as dirty pages and active transactions, which is used as input for the next phases. The
redo phase replays log records of updates to pages that might have not been properly
flushed from the buffer pool. Finally, the undo phase rolls back changes made by loser
transactions. Once the undo phase is completed, the system starts to accept requests
and the buffer pool is slowly warmed up until the throughput reaches its original state. If
the buffer pool employs a no-steal strategy, undo is not necessary during recovery.

In the case of Instant Recovery, the main difference of the log analysis phase is that
exclusive locks of loser transactions are reacquired. After log analysis, the system starts
to accept requests immediately. The redo and undo phases are triggered on-demand,
and therefore they do not necessarily correspond to the gray areas in Figure 4.10. The
on-demand redo is triggered when a page is requested by a post-failure transaction. The
page-by-page redo is enabled by keeping log records linked through a per-page logical
chain. Similarly, undo is triggered when a post-failure transaction tries to acquire a lock
previously held by a loser transaction. In this case, the loser transactions is rolled back.
Instant Recovery increases the availability of the system by starting to process transactions
much sooner, reaching its peak performance when the buffer pool is warmed up, the hot
pages are recovered, and transactions holding high-contented locks are rolled back.

4.5 Performance Evaluation and Expectations 79

Finally, we discuss the proposed Persistent Buffer Pool with Optimistic Consistency (shown
simply as Persistent Buffer in Figure 4.10). We assume the same memory budget for all
systems. In other words, if ARIES and Instant Recovery have a buffer pool of 100 GB of
DRAM, we assume that the sum of the DRAM and NVM portions in the Persistent Buffer is
also 100 GB, with the NVM portion being larger (e.g., 20 GB of DRAM and 80 GB of NVM).

The first expectation is that the peak performance will be reached much sooner after log
analysis. This is a consequence of pages lingering in the NVM portion of the buffer pool
across failures. All pages in DRAM and a few of the pages in NVM will require recovery
(as previously discussed). However, since the DRAM portion is smaller, less pages are
lost. Furthermore, most of the pages in NVM will be accessible immediately. Therefore,
faster “peak-performance” recovery is enabled by two factors: less work to be done during
recovery and the buffer pool is kept warm across failures.

The second expectation is that the initial performance of Persistent Buffer will be lower
than that of the two other approaches. Assuming the same memory budget, the lower per-
formance is a result of the higher NVM latency and the overhead introduced by calculating
the checksums. In this case, the performance can be improved by increasing the amount
of DRAM and decreasing the amount of NVM in the buffer pool. This ratio between DRAM
and NVM dedicated to the buffer pool should be implemented as a system parameter
to enable a tunable behavior. Figure 4.11 shows the effects of varying this proportion.
Increasing the amount of DRAM will lead to a higher throughput during normal processing,
but also will increase the recovery time. On the other hand, dedicating more NVM to the
buffer pool will lead to lower throughput but faster recovery. One might argue that failures
are rare, and therefore lowering the throughput to the detriment of faster recovery is not a
good trade-off. However, there is an additional hidden factor: cost. Since NVM is cheaper
than DRAM, one could keep the same buffer pool capacity for lower costs, or increase
the buffer capacity for the same price (thus reducing “page misses” and expensive /0 to
the main storage). Enabling such a customizable behavior to trade between performance
and costs is attractive in cloud scenarios, in which customers require higher performance
during peak hours, but also want to reduce costs at low-demand periods®.

4.6 DISCUSSION

In this chapter, we explored how to leverage NVM in the context of B+Trees. The first
contribution is the classification of existing approaches into 3 categories. We observed that
all the approaches fail at achieving three characteristics: persistency, byte-addressability,
and update-in-place. The second contribution is the proposal of our approach, a Persistent
Buffer Pool with Optimistic Consistency, to achieve all these goals, thus answering the
guestions raised in the beginning of the chapter. Like Category #1 and Category #2, we
extend the traditional buffer pool infrastructure to manage NVM. Like Category #3, we
write directly to pages in NVM in a consistent, but optimistic, manner.

The persistent B+Trees in Category #3 are stand-alone data structures and rely on a “force”
strategy by eagerly flushing cache lines from the CPU cache to NVM, thus pessimistically

6 Anecdotally, industry professionals have communicated in private conversations that certain customers
are happy to accept trade-offs such as “80% of the performance for 50% of the cost”.

80 Chapter 4 B+Trees

— ARIES —— Instant Recovery —— Persistent Buffer

Failure Log REDO
Analysis

Throughput

Time

Figure 4.10: Expected behavior during system restart and recovery after a failure.

More DRAM Log
Analysis

More DRAM

More NVM More NVM

¥

Throughput

More DRAM

Time

Figure 4.11: Effects of varying the ratio between DRAM and NVM in the proposed Persistent
Buffer Pool with Optimistic Consistency.

protecting the data from corruption at all times and guaranteeing the consistency of single
operations. Our main insight is that B+Trees are more commonly used in a transactional
environment in which a group of operations must be atomically executed, rather than
only single operations. The usual technique for achieving this transactional semantics is
through logging, or more precisely write-ahead logging (WAL). Therefore, we argue that
leveraging WAL makes more sense than simply getting rid of it. We make the observation
that WAL is enough to guarantee the consistency of the system, and, therefore, a “force”
strategy is not required neither between the buffer pool and the main database storage,
nor between the CPU cache and the NVM portion of the buffer pool. In other words, as
long as WAL is intact, the system can always be recovered.

Alternative approaches propose to leverage NVM to get rid of WAL, based on a common
misconception that logging is the bottleneck of database systems. However, we argue that,
in addition to B+Trees, WAL also became ubiquitous in the context of modern database
systems. Not only WAL guarantees atomicity and durability, it also also enables important
business features such as partial rollbacks and database auditing. In cloud environments,
WAL is also used for replication and consensus between distributed servers. Therefore, all
these issues would have to be properly addressed in order to completely get rid of the log.
This would require a significant effort and changes in modern architectures, going against
the general proposal of this work to gradually evolve modern systems to leverage NVM
rather than completely rewrite them.

4.6 Discussion 81

82 Chapter 4 B+Trees

INDEX+LOG KEY-VALUE STORES

Many applications employ key-value stores (KVS) in at least some point of their software
stack. These KVS are typically non-transactional and one of the most common use-cases
is as intermediate caching service in web environments, so clients can avoid expensive
network round-trips to a distant data center or server. This is seen in many scenarios, such
as caching query results of a database, or caching popular web contents in a content distri-
bution network (CDN). Therefore, the data cached is often unstructured and heterogeneous,
possibly comprising objects such as relational tuples, a YouTube video, or a web page.
Since no assumption about the data can be made, these KVS often employ what is known
as an index+log architecture. In this architecture, records are organized in a log-structured
area to facilitates space management of arbitrarily large records and of structural record
changes, such as adding a new attribute to a tuple. A separate index data structure is used
to efficiently locate records in the log-structured area. Furthermore, since caching systems
require short response times, they are often a single-level system completely in-memory
(DRAM). This leads to increased costs and limited capacity. While employing storage
devices such as HDD and SSD would address these issues, they would not only require
software changes to the single-level architecture employed by these systems, but also
incur high performance penalties. The high latencies of HDD and SSD become particularly
prohibitive, as enabling short and predictable response times is a main requirement. In
this chapter, we present the design of RStore, an index+log KVS designed to address these
issues. RStore employs NVM to enable large capacity and lower costs, when compared to
DRAM-only KVSs. RStore also focuses on achieving short and predictable response times,
which are measured in terms of low tail latency. Therefore, in addition to leveraging the
lower latency of NVM, we also discuss all of the design decisions that enable RStore to
achieve its goals. The two high-level questions being investigated in this chapter are:

* How to extend the capacity and lower the costs of index+log KVSs?
* How to achieve short and predictable response times in the form of low tail latency?

In comparison to the proposals in Chapters 3 and 4, implementing a new system from
scratch, as is the case of RStore, might seem to go against the overall principles of this
thesis of transforming existing systems to leverage NVM without requiring disruptive
changes. However, we note that none of the techniques employed by RStore are novel or
disruptive per se. Message-passing communication, cooperative multitasking, and log-
structured storage are all well-known and established concepts, employed to some extent
by other systems. The contribution of RStore lies in the combination of these techniques.

83

5.1 THE CASE FOR TAIL LATENCY

Key-value stores (KVS) comprise a class of systems that cover a wide range of use-
cases. They are more often used for caching and storage management in applications like
websites, mobile apps, real-time systems, distributed trust, etc. Many of these applications
share characteristics that differ from those of more traditional OLTP and OLAP systems:

+ Unstructured and heterogeneous records.

« Many small requests issued by a large number of clients.

+ Write requests constitute most of the overall workloads.

+ Low and predictable latency requirements for single-record requests.

+ High load changes over time requiring scalable behavior and elasticity.

In particular, latency becomes critical in many of these scenarios. As an example, search
engines require extremely low latency to interactively predict results while the user is still
typing a search term. Other examples include real-time communication between devices
in the context of IoT and a fluid interaction with the user in the context of augmented
reality. For such cases, having a low average latency is often not enough and therefore tail
latency plays a major role in the performance analysis of a system. To make the case for
tail latency, assume that 100 HTTP requests are required to load a website and there is
service-level agreement (SLA) for the website to be loaded in less than 1sin 99% of the
cases. However, even if the server has a 99%-ile latency of 100 ms but at least 10 of these
requests must happen sequentially, the amount of times the 1s SLA is achieved drops
from 99% to 90%(0.99'°). The importance of tail latency has already been discussed in
previous works and acknowledged multiple times in industry [DB13, DHJ 07, Gre13].

Unfortunately, most modern KVS are throughput-oriented, in the sense that their design
decisions mainly focus on increasing the amount of requests processed over time, at
times by sacrificing the latency, as is the usual case of techniques like batching and
group-commit. Furthermore, many other components of a system have a negative impact
on the tail latency. The operating system scheduler might arbitrarily preempt threads at
undesirable points, introducing additional overhead for context switches. The traditional
network stack often implies unnecessary movement of data and coarse-grained locks.
Storage devices, such as SSDs, require periodical internal reorganization to enable wear-
leveling. Garbage collection and defragmentation is also employed in memory allocators
and compaction and merging in log-structured systems like LSMs. As a consequence, it is
challenging to adapt traditional KVS to become latency-oriented, since the overall latency
is affected by the latency of each individual component and usually there is not a single
culprit for being the bottleneck. Therefore, to design a latency-oriented system from the
ground up, it is required to reduce the latency at each individual component by employing
design decisions different than most traditional systems.

84 Chapter 5 Index+Log Key-Value Stores

5.2 GOALS AND OVERVIEW

The design decisions of RStore are guided by two main goals. First, enable low and
predictable latency. In this context, the focus is on low tail latency of single requests, as
these become critical for many use-cases. Second, RStore should enable efficient use of
hardware resources such as CPU, memory, and storage. An efficient use of CPU requires
not only achieving a high throughput, but also a scalable throughput to the number of
cores in the system. In terms of memory and storage, the goal is to achieve a good ratio
that enables lower costs while not harming the tail latency. The main design points that
enable RStore to achieve these goals can be summarized as:

+ Asynchronous execution enables cores to be always doing “useful” work, leading to
efficient usage of CPU resources. This is achieved through asynchronous message-
passing communication and cooperative multitasking, avoiding preemptive schedul-
ing and enabling RStore to scale with an increasing number of cores.

*+ Hybrid DRAM+NVM architecture allows a good balance between cost and perfor-
mance. Most of the primary data is stored in NVM, while a small portion of DRAM is
used to hide the higher latency of NVM.

* Log-structured storage enables efficient space utilization for arbitrary large records
and robust performance even under high memory utilization.

+ User-space networking eliminates the typical bottlenecks of the operating systems
network stack and allows zero-copy semantics by directly copying data between
network card buffers and non-volatile memory.

5.3 EXECUTION MODEL

The execution model of RStore is motivated by the principles of reactive systems and the
actor model. To that aim, two main execution techniques are employed: message-passing
communication and cooperative multitasking.

5.3.1 Reactive Systems and Actor Model

RStore aims at the principles of reactive systems [BFKT14]: message-driven, resilient,
responsive, elastic. These principles were already identified by early work of Joel Barlett,
Jim Gray, and Bob Horst at Tandem Computers [BGH87] and Joe Armstrong on the Erlang
programming language [Arm03], but it was not until the recent need for large-scale systems
that they gained more attention, also in database systems [BBG*14, BDKM17].

One of the ways to achieve such characteristics is enabling concurrency through the

actor model [HBS73]. An actor (or a “partition” in RStore) is an independent and isolated
logical entity treated as the universal primitive for concurrent computation. Since actors are

5.2 Goals and Overview 85

isolated, the only way of communication is by message passing (see more in Section 5.3.2).
This level of isolation also provides resilience by means of fault containment and localized
repair, i.e., the failure of an actor is not propagated through the whole system. When
combined with replication techniques, the system can achieve higher availability and
responsiveness. Furthermore, the isolation and independence provide a higher degree of
system-wide elasticity by allowing actors to be easily distributed and relocated across
cores, NUMA nodes, or potentially different machines through the network. Finally, an
important consequence of all these aspects is the simplification of development and
maintenance of large and complex systems. As an example, one of the best practices
of good programming is eliminating special cases. The actor model achieves that by
eliminating any differences between local and remote communication (or between scale-
up and scale-out) at the programming level, i.e., no matter where actors reside, they
communicate in the exact same way (message passing).

5.3.2 Message-Passing Communication

While many fundamental concepts of concurrent and parallel programming were introduced
inthe 1960's in the context of time sharing in multi-user single-core environments, it was not
until early 2000’s that true parallelism became widespread thanks to the advent of multicore
CPUs. As a consequence, system architectures and algorithms had to be revisited to fully
exploit the potential of multiple cores.

The many programming models that emerged from this time were classified by Silberschatz
et. al. [SGG14] into two dimensions: interprocess communication (message passing vs.
shared memory) and problem decomposition (task parallelism vs. data parallelism). Most
modern systems employ shared memory for communication between processes (which
we will refer from now on as threads) and task parallelism, i.e., distinguished tasks are
executed on the same data.

In shared-memory communication, threads must carefully coordinate by means of mutual
exclusion implemented through mechanisms such as locks (a.k.a. latches), semaphores,
and lock-free algorithms. To enable algorithms to scale with many cores, the mutually-
exclusive critical sections must be as small as possible to avoid contention. To achieve
that, these algorithms have to be re-architectured, which often leads to more complex and
less general approaches. On top of that, the ever increasing number of cores and degrees
of parallelism of modern hardware requires these algorithms to be constantly revised and
optimized. As a consequence, the programming of large systems becomes significantly
more complex and expensive if one is to leverage this increasing level of parallelism. In
terms of performance, previous work has shown poor scalability [HAMS08] and a high
number of wasted CPU cycles [STPA16] in the context of database systems. Finally, the
additional complexity may introduce subtle bugs that are difficult to find as it is harder to
reason about execution order in the presence of arbitrarily interwoven threads.

In contrast to shared memory, RStore employs asynchronous message-passing for inter-
process communication and data parallelism for problem decomposition. In other words,
similar to systems like HStore [SMA*07], each core runs a single worker thread that only
accesses a partition of the complete dataset. Each worker thread has an associated

86 Chapter 5 Index+Log Key-Value Stores

-@- Mutex -A- MPI -@- Mutex -A- MPI

= 10 < 2500

é‘ 8 _S 2000

= el a |

é_ 6 g 1500

£ 4} Y 1000

2 o

3 2t g 500 F

£ =

0 1 1 1 1 1 1 U 0 1 1 1 1 1
24 8 12 16 24 24 8 12 16 24
Threads # Threads

(a) Throughput (b) CPU Consumption

Figure 5.1: Comparison of shared-memory (mutex) and message-passing synchronization
over multiple cores.

message queue, to which it can receive requests sent by other threads. If a given thread
requires data residing on another partition, it must send a message to request the data
from the thread owning that partition. Since communication is asynchronous, the first
thread is free to execute further requests while it waits for the response of the message.

While message passing may sound heavyweight compared to shared memory, it allows
for a more efficient usage of CPU resources. To prove this point empirically, Figure 5.1
compares both shared memory and message passing approaches when incrementing a
single counter for an increasing number of cores. For the shared memory scenario, each
thread acquires a mutex, increments the counter and then releases the mutex. For the
message passing case, a single thread owns the counter and is responsible for incre-
menting it, while the other threads send messages to it with a request to increment the
counter on their behalf. It is worth noting that, while incrementing a counter can be done
more efficiently than with a mutex, we use this example to simulate a high contention
scenario. This scenario is realistic as avoiding contention becomes harder considering an
ever growing number of cores on future CPUs.

In Figure 5.1a, although message passing presents a higher throughput for a small number
of cores (due to reduced cache-coherency events), the throughput drops significantly with
more cores, while the shared memory scenario remains constant. However, in Figure 5.1b,
shared memory consumes an increasing amount of cycles while providing no additional
performance benefits, i.e., these cycles are wasted while message passing maintains a
constant CPU consumption.

5.3.3 Cooperative Multitasking

Section 5.3.2 stated that RStore relies on data parallelism on a system-wide level. In other
words, data is partitioned (by hash or range) and each core runs a single thread, acting as
an independent KVS instance. However, it is inevitable that a task (such as processing
a client request) will be hindered of making progress when waiting for blocking events
such as a message reply, storage 1/0, or a network request. Therefore, task parallelism

5.3 Execution Model 87

3 cru B Task Queue lel, buffer, 8) VT
bt T"ll T2 | T3 |~ [1(char* buffer, size_t size) { // Contl
Setup queue int x = buffer[0];
int y = buffer[4];
Cont1 Cont1 int sum = x + y;
t = dequeue() - * return write(file2, &sum, sizeof(sum));
i
Cont2|).then(
| t.execute() []c(:())uf1t++' dcanta
¥
>(_Cleanup queue);

Figure 5.2: A single thread executes multiple tasks through cooperative multitasking in
an event-loop. Each task is executed to completion and dependencies between tasks are
expressed by a chain of future and continuation objects.

within a single-threaded partition is also desired to make efficient use of CPU resources.
Nonetheless, allowing many threads on the same core does not only lead to expensive
context switches, but also to unpredictable behavior, as we have little control over the
preemptive task scheduling employed by the kernel. Alternatively, RStore employs task
parallelism within a partition through a light weight user-space cooperative multitasking.

The left-hand side of Figure 5.2 shows the single-threaded multitasking model of RStore.
Each thread has a scheduler and a task queue. The scheduler runs an event loop that
picks a task from the queue and then executes it to completion (i.e., non-preemptive).
Tasks are expressed by means of futures, promises, and continuations. These concepts
are common to programming languages, such as Scala [HPM*13], and to frameworks for
building distributed systems, such as Seastar [Scy15b]. A more detailed definition can be
found in the work by Miller et al. [PPM16]. We quote the Scala manual which describes:

“A future is a placeholder object for a result that does not yet exist. A promise is
a writable, single-assignment container, which completes a future. Promises can
complete the future with a result to indicate success, or with an exception to
indicate failure.” [HPM*13]

The right-hand side of Figure 5.2 shows a small example: read two integers from filel
(4 B each), sum their values, write the sum to file2, and finally increment a counter. Since
file operations are blocking events, the read () and write () functions delegate thel/Oto a
helper thread and immediately return a future object as a result. A continuation Cont7 can
be chained to this object through the then() method and the code passed as argument
will only be executed once the 1/0 result becomes available. Meanwhile, the single-thread
is free to execute the next task in the queue (T2). Once the read result is available, the
scheduler can execute Cont7. Writing to the file will return another future object to which
the Cont2 is chained. Therefore, continuations are used to express dependency between
tasks that are executed asynchronously. This model enables full control of the execution
flow, as context switches can only happen at well-defined parts of the code (i.e., between
tasks and continuations), resulting in a more predictable behavior of the overall system.

88 Chapter 5 Index+Log Key-Value Stores

5.4 LOG-STRUCTURED STORAGE

The concept of log-structuring was first proposed by Mendel Rosenblum and John Ouster-
hout in the context of file systems [R092]. The original motivation was to mitigate the
bottleneck of HDDs by exploiting their faster sequential write bandwidth, while serving
most reads from main memory, based on the increasing memory capacities by the time.

Flash SSDs reduced the performance gap between sequential and random 1/0, albeit
sequential I/0 requests may still be faster as they better exploit the SDD’s inner parallelism.
Nevertheless, writing a block to flash requires erasing it first, which can only be done at a
larger granularity than writing. This created a new motivation for log-structuring, as new
writes can be directed to fresh blocks and space can be reclaimed at a later point in time,
thereby reducing the amount of erase cycles required. Most flash translation layers (FTL)
of modern SSDs rely on some sort of log-structuring. At a system scale, the log-structured
design offers additional benefits that are exploited by a wide range of modern systems, as
discussed in the following.

First, systems like RocksDB [Fac12] and SILT [LFAK11] use a log-structured merge-tree
(LSM) [0CGO96] to reduce the write amplification by batching writes in memory and writing
them in a log-structured manner to persistent storage. The reduced write amplification
leads to a longer life-time of SSDs, as these can endure a limited amount of erase cycles.
Other systems like LogBase [VWAT12], Hyder [BRD11], and LLAMA [LLS13] also use log-
structured storage in the context of SSDs.

Second, in the context of DRAM and NVM, gains in write performance might be relatively
smaller and one might be tempted to employ update-in-place strategies. However, log-
structuring enables better memory management in terms of lower fragmentation and
predictable performance in high utilization scenarios. RAMCloud [0GG'15] adopted a
log-structured memory allocator [RKO14] to leverage these benefits and allow robust
performance even in face of application changes (e.g., expand records of a table from
100 B to 130 B). A similar concept was applied in the context of NVM [HRB17].

Third, log-structuring makes it trivial to perform atomic writes, as only the head of the
log must be updated to reflect an arbitrarily large group of operations. This becomes
even more convenient in an NVM scenario, as the programmer has little control over CPU
caches, which makes it cumbersome to efficiently implement update-in-place strategies
while keeping data consistent at all times.

Benefits also entail drawbacks following the no-free-lunch conjecture. Unlike update-in-
place, a log-structured strategy organizes records by creation time and allows multiple
versions of a record to co-exist. This causes three general problems. First, since records
are appended to the end of the log, there is low locality for operations such as a sorted
range queries, requiring multiple random accesses. Second, point lookup operations
become more expensive as they may inspect multiple locations until the most recent
version of a record is found, as it is the case in LSMs. Third, garbage collection is needed
to delete older entries and reclaim space. However, these problems are less critical in the
context of NVM. The low latency reduces the cost of many random accesses required
by read operations, while the high bandwidth allows efficient garbage collection, as large
portions of live data must be moved to a new location.

5.4 Log-Structured Storage 89

To summarize, not only there is goodness in log-structured designs, but as already noted
by David Lomet [Lom93]:

“Log structured file system has wonderful potential as the underpinning of a
database system, solving a number of problems that are known to be quite
vexing, and providing some additional important benefits.”

5.5 NETWORKING

In many KVS scenarios, multiple parallel requests are received from clients through the
network and many messages are exchanged between remote machines. Therefore, the
network plays a major role and is a critical point of optimization. Saturating the network
bandwidth becomes challenging while offering low and predictable latencies. While better
bandwidth usage could be achieved by classical techniques for trading-off latency for
higher throughput, they should be avoided at the network level if one is to offer a system
with robust performance. In common scenarios where the vast majority of requests have
less than 320 B [AXF*12], the processing overhead per package becomes relatively higher.

Operating system kernels offer applications a general-purpose networking stack. While
convenient, kernel networking has issues such as expensive context switches, unnecessary
copy of data between NIC, system cache, and application buffers, and poor scalability
due to large lock granularities. To circumvent this issues, libraries such as DPDK [Lin10]
enable access to the NIC in the user-space. As a consequence, systems are able to tailor
the network stack to their use-cases such as zero-copy usage and avoid context switches.

Figure 5.3 compares the performance between kernel networking and DPDK in a mi-
crobenchmark. To isolate the impact of DPDK we implemented an HTTP echo-server
within our system. The server receives parallel HTTP packages of 100 B from multiple
remote clients and send them back, without further complex processing. Figure 5.3a
shows how DPDK enables the throughput to scale with an increasing number of cores.
Figure 5.3b shows the tail latency of a server with 4 threads using both kernel and DPDK
networking while increasing the number of packages sent by clients. At 400 thousand
packages per second, the 99%-ile of kernel networking increases abruptly, which reflects
the throughput achieved with 4 threads in Figure 5.3a. Meanwhile, DPDK not only enables
a predictable latency behavior (no abrupt spikes) but even the worst latency (99.99%-ile)
is lower than the 99%-ile of kernel networking. Additional percentiles of kernel networking
are much higher and are omitted to enable a better visualization of absolute numbers.

For the reasons mentioned above, we opted for using DPDK on RStore for the client and
server communication. While a simple client-server communication does not leverage
DPDK to its full potential, it is an important building block for extending the communication
to many servers in a future distributed context. In such scenario, multiple messages are
exchanged between servers and efficient networking becomes even more critical.

Q0 Chapter 5 Index+Log Key-Value Stores

-@- Kernel/99% -A- DPDK/99.9%

N -@- Kernel -4 DPDK —A— DPDK/99% A~ DPDK/99.99%
g 3 1.5
> m
X
~ 2r g 1.0
2 >
2 2
o 1lr o 0.5 S
&U S ‘/‘/‘/‘__‘
U —l
(o] 0 1 1 0.0 1 1 1 1
& 12 4 6 8 02 04 06 08 1.0
Threads Packages/s (x10°)
(a) Throughput (b) Tail latency

Figure 5.3: HTTP echo server processing 100 B packages using kernel networking and
DPDK. Not only DPDK enables a more scalable throughput, but also lower tail latency.

S el TR TGl e | e Free
. 5:5@5' = R = | :Eti]!: : @ Space
e O R e Index Info.
@'{ : ICore 1! 'Core 2! !Core 3! |Core 4 : Rt T T 3%
wo DRAM o i (P 1
Server : — — ' “ Al ;
NVM oc . T
. | T TR TrE— [Table % LOgQ GC BIOCkU

Figure 5.4: RStore architectural overview. The system is partitioned on a per-core basis
and each partition runs its own instance of a single-threaded KVS. Each instance follows
an index+log architecture and the communication between partitions happens through
message passing.

5.6 IMPLEMENTATION DETAILS

In this section, we describe details of the overall RStore architecture. Figure 5.4 gives a
complete overview of the whole system. In this case, the server spans the whole key range
[a..z] of a dataset. Further to the center of the figure we have the internal organization
of the server. The server is a 4-core system equipped with DRAM and NVM. The whole
system is internally partitioned on a per-core basis and communication between cores is
done by message-passing, as previously explained in Section 5.3.2.

5.6.1 NVM Allocation on RStore

The log-structured approach significantly facilitates space management, as arbitrarily sized
records are accommodated naturally by appending to the end of a block without the need of
moving other records for creating space. NVM physical devices are segmented into 2 MB
chunks, which is the unity of physical allocation. RStore implements an allocation table
that maps each physical segment to a logical segment within a logical device. Figure 5.5
illustrates such organization.

5.6 Implementation Details 91

Physical Device Logical Device 1

Allocation Map v Segment 0 (Map)
Segment 0 WAL T - Segment 1 (Data)
Segment 1 % N . S~ Segment 2 (Log)

N
N

N | Logical Device 2

Figure 5.5: NVM device allocation.

Information of which segments are free and used are stored in the first physical segment
of the device in the form of an allocation table. Physical segments currently used are
mapped to a single logical segment in a logical device. Since keeping the consistency
of allocation mapping is critical, the allocation table is implemented as a persistent data
structure in which updates are guaranteed to be atomically persisted.

While the overhead of an additional indirection from logical to physical segments can be
avoided, it allows each partition of RStore to be fully independent by accessing an isolated
logical device. It also eases load balancing and reorganization across physical devices, as
segments can be moved simply by updating the mapping in the allocation table.

Finally, RStore handles logical segments of three different types: log, data, map. Log
segments are used for storing log records, which are used for durability and recovery. Data
segments can be further divided into smaller blocks of pre-defined sizes (2 kB, 16 kB, 64 kB,
2 MB). These blocks are used for the log-structured storage of records and for overflow
blocks in case of large values (more in Section 5.6.4). Map segments contain entries that
are used to track information of blocks currently allocated in data segments.

5.6.2 Log-Structured Storage and Indexing

The architecture of RStore is commonly referred as index+log architecture, and employed
by many systems both in academia [RKO14, HRBT17, VWA'12] as well as in industry, such
as Bitcast at Riak [SS10], Sparkey at Spotify [Spo14], and FASTER at Microsoft [CPK*18].
The main idea is to separate the concerns of data access and space management by
decoupling them. This contrasts with approaches such as clustered B+Trees and LSMs, in
which primary and indexing data are managed within the same data structure.

RStore employs a log-structured NVM area comprised of fixed-size blocks (64 kB). Even if
NVM is byte-addressable and differs from traditional block devices, it is still desirable to
organize data in blocks (or “pages”), as it represents a unit of space allocation, garbage
collection (see Section 5.6.3), fault containment/detection, and possibly localized re-
pair [GK12]. Records are appended to a block until the block becomes full and is then
marked as immutable. Once a record is appended to this log-structured area, a pointer

Q2 Chapter 5 Index+Log Key-Value Stores

-@- Index+Log - Sorted Array
=&~ Index+Log (Prefetch)

\mj; 40 \mj; 20 SELECT TOP 100 *
(@)
@ 30 Q 15+ %gEgEUigéizo AND
g g Salary>50 AND
= 20 ~ 10 City="'Chicago'
(V] (V]
2 10 3
> 0 g
< OOV LRRXLRRR0 O < Index Index+Log Sorted
ARSI EN TSR 9

+Log (Prefetch) Array
Record Size (Bytes)
(a) Scan of 100 records (b) Scan with predicate evaluation

Figure 5.6: Average time for scanning records in a sorted array (sequential memory access)
vs. in index+log (random memory access).

to it is inserted into a tree index residing completely in DRAM, enabling a more efficient
access than simply scanning the existing records.

This separation of concerns offers important advantages. First, there is more flexibility
regarding the representation of persistent and runtime data. For example, any data struc-
ture can easily be integrated to index the records in NVM. Second, the index structure
contains only fixed-size entries with pointers to the actual data, which simplifies memory
management within the data structure. Third, the index structure consumes only a small
amount of additional memory. A workload analysis at Facebook [AXF12] shows that
the vast majority of keys are no larger than 20 B, while the majority of values are at least
300B. If the index structure stores whole keys and a pointer to the record in NVM, its
space consumption is less than 10%. Fourth, handling records in a log-structured manner
enables efficient usage of NVM space by reducing fragmentation and avoiding large over
provisioning (B+Tree nodes are usually kept 75% full to accommodate future records).
This becomes important since RStore does not make any assumptions about data format,
origin, or schema. While a well-defined schema enables performance optimizations by the
underlying system, RStore trades these gains for enough flexibility to be used either as a
NoSQL KVS and cache, or as the storage engine for a more complex relational engine.

Despite its advantages, the mentioned architecture introduces drawbacks that must be
properly addressed. First, the separation between primary and indexing data is not optimal
in terms of spatial locality. Systems designed for HDDs had to exploit at maximum the
spatial locality since sequential accesses were significantly faster than random accesses.
This assumption still holds for modern SSDs and DRAM and exploiting cache-oblivious
data structures are relevant [BDF05, GLO1], but the performance gap between random and
sequential access is much smaller. This gap can be further reduced by exploiting DRAM
prefetching techniques [CAGMO04, KFG15, PLMA17] that can be directly applied to NVM.

Figure 5.6 shows the scan performance of a log-structured storage and of a sorted array
through a microbenchmark. We isolated other components to better understand the trade-
offs. Figure 5.6a shows the average time (Y axis) for scanning 100 records with varying
size (X axis) and copying them to the network buffer with a single thread. As previously
mentioned, we show how we can reduce the gap between Index+Log and Sorted Array by

5.6 Implementation Details 93

firing an asynchronous memory prefetch for the next record while the current record is
being copied to the network buffer. Figure 5.6b shows another case in which a scan of
100 records has a predicate to evaluate, which introduces additional CPU time, allowing a
better overlapping between execution and prefetching. We argue that, while we trade-off
scan performance for other benefits (such as easy memory management and garbage
collection), we can still improve the worst case, albeit still being slower than a scan in
sorted storage. Nevertheless, in the context of a system accessed through a modern
network, the performance benefits are mostly blurred by higher network latency.

The second disadvantage is that, while the space management of primary data is made in
a log-structured manner, the space management of indexing data still has to be handled.
Fortunately, index space management is significantly simplified by using fixed-size index
entries, as previously mentioned. At one extreme, only 8 B pointers to the actual records
can be used as index entries. In such case, index operations are more costly, as every
key comparison must go out-of-node to fetch the actual key in NVM. In the context of a
tree index, we employ techniques such as prefix truncation and poor man’s normalized
keys [GLO1] to keep a copy of a small portion of the key within the node. In most cases, this
small portion of the key is enough to resolve comparisons without accessing out-of-node
data. By changing the amount of bytes dedicated to store the in-node portion of keys,
we can trade between memory consumption and access performance, while keeping
fixed-size index entries.

Third, while the index can exploit the lower latency of DRAM, it must be rebuilt in case of
failures. We rebuild the index during startup from the key-value records in the log-structured
storage. Since RStore is composed of independent partitions, the index for each one of
these partitions can be recovered on-demand, i.e., accessing data during restart does not
require a complete rebuild of all indexes. A similar approach is used by hybrid NVM-DRAM
data structures [OLNT16, XJXS17]. To limit speedup recovery, regular snapshots of the
index can be taken by flushing the whole data structure to NVM.

5.6.3 Garbage Collection

Traditional LSM implementations employ a merge operation to reclaim space of obsolete
records and consequently reduce the number of persistent components (also called SSTs)
that must be inspected during reads. RStore relies on a global index to access records,
therefore, a read operation does not have to consider multiple copies of a record, as only
the most recent one is indexed. Nevertheless, the cost of index operations increases with
the size of the index.

LSMs can reduce the cost of inspecting multiple SSTs by employing Bloom filters. However,
in the context of NVM, two points must be considered. First, memory consumption of
Bloom filters is not negligible for large data, even if the memory budget is optimally
distributed across levels [DAI17]. Second, Bloom filters are used to avoid expensive disk
I/0 which incurs high latency. On NVM, accesses incur a much lower latency and therefore
the performance gains of avoiding these accesses relative to the additional overhead
introduced by Bloom filters are smaller. In other words, probing the Bloom filter already
incurs a memory access, which is a similar cost to directly searching the key in NVM.

Q4 Chapter 5 Index+Log Key-Value Stores

[a..Z]

[d..K] Level n

[a..Z]

[e..]] \Level n+1

[dilkl [| leghil A) = [defghlik
- 7 A J/
gl

No overlapping keys No space reclaimed

Figure 5.7: False overlap leads to inefficient space reclamation and unnecessary write
amplification in merges of LSMs.

Figure 5.7 shows the merge process of an LSM. The merge starts by selecting a range
of records from Level n for merging with records from Level n+1 that have an overlapping
key range. The problem of relying on overlapping key ranges for garbage collection is
that there is no guarantee of how much space will be reclaimed. In other words, the
key ranges defined by min and max keys may overlap but the records themselves might
not. As shown in Figure 5.7, in the worst case there is no overlap of records and the
merge process is superfluous, thus increasing the write amplification. The phenomenon is
referred to as false overlap and has been discussed in previous work [LAK16). Alternatives
such as logical merging through pointer manipulation may help in reducing the amount of
duplicated records and consequently in improving lookup performance, but it does not
help with reclaiming space, which is critical when a device is mostly full. Furthermore, the
merge operation is hard to parallelize, as it depends on the key distribution of the workload.
A uniform distribution allows an easier parallelization of the merge operation, as disjunct
ranges can be merged, while a skewed distribution causes only a subset of the whole key
range to be merged frequently.

The garbage collection of RStore was designed to be oblivious to the aforementioned
effects caused by using key ranges as victim-picking strategy. The core idea is to keep live
information about free space and valid records in each NVM block. In a way, it resembles
the trim command in early SSDs, in which the user actively provide information about
unused space to facilitate garbage collection by the flash translation layer(FTL). Tracking
this information on a record granularity introduces overhead during runtime, as blind
inserts/updates/deletes are not possible anymore. Nevertheless, it facilitates garbage
collection, which is the main source of unpredictable performance in many systems. In
other words, RStore takes a small, but predictable, performance penalty during normal
processing in order to reduce the unpredictability of garbage collection.

Figure 5.8 gives an overview of the algorithm. A block initially has 100% of free space,
which is reduced as the block is filled. When the block is full, it becomes immutable.
Whenever a record is deleted or a new version is inserted, the free space information of
the corresponding block is updated. The free space heap tracks the free space of each
block, which allows identifying the block that will yield the largest amount of space when

5.6 Implementation Details 95

1. Update heap Free Space Queue

"""""""" 000000«

S~ (2. Pick victim
~

Block 1 - J I B_Iogk_n+_1 _|
(31% free) Toeee " Blockn = (27% free) 1
- - ¥ —

5. New GC Blgck - 1 3. Move valid records ciiftenthisek

- v 1

|

- GC BIOCk _____________________
/ 4. Insert GC block into list

Figure 5.8: Garbage collection algorithm of RStore.

reclaimed. Since free space of blocks changes frequently, maintaining the heap structure
is expensive. Therefore, whenever the free space of a block is changed for the first time, a
reference to this block is added to the free space queue. By doing so, the heap is updated
only when garbage collection is required, thereby alleviating the heap overhead during
runtime. When garbage collection is triggered, step 1 is to update the free space heap
with blocks in the free space queue, i.e., blocks in which the free space changed since last
garbage collection. With the free space heap updated, step 2 is to pick block with largest
amount of free space (in this case Block 2), referred as victim. Next, valid records from
the victim block are moved to a dedicated garbage collection block in step 3. Finally, in
step 4 and step 5, the garbage collection block becomes a new block at the end of the list
and the victim block becomes the new dedicated block to be used by the next iteration of
garbage collection, respectively.

Figure 5.9 compares our algorithm and traditional LSM merge (RocksDB). We limit the
available space to 16 GB and load it until little space is left in order to force garbage
collection. Both systems run on top of NVM described in Section 5.8 and we use leveled
compaction in RocksDB. To isolate the algorithm impact, in Figure 5.9a we run an update-
only workload for 5 minutes with a single-thread serving requests sent at a rate of 25000
requests per second (a rate that both systems can easily sustain). Not only RStore has lower
tail latency, but it is constant and unaffected by skew. Figure 5.9b shows the throughput
over time including the load phase (gray area) using 16 threads. In addition to leveled
compaction, we run RocksDB with universal compaction. Universal compaction trades
higher read and space amplification for lower write amplification and is more cumbersome
(as noted in the first drop during the load phase). It also requires double the amount
of space, which explains the throughput drop to zero after the load phase: the system
becomes unresponsive since not enough space is available for compaction. Finally, the
absolute throughput number is not important, instead the focus is on the drop when the
device is full and garbage collection becomes critical. The average throughput of RocksDB
drops by 38% and RStore by only 7%.

Q6 Chapter 5 Index+Log Key-Value Stores

O RocksDB(uniform) -O- RStore(uniform) — RStore

— RocksDB(Leveled)
—A—OFéocksDB(skewed) - RStore(skewed) % T RocksDB(Universal)
o g , 7% drop
= o =
= 0.4} — 1.0f
g 2
c 0.2} < 0.5}
9 o) :38% drop
(o] > e et Wl Rl e
L —— o . .
00 T ot et ool of of £ 09 500 1000
Q7% oQ07° o%7° o97° 097° ,097°
5 9 9 o 09 999 Time (<)
Percentile
(a) Tail latency (b) Throughput

Figure 5.9: Impact of garbage collection in the performance when storage device is full.

Physical Device Logical Device

Allocation Map Segment0 (Map) | .|

Segment 0 / Segment 1 (Data) |7,
Segment 1 7 Segment 3 (Log) fers..

0

«

.
‘e

Segment 2

. Log-structured Storage
[Overflow Block

Segment 3

Figure 5.10: Large values are stored only once in an overflow block, reducing write amplifi-
cation. Records and log records point to the single copy of a large value.

5.6.4 Logging and Recovery

In addition to the log-structured storage, each partition of RStore has a local recovery
log. Since operations to the log-structured storage are easily made atomic, one may
consider that it obviates the need for separated logging. However, the log acts as a central
component which can be used by third-party systems for state machine replication through
protocols such as RAFT [0014]. In this case, log records are send to remote replicas and the
network bandwidth becomes the bottleneck. Therefore, we use redo-only logical logging,
which has smaller log records compared to traditional physiological logging, thus better
leveraging network bandwidth.

An initial concern is that the recovery log doubles the write amplification. However, decou-
pling logging from storage facilitates replication of higher-level operations. As an example,
while the log-structured storage only operates through basic single record operations such
as insert, delete, and update, the recovery log allows multi-record operations, such as
deletion of multiple keys based on a given prefix, to be transmitted as a single log record.
Furthermore, to alleviate the write-amplification introduced by logging, large keys and
values are stored only once in an overflow block which is then referred by both log record
and key-value record. Figure 5.10 illustrates this case in which a value larger than 2 kB is
inserted. The larger part of the value is stored in the overflow block which is referred by
both the respective log record and key-value record.

5.6 Implementation Details Q7

Another concern is that latency of writes is doubled, since every write must be flushed
twice to NVM: one to the log, another one to storage. However, only writes to the log must
be eagerly persisted. Writes to storage do not have to be explicitly flushed and can be
amortized by CPU caches. Since storage is log-structured, data is not overwritten. In case
of a crash before a record is evicted from the CPU cache, it can be recovered by replaying
the recovery log.

After a system failure, recovery starts by rebuilding the in-memory index and free space
information from the records present in the log-structured storage. The recovery log is
then analyzed and any missed operations are replayed. Since each partition of RStore is
independent, this process is completely parallelizable and a partition can start to serve
client requests without waiting for a complete system recovery.

5.7 SYSTEM OPERATIONS

In this section, we describe the steps of basic operations. Unlike other systems, RStore does
not support blind operations, since free space information must be tracked for garbage
collection. Each operation is initially assigned to the partition spanning the range that
covers the given key.

An insertion of a record starts by searching the index for the given key. If the key already
exists the operation fails. Otherwise a log record corresponding to the operation is written
to the log, and the record itself is written to the log-structured storage. An entry containing
the key and pointer to the record is then inserted in the index structure.

The update of a record is similar to an insertion, with two main differences. First, the
operation fails if the key does not exist. Second, the update is done by inserting a new
version of the record which invalidates the old one. Therefore, the corresponding pointer in
the index must be updated to point to the new record and the old record must be invalidated
by resetting a validity bit. Validity bits of records are kept in-memory and must be rebuilt
during restart, since immutable blocks of the log-structured storage cannot be updated
in-place. Additionally, the size of the old record is added to the free space information
of the block containing it. A deletion works like an update in which a special tombstone
record with no value is inserted and the corresponding entry in the index is deleted rather
than updated.

The point lookup of a record traverses the indexing structure to find the record for the
given key. If the full key is stored in the index, the lookup makes a single access to NVM
to retrieve the full record (if it exists). If fixed-size partial keys are used for indexing, the
lookup might require additional accesses to records in NVM to compare the full keys in
case the partial key is not enough to resolve a comparison when traversing inner nodes.

Range lookups may span multiple partitions. Therefore, a partition is chosen to coordinate
the operation. It then forwards the range lookup operation by sending a message to all
other partitions that span key ranges overlapping with the one specified by the operation.
Each partition then independently executes the range lookup locally by traversing the
index data structure. Even if the records are not sorted on the log-structured storage, their

Q8 Chapter 5 Index+Log Key-Value Stores

corresponding index entries are, enabling the records to be retrieved in sorted order. Once
a local range lookup is completed, the partition replies the results to the coordinating
partition, which is responsible for collecting the multiple results and issuing the final reply
of the operation.

5.8 EVALUATION

In this section, we present performance results of an end-to-end evaluation of systems.
The metrics we are most interested in are throughput scalability and low tail latency.

5.8.1 Methodology

We run all systems on a single machine and use a second client machine sending a high
number of parallel requests. The indicated number of threads is the same for both server
and client. To overload the server, each client thread opens 8 connections to the server and
issues asynchronous requests (at any point in time a client thread has 8 in-flight requests).

We measure throughput and latency on the client side. For throughput, we collect the
amount of operations completed every 1 second. At the end of the execution, we use
the list of operations completed per second for calculating the average throughput as
well as the standard deviation. For tail latency, measuring each individual request would
introduce too much compute and memory overhead, therefore we randomly sample up to
500 thousand requests every 1 second and use the total amount of samples to plot the
latency percentiles.

5.8.2 Environment

The server has an Intel Xeon Platinum 8260L CPU, 96 GB of DRAM (6 x 16 GB DIMMS),
and 1.5 TiB of Intel Optane DC Persistent Memory (6 x 256 GB modules). The client has an
Intel Xeon CPU E5-2699 v4 and 128 GB of DRAM (8 x 16 GB DIMMS). Both client and server
use a 10 GbE Intel Ethernet Controller X540-AT2. The network cards are accessed through
DPDK(v17.02). The Linux version is 5.3 on both machines The NVM modules are combined
into a single namespace in fsdax mode and accessed through an ext4 file system with
the DAX option enabled. All the systems benchmarked rely on Intel Optane DC Persistent
memory for storage. It is either accessed as an SSD replacement through the regular
file system API, or accessed directly as persistent memory (in the case of NVM-aware
systems, like RStore).

5.8 Evaluation 99

5.8.3 Other Systems

In addition to RStore, we also benchmark three popular KVS systems: memcached (v1.5.16),
Redis (v5.0.5), and RocksDB (v6.2.2). We also compare to FASTER (v2019.11.18.1) [CPK 18],
a more recent system which employs modern techniques. Both memcached and Redis
are often used as a web cache. While they enable flushing memory contents to persistent
media as a background task, the default scenario is purely in-memory. We disable their
caching behavior to guarantee that records loaded by the client are not arbitrarily discarded
by the LRU policy. The available memory is set to 32 GB. Finally, it is worth noting that
Redis is a single-thread system.

RocksDB is an LSM persistent KVS to make efficient use of SSDs. To enable a fairer com-
parison, we run RocksDB on top of NVM as well. We disable Bloom filters and compression
of values, since other systems do not employ them. Furthermore, since 1/0 to NVM is
faster than to SSD, the overhead of compressing data prior to writing to persistent storage
is relatively higher and the gains of avoiding I/0 with Bloom filters are relatively lower. The
compression of keys is kept. We use a block cache of 6 GB. Additional parameters were
changed according to the tuning guide available at the official repository’. We make the
complete settings available?. RocksDB does not have networking, so we adapted the same
network layer of memcached. Finally, it is worth noting that RocksDB does not explore the
byte-addessability of NVM, using it as a faster SSD. Previous work improved RocksDB to
better leverage NVM [EGA 18], but these changes are not available in the main repository.
Finally, while comparing absolute throughput numbers may not be completely fair, the
comparison of overall system behavior is still relevant.

FASTER also has a log+index architecture, using a lock-free hash table for indexing and
epochs for concurrency control. Unlike RStore, in FASTER keys are not part of the index,
which reduces its memory footprint. Furthermore, it requires that the amount of hash
buckets is a power of 2. For 100 B and 1000 B values we set the amount of hash buckets to
226 and 223 which gives an average of 2.3 and 1.9 records per bucket and 4 GB and 0.5 GB
memory consumption, respectively. We limit the log size to 32 GB. FASTER does not offer
networking, therefore we adapted it to work with memcached network stack. We show
results for the in-memory version of FASTER. We omit the persistent version as it showed
lower performance and does not access NVM directly, therefore the results could be unfair
and misleading. Consequently, we have also disabled checkpointing.

RStore keeps the index completely in DRAM, which contains keys (approximately 25 B)
and pointers to the complete records in NVM (8 B). We apply hash partitioning to RStore
and set the amount of available memory to 32 GB. In addition to the persistent version, we
also benchmark a fully in-memory variant of RStore (tagged with IM).

'https://github.com/facebook/rocksdb/wiki/Setup-Options-and-Basic-Tuning
Zhttps://gist.github.com/1llersch/6a6fd515b9db8a87ed860573e3417961

100 Chapter 5 Index+Log Key-Value Stores

5.8.4 Throughput Scalability

In this section, we measure the throughput when increasing the number of threads at the
server side. It is worth noting that each client thread sends up to 8 parallel requests to
the server at any point in time. We run the Yahoo! Cloud Serving Benchmark [CST+10],
issuing Put and Get requests. Our Put operations are done on existing records (updates),
therefore the dataset size does not increase. We vary the ratio between these requests to
simulate different workload scenarios: read-heavy (90% Get, 10% Put), balanced (50% Get,
50% Put), and write-heavy (10% Get, 90% Put). Following workload trends [AXF*12], we set
the key size to approximately 20 B with an additional prefix of 4 B while having large-value
(1000 B) and small-value (100 B) scenarios.

We analyze two load scenarios that achieve 16 GB of payload data. In other words, for
1000 B values 16 million records are inserted, while for 100 B values 160 million records
are inserted. After the load phase, we run each workload for 5 minutes. Figure 5.11 and
Figure 5.12 show the results for 1000 B and 100 B payloads, respectively. The shaded part
indicates the hyper-threading zone. We make three observations.

First, both Redis and RocksDB perform worse than the others. This is expected, since, as
previously mentioned, Redis is a single-thread system and therefore the X-axis represents
only the amount of clients sending requests. The main reason RocksDB presents a lower
performance is the fact that it does not fully leverages the byte-addressability of NVM,
simply accessing it like a faster SSD. Nevertheless, it is worth noting how RocksDB performs
better than Redis for the read-heavy scenarios since it is able to leverage multiple threads.
As soon as the amount of write operations increase, RocksDB is exposed to the higher
write latency of NVM during flushing and compaction.

Second, the performance of RStore and memcached degrades when the amount of write
operations increases. For RStore, write operations expose the higher NVM write latency,
as well as it triggers garbage collection due to the log-structured organization. The in-
memory variant, RStore(IM), is able to scale better and saturate the network limit with
fewer cores since it is not affected by NVM. For memcached, no additional allocation is
required because only existing records are updated. However, it introduces additional
overhead when acquiring a coarse-grained mutex every time a record is updated. FASTER
and RStore(IM) scale well and have a similar behavior, as both saturate the network in
Figure 5.11 and scale almost linearly in Figure 5.12.

The throughput of RStore is slightly higher than memcached with 1000 B and slightly
lower with 100 B, but both scale similarly across many threads. Furthermore, it is worth
noting that RStore stores most of its data in NVM, which introduces a higher latency as
a trade-off for lower costs. Nevertheless, RStore still achieves a good performance due
the combination of the techniques mentioned previously. Finally, it is possible to see the
impact NVM has on RStore, since RStore(IM) saturates the network with fewer cores in
Figure 5.11 while offering higher throughput in Figure 5.12.

5.8 Evaluation 101

-@- Redis -A- FASTER =#- memcached =g~ RocksDB =% RStore (IM) =+ RStore

o
S 2f -
E . .
— [Network Limit (Network Limit _________
2 [T ARARRRE | 0 Ko AEET | [T sksoktokgonn
E L
(@)}
= ,
o :
iEO : . , | | : | L AR A A A A AN
14 8 16 24 30 14 8 16 24 30 14 8 16 24 30
Threads # Threads # Threads
(a) Read-heavy (90/10) (b) Balanced (50/50) (c) Write-heavy (10/90)

Figure 5.11: Throughput of YCSB workloads with values of 1000 B over multiple threads.

-@- Redis -A- FASTER =-#- memcached - RocksDB =% RStore (IM) =+ RStore

0
S 2t i
3
El
< 1r -
(@)}
5
o y
= 5 : T A A A A A AR AT
|_ 0 1 1 {ed 1 1 1 1 =
14 8 16 24 30 14 8 16 24 30 14 8 16 24 30
Threads # Threads # Threads
(a) Read-heavy (90/10) (b) Balanced (50/50) (c) Write-heavy (10/90)

Figure 5.12: Throughput of YCSB workloads with values of 100 B over multiple threads.

102 Chapter 5 Index+Log Key-Value Stores

5.8.5 Tail Latency

We analyze the tail latency in form of latency percentiles to evaluate the predictability of
the systems. However, tail latency is a metric that does not live on its own. It must be
considered in the context of the pressure being put on the server by the clients. Even if the
throughput of the system scales linearly, the more overloaded the system is, the higher
the tail latency percentiles are. In other words, one should ask the question: “How fast can
| go before the tail latency is affected?". Therefore, we set a fixed number of 16 threads on
the client and throttle the rate at which requests are sent to control the pressure we put on
the server side. The server runs with 4 threads, since the throughput of the systems is not
too different at this point, as seen in Figures 5.11 and 5.12.

Figure 5.13 and Figure 5.14 show the tail latency for the read-heavy, balanced, and write-
heavy workloads (rows) and the rate of requests being sent by the client (columns) which
increases across plots from left to right. We omit rates higher than 500 thousand op/s
because none of the systems can sustain higher throughput at 4 threads, as seen before.

At the end of the run phase, we have a list of all observed requests and sort them by latency.
This sorted list is used to plot the minimum, maximum, and percentiles of latency for these
requests. We set a high-level goal of achieving sub-millisecond tail latency, marked by the
gray area in each plot. Therefore, systems with good tail latency must have a curve as
straight and low as possible inside the gray area.

As previously mentioned, the higher the pressure being put by the client, the higher the tail
latency is. That means that not only the curves become steeper but also higher overall,
as can be seen in the behavior of Redis in Figure 5.13 for the read-heavy workload when
comparing 80k op/s and 160k op/s, for example. Another observation is that the behavior
of systems do not change after a certain point, as is the case of RocksDB for all workloads
in Figure 5.14 after 160k op/s. The reason is that at this point the pressure being put on the
server is higher than the throughput it can deliver, causing the client to reach its maximum
amount of outstanding requests while waiting for the server. In other words, at this point
we consider that the tail latency of the server has already reached an undesirable behavior.

For most scenarios, RocksDB has the worst tail latency, since it accesses NVM through the
regular file system interface. Redis, memcached and FASTER have a good behavior for low
pressure scenarios such as 20k op/s for all workloads in Figure 5.13. After this point, Redis
becomes more unpredictable. The exception is the write-heavy scenario at 320k op/s and
500k op/s, in which the behavior of all systems except RStore and RStore(IM) become
worse. Overall RStore has a higher tail latency, since it requires at least one access to
NVM per operation. However, RStore also has a straighter line at high load scenarios (500k
op/s) with write operations, this being a consequence of log-structuring and asynchronous
message-passing communication. RStore(IM) has a similar behavior, but is able to keep a
lower tail latency.

Figure 5.14 shows the same scenarios for smaller requests (100 B value). The main
observation is that RStore(IM) behaves better than other systems in more cases. The
overhead of package processing is relative to the size of the package, therefore, RStore
in general has an additional benefit in these cases by being the only system using DPDK.
This is seen more notably for most workloads at 320k op/s and 500k op/s.

5.8 Evaluation 103

— Redis FASTER — memcached — RocksDB — RStore (IM) — RStore
20k ops/s 80k ops/s 160k ops/s 320k ops/s 500k ops/s

> 2.5

s 2.0 i

215 -

1

- 1.0 L /

o 0.5 ,

* 0.0

.25

n O 2.0 L L L

EY T . fo—]
-2 15 3 . 3 3

5%10 - Z L ; L

gm 0.5 = e _5?437

-Ir—ul OO L 1 1 1 1 1 1
4

;25 -

820 - L

c 15F - 3 7

1

o 1.0 :/ | -

T 0.5

—_ . -

; O O 5 ‘% 11 "K
RN RN CR RS RN ERRSRE S SRR R X
FO000Dc EO0NND - EO0ONND ¢ CO0ONOD = EO0NID

NOO GO E NGO LHHE SNdadgaE Cneaag e € Shoaag ot

oo oo oo oo X))

o o) o o o
Percentile

Figure 5.13: Tail latency of YCSB workloads with values of 1000 bytes and 4 threads. Each
column indicates the rate at which clients send operations to the server (label at the top).
Each row indicates the workload (label at the left).

Figures 5.15 and 5.16 present the experiments with 16 threads on the server side and
values of 1000 B and 100 B, respectively. We compare RStore only to memcached, since it
is the system with better tail latency behavior among all the other systems. We consider
two pressure scenarios: 1 million (light color) and 2 million (dark color) operations per
second. In all cases, while memcached has a better behavior at 1M op/s, this behavior is
not sustained when the pressure is increased to 2M op/s. On the other hand, RStore has a
slightly worse behavior at 1M op/s but is able to keep it more stable for the 2M op/s case,
having both of its curves between the memcached curves.

5.8.6 Scans

The operations that suffer the most from the index+log architecture are sorted range
scans. Even if scans are less common for the use-cases that we target with RStore (like
web-caching), we still consider important to support it to some extent. We discussed in
Section 5.6.2 the limitations and possible improvements. Here we show an end-to-end
evaluation of ranged scans on RStore.

Small scans are more common for our use-cases and they are unlike to span more than
one or two partitions. Figure 5.17 shows the throughput (X axis) for different scan sizes
(number of records) for records of 100 B over multiple threads (Y axis). It is worth noting
that scans are bandwidth intensive and therefore network quickly becomes the bottleneck.

104 Chapter 5 Index+Log Key-Value Stores

Read-heavy

OOHHNN OOHENN OOHKENN

Latency (ms)
Balanced

Write-heavy

— Redis
20k ops/s

L oUloUioi oLiouULouln oclnouow
T

160k ops/s

320k ops/s

- FASTER — memcached — RocksDB — RStore (IM)
80k ops/s

500k ops/s

99.99% L L\

Percentile

max

min
50%
90% |
99% .
99.9% L\
99.99%
max

XRXXE
9200 2
Qe

oo
5}

min
50%
90% [

Figure 5.14: Tail latency for YCSB workload with values of 100 bytes values and 4 threads.

Same organization as Figure 5.13.

2.5
2.0
1.5
1.0
0.5
0.0

Latency (ms)

memcached@1M op/s

RStore@1M op/s

— memcached@2M op/s — RStore@2M op/s

min

1 1 1 1 / 1 1 1 1 1 1 1 1
XN XXX ERXRETRRRE £ERRRRRR X
SO o o O g £ O 0o a o o g £ O 0o a o o g
o O 5 O n o o g5 O n o o g5 O
o o o o o o
o o o
Percentile Percentile Percentile
(a) Read-heavy (90/10) (b) Balanced (50/50) (c) Write-heavy (10/90)

Figure 5.15: Tail latency for YCSB workloads with values of 1000 B and 16 threads.

5.8 Evaluation 105

memcached@1M op/s RStore@1M op/s
— memcached@2M op/s — RStore@2M op/s

2.5
w2,
é 0
5, LD
e
3 1.0
© 0.5
—
OO / 1 1 i 1 1 1 1 1 1 1
£ AR F EIEIRFT £ B
EQ2 Q22 c g0 Q0D c £ 9O D £
n o o 5 O n o o 45 O n o o 45 O
(o))} [e))] [e))]
(e)] (e)] (e)]
Percentile Percentile Percentile
(a) Read-heavy (90/10) (b) Balanced (50/50) (c) Write-heavy (10/90)

Figure 5.16: Tail latency for YCSB workloads with values of 100 B and 16 threads.

- 1.00 -

g— Scan Size
s 0.75 (# records)
g 0.50 -~ 100

% A- 300

3 0.25] -@- 500

< 1 =« 1000
— 1 1 1

12 4 6 8 101214 16
Threads

Figure 5.17: Scan performance over multiple threads.

The colored dashed-lines show the point at which the network bandwidth is saturated for
each scan size. We can see that for 100 records, we are able to saturate the bandwidth
with only 8 cores. For scan sizes of 300, 500, and 1000 records, we saturate the bandwidth
with 6, 6, and 4 cores, respectively.

5.8.7 Memory Consumption

One of the goals of RStore is to have reduced costs by using cheaper NVM for storage, in
contrast to completely in-memory systems. We collected the amount of memory consumed
(DRAM and NVM) by each system after loading them with 16 million records with 1000 B
payload and 160 million records with 100 B bytes payload. Figure 5.18 shows these numbers
with the raw size indicated by the gray area. Since each record has a key and additional
overhead space introduced by each system, the scenario with 100 B payload requires more
space. With 1000 B payload, all systems have a similar memory consumption (DRAM
for memcached, Redis and FASTER; NVM for RStore and RocksDB). The additional DRAM
consumption of RStore is due to the index, while in RocksDB it is caused by the 6 GB block
cache and memtable. With 100 B payload, Redis requires more DRAM than memcached and
RStore requires more NVM than RocksDB. As mentioned previously, RocksDB compresses

106 Chapter 5 Index+Log Key-Value Stores

@ NVM [EE DRAM [Raw Size

32F

0n

824

2

l 16 -

o 8

0 \o) «* \o) «*
2 2
e Q‘ e ?‘
« «
(a) 16 million records with values of 1000 B (b) 160 million records of with values of 100 B

Figure 5.18: Memory consumption of each system.

Value Size RStore memcached Redis RocksDB FASTER

1000B 98$ 2078 200$ 160$ 195$
100B 227S 3358 361S 187$ 3428

Table 5.1: Approximate cost (in USS) of each system based solely on their memory con-
sumption depicted in Figure 5.18.

keys, which allows a lower space consumption on NVM. It is also worth noting that with
a larger amount of records, RStore requires more DRAM for the index than RocksDB.
Moreover, since RStore requires the index to be completely in DRAM, it is less flexible in
tuning the memory budget.

Finally, considering the memory consumption and current prices of DRAM (15008 for
128 GB) and NVM (695$ for 128 GB) modules [Aco19], we have anecdotally calculated the
memory and storage price of each system in Section 5.8.7. Figures 5.19a and 5.19b show
the throughputs of the Balanced workload, shown before in Figures 5.11b and 5.12b, divided
by the respective costs of Section 5.8.7. These values serve as an initial expectation of
the rate of costs between the systems considering their performance. While RStore has a
throughput similar to memcached and lower than FASTER in Figure 5.11b, it has a much
better performance when we compare the throughput relative to the cost of storage, as
shown in fig. 5.19a. In Figure 5.19b, the throughput relative to cost of RStore is much closer
to the other systems, showing no significant advantage for the scenario with 100 B values.

5.9 RELATED WORK

The concepts presented in this chapter were already explored to some extent in other
systems. Related work was partially covered for each aspect of RStore in their respective
sections, therefore here we elaborate on more recent complete systems that share some
of the same design decisions.

RAMCloud [0GG*15] is a KVS implemented as a distributed hash table that relies on large
amounts of DRAM to store all of its data with the goal of achieving extremely low latency.

5.9 Related Work 107

-@- Redis A~ FASTER =#- memcached =-4#= RocksDB =~ RStore

=
[e)]

=
N

B

Throughput(x103 op/s)/$
(0]

o

Threads # Threads
(a) values of 1000 B (b) Values of 100B

Figure 5.19: Rate of throughput for workload Balanced divided by cost (higher is better).

RStore target similar goals of not only low latency, but predictable latency. It also explores
modern storage hardware (NVM) for reduced storage costs.

Anna [WFLH18] is a distributed KVS that also relies on a thread-per-core model and mes-
sage passing rather than shared memory communication. While this work focus more on
the internal organization and storage aspects of RStore in a single node context, Anna uses
a standard C++ hash table for storing records and focus more on the distributed aspects.

FASTER [CPK™18] is a persistent KVS that also relies on a log-structured organization
of records while enabling update-in-place for in-memory regions. RStore does not allow
updates-in-place, since records are written directly to persistent storage and updating
data in-place could lead to corruption and inconsistencies between replicas that could not
be undone by our roll-forward recovery method. FASTER uses a lock-free hash table for
indexing and epochs for concurrency control of operations such as garbage collection,
index resizing, page flushing, and checkpointing. The index in RStore can be either a hash
table or a search tree, in which case it also supports range scans. On one hand, FASTER
does not keep the keys in the index, which reduces its DRAM footprint, on the other hand
RStore saves memory by storing records in NVM. FASTER is able to leverage SSDs through
its hybrid log, while RStore does not support SSD but supports NVM.

ScyllaDB [Scy15a] is a distributed database compatible with Apache Cassandra. It also
focuses on low and predictable latency and implements an asynchronous execution model
through future-promise-continuation concepts offered by the Seastar Framework [Scy15b].
ScyllaDB also uses user-space networking through DPDK for efficient package processing.

The project Orleans at Microsoft Research [BBG'14] offers a toolset for building cloud-
native systems. It shares some of the high-level goals of RStore, such as following an
actor-based model to enable easier development and scaling of largely distributed systems.

Different than RStore, that still implements logical logging separated from log-structured
storage, LogBase [VWAT12] also implements a log-structured storage but relies on the
atomicity of writes to completely get rid of write-ahead log. Nevertheless, LogBase man-
ages the log-structured storage through files on SSD and delegates replication to HDFS.

108 Chapter 5 Index+Log Key-Value Stores

CONCLUSION

This thesis discussed use-cases of non-volatile memory (NVM) in modern storage manage-
ment architectures. We proposed new techniques to leverage NVM and enable systems
to achieve higher performance and lower costs. Rather than radical changes, these tech-
niques focused on gradual and incremental improvements over established architectures.
Chapter 2 covered the relevant background and related work. Over the course of this thesis,
each of the three main chapters investigated a different architecture. In the beginning of
each of these chapters we raised two questions that guided the work described in the
chapter. In the following we summarize each chapter and answer these questions.

Chapter 3 investigated opportunities to leverage NVM in the context of log-structured
merge-trees (LSM). The first question posed was: “what is the impact on LSMs if we
replace all persistent storage by NVM?”. To answer that, we initially relied solely on NVM as
persistent storage of LevelDB, a popular LSM storage manager. We proposed Pmemenv, a
persistent memory environment to enable direct and fine-grained management of LevelDB
files (SSTs). Considering writing to NVM, we compared the performance between the
regular file system interface and Pmemenv, for different WriteBatch (group commit) sizes.
We showed that the impact of NVM and Pmemenv on LSMs is that smaller WriteBatch
sizes can be used to achieve a lower average latency without major negative impacts
on the throughput. In other words, the benefit of batching multiple writes to amortize
the access to persistent media is lower when NVM is accessed directly in LSMs. The
possibility of directly accessing NVM through Pmemenv then raised a second question:
“do LSMs still benefit from DRAM caches when NVM is used as persistent storage?”. We
observed that statically placing hot data, such as index blocks, in DRAM improves the
performance. However, we have also noticed that a dynamic data placement in DRAM
through a traditional cache component and replacement policy is not always beneficial.
The main insight is that the overhead of copying a block from NVM to DRAM is only worth
if this block will be read frequently enough in the future. Otherwise the block should be
read directly in NVM to avoid this overhead. We enabled this behavior by implementing an
NVM-aware cache component for LevelDB that uses 2Q as a placement policy to DRAM.
Our evaluation showed that 2Q never harms the performance and enables the system
to make better decisions regarding which blocks should be moved to DRAM and which
blocks should be read in NVM. We concluded Chapter 3 by applying the same concepts
to build an NVM-aware persistent block cache for RocksDB, a more modern version of
LevelDB, and showed that the benefits still hold when evaluated on real NVM hardware.

109

Chapter 4 discussed existing approaches to leverage NVM in the context of B+Trees.
These approaches were classified in three categories. We observed that none of the
categories can benefit from three characteristics at once: the persistency of NVM, the
byte-addressability of NVM, and the update in-place strategy of B+Trees. The first question
investigated was: “how can B+Trees leverage both persistency and byte-addressability of
NVM?”, Like other works, we considered that integrating NVM in the existing buffer manager
is a simple, yet powerful, approach. Not only NVM can be used to extend the capacity of
the buffer pool, but the buffer manager enables B+Trees to use NVM in the context of a
more complete storage hierarchy comprised of other devices, such as DRAM, SSD, and
HDD. We proposed placing NVM side-by-side with DRAM, meaning that pages in NVM can
be directly accessed without being copied to DRAM, i.e., pages are byte-addressable. In
order to leverage the persistency and access pages on the NVM portion of the buffer pool
after a restart, these pages must be consistent. We discussed how this consistency is hard
to guarantee if records are updated in-place directly in NVM, which led us to our second
question: “how to handle corruptions of update-in-place strategies?”. Rather than enforcing
that pages are consistent at all times, we introduced the concept of optimistic consistency.
We designed the Persistent Buffer Pool with Optimistic Consistency that does not enforce
the consistency of pages in NVM and optimistically expect them not to be corrupted,
but is still able to detect and repair corruptions. The main insight is that B+Trees are
commonly used in a transactional environment and that durability is guaranteed through
write-ahead logging (WAL), as proposed by the ARIES algorithm. Corrupted pages can
be detected through checksums, and the WAL suffices to recover corrupted pages. In
other words, corruptions of pages in NVM are generalized to regular media failures. This
is achieved by applying the well-known concepts of checksums and single-page recovery
to a new context: NVM. We evaluated the runtime overhead of calculating checksums
through microbenchmarks and elaborated on the overall behavior of a complete system.
We argued that the benefit of our Persistent Buffer Pool with Optimistic Consistency is
enabling the system to adapt to different demands by explicitly trading high throughput
for faster peak-performance recovery and lower costs.

Chapter 5 described the design of RStore, an index+log key-value store (KVS). RStore is
targeted at use-cases such as web caching, 10T, and augmented reality. The typical work-
loads of these use-cases require low and predictable response times and are commonly
addressed by single-level DRAM-only systems, such as memcached and Redis. The DRAM-
only design implies that these systems have limited capacity and high costs, which raised
our first question: “how to extend the capacity and lower the costs of index+log KVSs?”.
While employing storage devices such as SSDs would address these issues, changes to
adapt the single-level architecture to manage files would be required and the high latency
of these devices would increase the response times. RStore employs NVM to store records
in the log-structured area, while having a DRAM index to efficiently access these records.
Since both NVM and DRAM share the same virtual memory address space, it maintains
the single-level architecture of DRAM-only systems. NVM is also denser and cheaper than
DRAM, which enable RStore to achieve larger capacity and lower costs. While the latency of
NVM is higher than DRAM, it is still lower than flash-based SSDs and introduces a smaller
response time penalty. However, looking only at the average latency of requests is not
enough to ensure predictable response times in the targeted workloads, tail latency must
also be considered. Therefore, the second question raised was: “how to achieve short and
predictable response times in the form of low tail latency?”. In addition to NVM and the
index+log architecture, RStore combines techniques such as message-passing commu-
nication, cooperative multitasking, and user-space networking. Our evaluation showed

110 Chapter 6 Conclusion

that the combination of these design decisions enable RStore to achieve a competitive
throughput and lower costs. The evaluation also shows that, even if NVM increases the
response time of RStore in comparison to a DRAM-only variant, the tail latency does not
drastically increase under high loads, which leads to a more robust behavior.

Other works explored NVM in the context of storage management and database systems by
proposing novel architectures. Some of these works are very NVM-centric and disruptive,
in the sense that they do not take into consideration current hardware and traditional
software architectures. While novel architectures and a complete software rewrite might
be required in a future where NVM will replace all storage devices, and possibly even DRAM,
currently this is not the case. To enable modern systems to immediately leverage NVM, we
argue for an incremental evolution rather than a revolution. This same approach was taken
by works that improved database logging protocols by using NVM, however, other system
components had not been explored enough yet. Furthermore, some of the techniques
proposed in this thesis might sound too obvious once they have been presented, due to
their simplicity. We argue that simplicity is major advantage. In other words, the novelty
comes from applying well-known concepts, such as caching policies, buffer management,
checksums, recovery, and log-structuring, to a new context: NVM.

Many opportunities exist for future work. In the context of LSMs, the merge process is
critical component for achieving high performance, and therefore NVM-aware merge poli-
cies can lead to significant improvements. As for B+Trees, the complete implementation
and evaluation of our Persistent Buffer Pool with Optimistic Consistency would constitute
a major contribution. Unfortunately, even if modern transaction-oriented recovery tech-
niques, such as single-page recovery, are well-understood and accepted, they have not been
adopted by many systems yet. Since these techniques are a prerequisite for our proposed
buffer pool, implementing them would require significant engineering effort that could not
be completely tackled in this thesis, specially considering the extent of the effort required
for integrating NVM in the code base of two complete systems used in production (LevelDB
and RocksDB) and for implementing RStore. Nevertheless, we presented the initial idea
and discussed its implementation and trade-offs. The RStore system was developed in
the context of much larger industry project which aims at building a complete distributed
system. We believe that the concepts of RStore provide a solid foundation that future
work can extend to a distributed environment. Finally, we conclude by stating that, what is
paramount for future work, and what we tried to achieve in this thesis, is that proposed
techniques should be incremental rather than disruptive, in order to keep them simple and
easy to be adopted by modern systems, or as once written by Jim Gray [GRI3]:

“Don’t be fooled by the many books on complexity or by the many complex and
arcane algorithms you find in this book or elsewhere. Although there are no
textbooks on simplicity, simple systems work and complex don't.”

111

112 Chapter 6 Conclusion

BIBLIOGRAPHY

[ABGA17]

[Aco19]

[AJ89]

[ALML18]

[ALRT17]

[Ama06]

[APM19]

[APP16]

[Arm03]

[AXFT12]

Raja Appuswamy, Renata Borovica-Gajic, Goetz Graefe, and Anastasia Ailamaki.
The Five-Minute Rule Thirty Years Later and its Impact on the Storage Hierarchy.
In Proc. ADMS (VLDB Workshop), pages 1-8, 2017.

Paul Acorn. Intel Optane DIMM Pricing: $695 for 128GB, $2595 for
256GB, $7816 for 512GB. https://www.tomshardware.com/news/
intel-optane-dimm-pricing-performance, 39007 .html, 2019. Ac-
cessed: 2020-09-01.

Rakesh Agrawal and HV Jagadish. Recovery Algorithms for Database Ma-
chines with Non-Volatile Main Memory. In Proc. IWDM, pages 269-285, 1989.

Joy Arulraj, Justin J. Levandoski, Umar Farooq Minhas, and Per-Ake Larson.
BzTree: A High-Performance Latch-free Range Index for Non-Volatile Memory.
PVLDB, 11(5):553-565, 2018.

Mihnea Andrei, Christian Lemke, Glinter Radestock, Robert Schulze, Carsten
Thiel, Rolando Blanco, Akanksha Meghlan, Muhammad Sharique, Sebastian
Seifert, Surendra Vishnoi, Daniel Booss, Thomas Peh, Ivan Schreter, Werner
Thesing, Mehul Wagle, and Thomas Willhalm. SAP HANA Adoption of Non-
Volatile Memory. PVLDB, 10(12):1754-1765, 2017.

Amazon. Simple Storage Service (S3). https://aws.amazon.com/s3/,
2006. Accessed: 2020-09-01.

Joy Arulraj, Andy Pavlo, and Krishna Teja Malladi. Multi-Tier Buffer Man-
agement and Storage System Design for Non-Volatile Memory. CoRR,
abs/1901.10938, 2019.

Joy Arulraj, Matthew Perron, and Andrew Pavlo. Write-Behind Logging. PVLDB,
10(4):337-348, 2016.

Joe Armstrong. Making Reliable Distributed Systems in the Presence of Soft-
ware Errors. PhD thesis, Royal Institute of Technology, Stockholm, Sweden,
2003.

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
Workload Analysis of a Large-Scale Key-Value Store. In Proc. ACM SIGMET-
RICS/PERFORMANCE, pages 53-64, 2012.

113

[BBG*14]

[BCB16]

[BDFO5]

[BDKM17]

[BFKT14]

[BGH87]

[BRD11]

[CAGMO4]

[CCAT1]

[CGN11]

[Cha78]

[Cho17]

[Chu71]

[Chu11]

[Chu19]

[CJ15]

Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen Thelin. Or-
leans: Distributed Virtual Actors for Programmability and Scalability. Technical
Report MSR-TR-2014-41, Microsoft Research, 2014.

Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-Juergen Boehm. Makalu:
Fast Recoverable Allocation of Non-Volatile Memory. In Proc. OOPSLA, pages
677-694, 2016.

Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton. Cache-Oblivious
B-Trees. Proc. SIAM J. Comput., 35(2):341-358, 2005.

Philip A. Bernstein, Mohammad Dashti, Tim Kiefer, and David Maier. Indexing
in an Actor-Oriented Database. In Proc. CIDR, 2017.

Jonas Bonér, Dave Farley, Roland Kuhn, and Martin Thompson. The Reactive
Manifesto. https://www.reactivemanifesto.org/, 2014. Accessed:
2020-09-01.

Joel Bartlett, Jim Gray, and Bob Horst. Fault Tolerance in Tandem Computer
Systems. In The Evolution of Fault-Tolerant Computing, pages 55-76, 1987.

Philip A. Bernstein, Colin W. Reid, and Sudipto Das. Hyder - A Transactional
Record Manager for Shared Flash. In Proc. CIDR, pages 9-20, 2011.

Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and Todd C. Mowry.
Improving Hash Join Performance through Prefetching. In Proc. ICDE, pages
116-127,2004.

Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,
Ranjit Jhala, and Steven Swanson. NV-Heaps: Making Persistent Objects
Fast and Safe with Next-Generation, Non-Volatile Memories. In Proc. ASPLOS,
pages 105-118, 2011.

Shimin Chen, Phillip B. Gibbons, and Suman Nath. Rethinking Database Algo-
rithms for Phase Change Memory. In Proc. CIDR, pages 21-31, 2011.

H. Chang. On Bubble Memories and Relational Data Base. In VLDB, pages
207-229,1978.

Jeongdong Choe. Intel 3D XPoint Memory Die Removed from Intel Optane™
PCM (Phase Change Memory). https://www.techinsights.com/
blog/intel-3d-xpoint-memory-die-removed-intel-optanetm-
pcm-phase-change-memory, 2017. Accessed: 2020-09-01.

Leon Chua. Memristor - The Missing Circuit Element. IEEE Transactions on
Circuit Theory, 18(5):507-519, 1971.

Leon Chua. Resistance Switching Memories are Memristors. Applied Physics
A, 102(4):765-783, 2011.

Leon 0. Chua. Resistance Switching Memories are Memristors. In Handbook
of Memristor Networks, pages 197-230. Springer, 2019.

Shimin Chen and Qin Jin. Persistent B+-Trees in Non-Volatile Main Memory.
PVLDB, 8(7):786-797, 2015.

114 BIBLIOGRAPHY

[CJY15]

[CKKS89]

[Com79]

[CPKT18]

[CSTH10]

[DAI7]

[DB13]

[DGS80]

[DHJT07]

[DHK*15]

[DKO*84]

[Dul16]

[DVTBH13]

[DWS*08]

Kaimeng Chen, Peiquan Jin, and Lihua Yue. Efficient Buffer Management for
PCM-Enhanced Hybrid Memory Architecture. In Proc. APWeb, volume 9313,
pages 29-40, 2015.

George P. Copeland, Tom W. Keller, Ravi Krishnamurthy, and Marc G. Smith.
The Case For Safe RAM. In VLDB, pages 327-335, 1989.

Douglas Comer. The Ubiquitous B-Tree. ACM Comput. Surv., 11(2):121-137,
1979.

Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin J. Levandoski,
James Hunter, and Mike Barnett. FASTER: A Concurrent Key-Value Store with
In-Place Updates. In Proc. ACM SIGMOD, pages 275-290, 2018.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Rus-
sell Sears. Benchmarking Cloud Serving Systems with YCSB. In Proc. SoCC,
pages 143-154, 2010.

Niv Dayan, Manos Athanassoulis, and Stratos Idreos. Monkey: Optimal Navi-
gable Key-Value Store. In Proc. ACM SIGMOD, pages 79-94, 2017.

Jeffrey Dean and Luiz André Barroso. The Tail at Scale. Commun. ACM,
56(2):74-80, 2013.

Keith L. Doty, Joel D. Greenblatt, and Stanley Y. W. Su. Magnetic Bubble Memory
Architectures for Supporting Associative Searching of Relational Databases.
IEEE Transactions on Computers, 29(11):957-970, 1980.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: Amazon’s Highly Available Key-value
Store. In Proc. SOSP, pages 205-220, 2007.

Biplob Debnath, Alireza Haghdoost, Asim Kadav, Mohammed G. Khatib, and
Cristian Ungureanu. Revisiting Hash Table Design for Phase Change Memory.
SIGOPS Oper. Syst. Rev., 49(2):18-26, 2015.

David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro, Michael
Stonebraker, and David A. Wood. Implementation Techniques for Main Memory
Database Systems. In Proc. ACM SIGMOD, pages 1-8, 1984.

Subramanya R. Dulloor. Systems and Applications for Persistent Memory. PhD
thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2016.

Michael FL De Volder, Sameh H Tawfick, Ray H Baughman, and A John Hart.
Carbon Nanotubes: Present and Future Commercial Applications. Science,
339(6119):535-539, 2013.

Xiangyu Dong, Xiaoxia Wu, Guangyu Sun, Yuan Xie, Hai Li, and Yiran Chen.
Circuit and Microarchitecture Evaluation of 3D Stacking Magnetic RAM (MRAM)
as a Universal Memory Replacement. In Proc. ACM DAC, pages 554-559, 2008.

BIBLIOGRAPHY 115

[EGA*18]

[Eval5]

[Fac12]

[FHH11]

[FMLT12]

[GG97]

[GGS16]

[GK12]

[GKC*11]

[GKP10]

[GLO1]

[GP87]

[GR93]

Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe, Siying Dong,
Kim M. Hazelwood, Chris Petersen, Asaf Cidon, and Sachin Katti. Reducing
DRAM Footprint with NVM in Facebook. In Proc. EuroSys, pages 42:1-42:13,
2018.

Jason Evangelho. Intel and Micron Jointly Unveil Disruptive, Game-
Changing 3D XPoint Memory, 1000x Faster Than NAND. https:
//hothardware.com/news/intel-and-micron-jointly-drop-
disruptive-game-changing-3d-xpoint-cross-point-memory-
1000x-faster-than-nand, 2015. Accessed: 2020-09-01.

Facebook. RocksDB. https://rocksdb.org/,2012. Accessed: 2020-09-
01.

Ru Fang, Hui-l Hsiao, Bin He, C. Mohan, and Yun Wang. High Performance
Database Logging using Storage Class Memory. In Proc. ICDE, pages 1221-
1231, 2011.

Franz Farber, Norman May, Wolfgang Lehner, Philipp GroRe, Ingo Miiller, Hannes
Rauhe, and Jonathan Dees. The SAP HANA Database — An Architecture
Overview. IEEE Data Eng. Bull., 35(1):28-33, 2012.

Jim Gray and Goetz Graefe. The Five-Minute Rule Ten Years Later, and Other
Computer Storage Rules of Thumb. ACM SIGMOD Record, 26(4):63-68, 1997.

Goetz Graefe, Wey Guy, and Caetano Sauer. Instant Recovery with Write-Ahead
Logging: Page Repair, System Restart, Media Restore, and System Failover,
Second Edition. Synthesis Lectures on Data Management. Morgan & Claypool
Publishers, 2016.

Goetz Graefe and Harumi A. Kuno. Definition, Detection, and Recovery of Single-
Page Failures, a Fourth Class of Database Failures. PVLDB, 5(7):646-655,
2012.

B Govoreanu, GS Kar, YY Chen, V Paraschiv, S Kubicek, A Fantini, IP Radu,
L Goux, S Clima, R Degraeve, et al. 10x 10nm 2 Hf/HfO x Crossbar Resistive
RAM with Excellent Performance, Reliability and Low-Energy Operation. In IEEE
IEDM Technical Digest, pages 31-6, 2011.

Martin Grund, Jens Kriiger, Hasso Plattner, Alexander Zeier, Philippe Cudré-
Mauroux, and Samuel Madden. HYRISE - A Main Memory Hybrid Storage
Engine. PVLDB, 4(2):105-116, 2010.

Goetz Graefe and Per-Ake Larson. B-Tree Indexes and CPU Caches. In Proc.
ICDE, pages 349-358, 2001.

Jim Gray and Gianfranco R. Putzolu. The 5 Minute Rule for Trading Memory
for Disk Accesses and The 10 Byte Rule for Trading Memory for CPU Time. In
Proc. ACM SIGMOD, pages 395-398, 1987.

Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann, 1993.

116 BIBLIOGRAPHY

[Gra07]

[Gre13]

[GSE+94]

[GVK*14]

[GXHT11]

[H*08]

[HAMSO08]

[HBS73]

[HKWN18]

[HPM*13]

[HR83]

[HRB*17]

[HSQ14]

[HYY*05]

Goetz Graefe. The Five-Minute Rule Twenty Years Later, and how Flash Memory
Changes the Rules. In Proc. DaMoN (ACM SIGMOD Workshop), page 6, 2007.

Brendan Gregg. Systems Performance: Enterprise and the Cloud. Prentice Hall
Press, USA, 1st edition, 2013.

Jim Gray, Prakash Sundaresan, Susanne Englert, Kenneth Baclawski, and
Peter J. Weinberger. Quickly Generating Billion-Record Synthetic Databases.
In Proc. ACM SIGMOD, pages 243-252, 1994,

Goetz Graefe, Haris Volos, Hideaki Kimura, Harumi A. Kuno, Joseph Tucek,
Mark Lillibridge, and Alistair C. Veitch. In-Memory Performance for Big Data.
PVLDB, 8(1):37-48, 2014.

Shen Gao, Jianliang Xu, Bingsheng He, Byron Choi, and Haibo Hu. PCMLogging:
Reducing Transaction Logging Overhead with PCM. In Proceedings of the 20th
ACM Conference on Information and Knowledge Management (CIKM), pages
2401-2404. ACM, 2011.

Yiming Huai et al. Spin-Transfer Torque MRAM (STT-MRAM): Challenges and
Prospects. AAPPS Bulletin, 18(6):33-40, 2008.

Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stone-
braker. OLTP Through the Looking Glass, and What We Found There. In Proc.
ACM SIGMOD, pages 981-992, 2008.

Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. A Universal Modular
ACTOR Formalism for Artificial Intelligence. In Proc. IJCAI, pages 235-245,
1973.

Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. En-
durable Transient Inconsistency in Byte-Addressable Persistent B+-Tree. In
Proc. USENIX FAST, pages 187-200, 2018.

Philipp Haller, Aleksandar Prokopec, Heather Miller, Viktor Klang, Roland Kuhn,
and Vojin Jovanovic. Scala Documentation: Futures and Promises. https:
//docs.scala-lang.org/overviews/core/futures.html, 2013. Ac-
cessed: 2020-09-01.

Theo Harder and Andreas Reuter. Principles of Transaction-Oriented Database
Recovery. ACM Comput. Surv., 15(4):287-317, 1983.

Qingda Hu, Jinglei Ren, Anirudh Badam, Jiwu Shu, and Thomas Moscibroda.
Log-Structured Non-Volatile Main Memory. In Proc. USENIX ATC, pages 703—
717,2017.

Jian Huang, Karsten Schwan, and Moinuddin K. Qureshi. NVRAM-Aware Log-
ging in Transaction Systems. PVLDB, 8(4):389-400, 2014.

M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Ya-
mada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, and H. Kano. A Novel
Nonvolatile Memory with Spin Torque Transfer Magnetization Switching: Spin-
RAM. In IEEE IEDM Technical Digest, pages 459-462, 2005.

BIBLIOGRAPHY 117

[IC20]

[IKK16]

[Int14]

[Int19]

[Int204a]

[Int20Db]

[Int20c]

[Int20d]

[IYZ+19]

[JS94]

[KELS62]

[KFG15]

[Kim15]

[Knu9s]

[KR79]

Stratos Idreos and Mark Callaghan. Key-Value Storage Engines. In Proc. ACM
SIGMOD, pages 2667-2672,2020.

Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-Atomic Persistent
Memory Updates via JUSTDO Logging. In Proc. ASPLOS, pages 427-442. ACM,
2016.

Intel Corporation. Persistent Memory Development Kit (PMDK). https://
github.com/pmem/pmdk/, 2014. Accessed: 2020-09-01.

Intel Corporation. Processor Counter Monitor. https://github.com/
opcm/pcm, 2019. Accessed: 2020-09-01.

Intel Corporation. Instruction Set Extensions Technology. https:
//software.intel.com/sites/landingpage/IntrinsicsGuide/
#techs=SSE4_2,2020. Accessed: 2020-09-01.

Intel Corporation. Intel Optane DC SSD Series. https://www.intel.com/
content/www/us/en/products/memory-storage/solid-state-
drives/data-center-ssds/optane-dc-ssd-series.html, 2020.
Accessed: 2020-09-01.

Intel Corporation. Intel Optane Persistent Memory. https:
//www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory.html, 2020. Accessed:
2020-09-01.

Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Ref-
erence Manual. https://software.intel.com/content/www/us/
en/develop/download/intel-64-and-ia-32-architectures-

optimization-reference-manual.html, 2020. Accessed: 2020-09-01.

Joseph lzraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen
Zhao, and Steven Swanson. Basic Performance Measurements of the Intel
Optane DC Persistent Memory Module. CoRR, abs/1903.05714, 2019.

Theodore Johnson and Dennis E. Shasha. 2Q: A Low Overhead High Perfor-
mance Buffer Management Replacement Algorithm. In VLDB, pages 439-450,
1994.

Tom Kilburn, David B. G. Edwards, Michael J. Lanigan, and Frank H. Sumner.
One-Level Storage System. IRE Trans. Electron. Comput., 11(2):223-235, 1962.

Yusuf Onur Kogberber, Babak Falsafi, and Boris Grot. Asynchronous Memory
Access Chaining. PVLDB, 9(4):252-263, 2015.

Hideaki Kimura. FOEDUS: OLTP Engine for a Thousand Cores and NVRAM. In
Proc. ACM SIGMOD, pages 691-706, 2015.

Donald Ervin Knuth. The Art of Computer Programming, Volume IlI: Sorting and
Searching, 2nd Edition. Addison-Wesley, 1998.

H. T. Kung and John T. Robinson. On Optimistic Methods for Concurrency
Control. In VLDB, page 351, 1979.

118 BIBLIOGRAPHY

[LAK16]

[Lam78]

[LBD"11]

[LFAKT1]

[LHKN18]

[LHO*19]

[LHWL20]

[Lin10]

[Lin15]

[LJWF19]

[LLO19]

[LLS13]

[LLST17]

[LOLS17]

[Lom93]

Hyeontaek Lim, David G. Andersen, and Michael Kaminsky. Towards Accurate
and Fast Evaluation of Multi-Stage Log-structured Designs. In Proc. USENIX
FAST, pages 149-166, 2016.

Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. Communications of the ACM, 21(7):558-565, 1978.

Per-Ake Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M.
Patel, and Mike Zwilling. High-Performance Concurrency Control Mechanisms
for Main-Memory Databases. PVLDB, 5(4):298-309, 2011.

Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky. SILT: A
Memory-Efficient, High-Performance Key-Value Store. In Proc. SOSP, pages
1-13, 2011.

Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann.
LeanStore: In-Memory Data Management beyond Main Memory. In Proc. ICDE,
pages 185-196, 2018.

Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas
Willhalm. Evaluating Persistent Memory Range Indexes. PVLDB, 13(4):574-587,
2019.

Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. Dash: Scalable
Hashing on Persistent Memory. PVLDB, 13(8):1147-1161, 2020.

Linux Foundation. DPDK. https://www.dpdk.org/,2010. Accessed: 2020-
09-01.

Linux Foundation. LIBNVDIMM: Non-Volatile Devices. https://www.
kernel.org/doc/Documentation/nvdimm/nvdimm.txt, 2015. Ac-
cessed: 2020-09-01.

Ruicheng Liu, Peiquan Jin, Zhangling Wu, Xiaoliang Wang, Shouhong Wan, and
Bei Hua. Efficient Wear Leveling for PCM/DRAM-Based Hybrid Memory. In
IEEE HPCC/SmartCity/DSS, pages 1979-1986, 2019.

Lucas Lersch, Wolfgang Lehner, and Ismail Oukid. Persistent Buffer Manage-
ment with Optimistic Consistency. In Proc. DaMoN (ACM SIGMOD Workshop),
pages 14:1-14:3, 2019.

Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. LLAMA: A
Cache/Storage Subsystem for Modern Hardware. PVLDB, 6(10):877-888,
2013.

Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H. Noh.
WORT: Write Optimal Radix Tree for Persistent Memory Storage Systems. In
Proc. USENIX FAST, pages 257-270, 2017.

Lucas Lersch, Ismail Oukid, Wolfgang Lehner, and Ivan Schreter. An analysis
of LSM caching in NVRAM. In Proc. DaMoN (ACM SIGMOD Workshop), pages
9:1-9:5, 2017.

David B. Lomet. The Case for Log Structuring in Database Systems. In Proc.
HPTS, pages 136-140, 1993.

BIBLIOGRAPHY 119

[Lor77]

[LOSL17]

[LSOL20]

[LXCW19]

[LzY*10]

[MHL*92]

[Mic17]

[Mic18]

[Mic20]

[MWMS14]

[NCC*19]

[NIKT17]

[OBL*14]

[OBL*17]

[0CGO96]

Raymond A. Lorie. Physical Integrity in a Large Segmented Database. ACM
TODS, 2(1):91-104, 1977.

Lucas Lersch, Ismail Oukid, Ivan Schreter, and Wolfgang Lehner. Rethinking
DRAM Caching for LSMs in an NVRAM Environment. In ADBIS, volume 105009,
pages 326-340, 2017.

Lucas Lersch, Ivan Schreter, Ismail Oukid, and Wolfgang Lehner. Enabling Low
Tail Latency on Multicore Key-Value Stores. PVLDB, 13(7):1091-1104, 2020.

Mengxing Liu, Jiankai Xing, Kang Chen, and Yongwei Wu. Building Scalable
NVM-based B+tree with HTM. In Proc. ICPP, pages 101:1-101:10, 2019.

Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek,
Onur Mutlu, and Doug Burger. Phase-Change Technology and the Future of
Main Memory. IEEE Micro, 30(1):143, 2010.

C. Mohan, Don Haderle, Bruce G. Lindsay, Hamid Pirahesh, and Peter M.
Schwarz. ARIES: A Transaction Recovery Method Supporting Fine-Granularity
Locking and Partial Rollbacks Using Write-Ahead Logging. ACM TODS, 17(1):94~-
162, 1992.

Micron Technology, Inc. Micron Advances Persistent Memory with 32GB
NVDIMM. https://investors.micron.com/news-releases/news-
release-details/micron-advances-persistent-memory-32gb-
nvdimm, 2017. Accessed: 2020-09-01.

Micron Technology, Inc. NVDIMM. https://www.micron.com/
products/dram-modules/nvdimm, 2018. Accessed: 2020-09-01.

Micron Technology, Inc. 3D XPoint Technology. https://www.micron.
com/products/advanced-solutions/3d-xpoint-technology,
2020. Accessed: 2020-09-01.

Nirmesh Malviya, Ariel Weisberg, Samuel Madden, and Michael Stonebraker.
Rethinking Main Memory OLTP Recovery. In Proc. ICDE, pages 604-615, 2014.

Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H. Noh, and Beomseok Nam.
Write-Optimized Dynamic Hashing for Persistent Memory. In Proc. USENIX
FAST, pages 31-44, 2019.

Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey Ill, Dhruva R.
Chakrabarti, and Michael L. Scott. Dali: A Periodically Persistent Hash Map. In
Proc. DISC, volume 91 of LIPIcs, pages 37:1-37:16, 2017.

Ismail Oukid, Daniel Booss, Wolfgang Lehner, Peter Bumbulis, and Thomas
Willhalm. SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery.
In Proc. DaMoN (ACM SIGMOD Workshop), pages 8:1-8:7, 2014.

Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolfgang Lehner, Thomas
Willhalm, and Grégoire Gomes. Memory Management Techniques for Large-
Scale Persistent-Main-Memory Systems. PVLDB, 10(11):1166—-1177, 2017.

Patrick E. O’'Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. The
Log-Structured Merge-Tree (LSM-Tree). Acta Inf., 33(4):351-385, 1996.

120 BIBLIOGRAPHY

[OCXH14]

[0OGG™15]

[OLN*16]

[0014]

[Ouk18]

[Ovs68]

[PAAT17]

[PLMA17]

[PPM16]

[PSUT70]

[PWGB13]

[RKO14]

[RO92]

[Sau17]

Yi Ou, Lei Chen, Jianliang Xu, and Theo Harder. Wear-Aware Algorithms for
PCM-Based Database Buffer Pools. In Web-Age Information Management -
WAIM 2014 International Workshops: BigeM, HardBD, DaNoS, HRSUNE, BIDASYS,
volume 8597 of Lecture Notes in Computer Science, pages 165-176. Springer,
2014.

John K. Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin Lee,
Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry Qin, Mendel Rosenblum,
Stephen M. Rumble, Ryan Stutsman, and Stephen Yang. The RAMCloud Storage
System. ACM TOCS, 33(3):7:1-7:55, 2015.

Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree for
Storage Class Memory. In Proc. ACM SIGMOD, pages 371-386, 2016.

Diego Ongaro and John K. Ousterhout. In Search of an Understandable Con-
sensus Algorithm. In Proc. USENIX ATC, pages 305-319, 2014.

Ismail Oukid. Architectural Principles for Database Systems on Storage-Class
Memory. PhD thesis, Dresden University of Technology, Germany, 2018.

Stanford R. Ovshinsky. Reversible Electrical Switching Phenomena in Disor-
dered Structures. Phys. Rev. Lett., 21:1450-1453, Nov 1968.

Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C. Mowry, Matthew Perron, lan Quah, Siddharth San-
turkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Zigi Wang, Yingjun Wu,
Ran Xian, and Tieying Zhang. Self-Driving Database Management Systems. In
Proc. CIDR, 2017.

Georgios Psaropoulos, Thomas Legler, Norman May, and Anastasia Ailamaki.
Interleaving with Coroutines: A Practical Approach for Robust Index Joins.
PVLDB, 11(2):230-242, 2017.

Kisalaya Prasad, Avanti Patil, and Heather Miller. Programming Models for
Distributed Computing: Futures and Promises. http://dist-prog-book.
com/chapter/2/futures.html, 2016. Accessed: 2020-09-01.

A Pohm, C Sie, R Uttecht, V Kao, and O Agrawal. Chalcogenide Glass Bistable
Resistivity (Ovonic) Memories. IEEE Transactions on Magnetics, 6(3):592-592,
1970.

Steven Pelley, Thomas F. Wenisch, Brian T. Gold, and Bill Bridge. Storage
Management in the NVRAM Era. PVLDB, 7(2):121-132, 2013.

Stephen M. Rumble, Ankita Kejriwal, and John K. Ousterhout. Log-structured
Memory for DRAM-based Storage. In Proc. USENIX FAST, pages 1-16, 2014.

Mendel Rosenblum and John K. Ousterhout. The Design and Implementation
of a Log-Structured File System. ACM TOCS, 10(1):26-52, 1992.

Caetano Sauer. Modern Techniques for Transaction-Oriented Database Recov-
ery. PhD thesis, Kaiserslautern University of Technology, Germany, 2017.

BIBLIOGRAPHY 121

[Scy15a]

[Scy15b]
[SDUP15]

[SGG14]

[SGH18]

[SKD*16]

[SMAT07]

[Spo14]

[SS10]

[SSSW08]

[STPA16]

[Tec18]

[Tob16]

[TZK*13]

[VKW*13]

ScyllaDB Inc. ScyllaDB. https://www.scylladb.com/, 2015. Accessed:
2020-09-01.

ScyllaDB Inc. Seastar. http://seastar.io/, 2015. Accessed: 2020-09-01.

David Schwalb, Markus Dreseler, Matthias Uflacker, and Hasso Plattner. NVC-
Hashmap: A Persistent and Concurrent Hashmap For Non-Volatile Memories.
In Proc. IMDM (VLDB Workshop), pages 4:1-4:8, 2015.

Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System
Concepts Essentials, 2nd Edition. Wiley, 2014.

Caetano Sauer, Goetz Graefe, and Theo Harder. FineLine: Log-Structured
Transactional Storage and Recovery. PVLDB, 11(13):2249-2262, 2018.

David Schwalb, Girish Kumar, Markus Dreseler, Anusha S., Martin Faust, Adolf
Hohl, Tim Berning, Gaurav Makkar, Hasso Plattner, and Parag Deshmukh.
Hyrise-NV: Instant Recovery for In-Memory Databases Using Non-Volatile Mem-
ory. In Proc. DASFAA, volume 9643, pages 267-282, 2016.

Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos,
Nabil Hachem, and Pat Helland. The End of an Architectural Era (It's Time for
a Complete Rewrite). In VLDB, pages 1150-1160, 2007.

Spotify. Sparkley: Simple Constant Key/Value Storage Library, for Read-
heavy Systems with Infrequent Large Bulk Inserts. https://github.com/
spotify/sparkey, 2014. Accessed: 2020-09-01.

Justin Sheehy and David Smith. Bitcask: A Log-Structured Hash Table
for Fast Key/Value Data. https://riak.com/assets/bitcask-intro.
pdf, 2010. Accessed: 2020-09-01.

Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley Williams.
The Missing Memristor Found. Nature, 453(7191):80-83, 2008.

Utku Sirin, Pinar Tozlin, Danica Porobic, and Anastasia Ailamaki. Micro-
architectural Analysis of In-memory OLTP. In Proc. ACM SIGMOD, pages
387-402, 2016.

Viking Technology. DDR4 NVDIMM. https://www.vikingtechnology.
com/products/nvdimm/ddr4-nvdimm/, 2018. Accessed: 2020-09-01.

Tobias Klima. Using Non-volatile Memory (NVDIMM-N) as Byte-Addressable
Storage in Windows Server 2016. https://channel9.msdn.com/
events/build/2016/p470,2016. Accessed: 2020-09-01.

Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
Speedy Transactions in Multicore In-Memory Databases. In Michael Kaminsky
and Mike Dahlin, editors, Proc. SOSP, pages 18—32, 2013.

Vish Viswanathan, Karthik Kumar, Thomas Willhalm, Patrick Lu,
Blazej Filipiak, and Sri Sakthivelu. Intel Memory Latency Checker.
https://software.intel.com/content/www/us/en/develop/
articles/intelr-memory-1latency-checker.html, 2013. Accessed:
2020-09-01.

122 BIBLIOGRAPHY

[VRLK*18]

[VRVLT19]

[VTRC11]

[VWAT12]

[WFLH18]

[WJ14]

[WK16]

[WLL18]

[Wri83]

[XJIXS17]

[XS16]

[YKH*20]

[YWC*15]

[Zak81]

Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann, Takushi
Hashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and Mitsuru Sato. Manag-
ing Non-Volatile Memory in Database Systems. In Proc. ACM SIGMOD, pages
1541-1555, 2018.

Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons
Kemper. Persistent Memory I/0 Primitives. In Proc. DaMoN (ACM SIGMOD
Workshop), pages 12:1-12:7, 2019.

Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H.
Campbell. Consistent and Durable Data Structures for Non-Volatile Byte-
Addressable Memory. In Proc. USENIX FAST, pages 61-75, 2011.

Hoang Tam Vo, Sheng Wang, Divyakant Agrawal, Gang Chen, and Beng Chin Ooi.
LogBase: A Scalable Log-structured Database System in the Cloud. PVLDB,
5(10):1004-1015, 2012.

Chenggang Wu, Jose M. Faleiro, Yihan Lin, and Joseph M. Hellerstein. Anna:
A KVS for Any Scale. In Proc. ICDE, pages 401-412, 2018.

Tianzheng Wang and Ryan Johnson. Scalable Logging through Emerging
Non-Volatile Memory. PVLDB, 7(10):865-876, 2014.

Tianzheng Wang and Hideaki Kimura. Mostly-Optimistic Concurrency Control
for Highly Contended Dynamic Workloads on a Thousand Cores. PVLDB,
10(2):49-60, 2016.

Tianzheng Wang, Justin J. Levandoski, and Per-Ake Larson. Easy Lock-Free
Indexing in Non-Volatile Memory. In Proc. ICDE, pages 461-472,2018.

William E. Wright. Some File Structure Considerations Pertaining to Magnetic
Bubble Memory. Computer Journal, 26(1):43-51, 1983.

Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. HiKV: A Hybrid Index Key-
Value Store for DRAM-NVM Memory Systems. In Proc. USENIX ATC, pages
349-362, 2017.

Jian Xu and Steven Swanson. NOVA: A Log-structured File System for Hybrid
Volatile/Non-volatile Main Memories. In Proc. USENIX FAST, pages 323-338,
2016.

Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven
Swanson. An Empirical Guide to the Behavior and Use of Scalable Persistent
Memory. In Proc. USENIX FAST, pages 169-182, 2020.

Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and
Bingsheng He. NV-Tree: Reducing Consistency Cost for NVM-based Single
Level Systems. In Proc. USENIX FAST, pages 167-181, 2015.

M. Zaki. Magnetic Bubble Memory Structures for Relational Database Man-
agement Systems. International Journal of Computer & Information Sciences,
10(5):341-358, 1981.

BIBLIOGRAPHY 123

uanchen Zhang, David G. Andersen, Andrew Pavlo, Michael Kaminsky, Lin

[ZAPT16] H hen Zh David G. And And Pavlo, Michael Kaminsky, Li
Ma, and Rui Shen. Reducing the Storage Overhead of Main-Memory OLTP
Databases with Hybrid Indexes. In Proc. ACM SIGMOD, pages 1567-1581,
2016.

[ZH18] Pengfei Zuo and Yu Hua. A Write-Friendly and Cache-Optimized Hashing
Scheme for Non-Volatile Memory Systems. IEEE TPDS, 29(5):985-998, 2018.

[ZHW18] Pengfei Zuo, Yu Hua, and Jie Wu. Write-Optimized and High-Performance
Hashing Index Scheme for Persistent Memory. In Proc. USENIX OSDI, pages
461-476, 2018.

[ZTKL14] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov. Fast Databases
with Fast Durability and Recovery Through Multicore Parallelism. In Proc.
USENIX OSDI, pages 465-477, 2014.

124 BIBLIOGRAPHY

PIBENCH

We designed PiBench to allow an unified and fair comparison of different persistent data
structures, and easy adoption by future work. As Figure A.1 shows, the data strucure being
tested must be compiled into a shared library and linked to PiBench following a defined
API, or through a wrapper that translates requests from PiBench’s API. The API consists of
a pure abstract class that encapsulates common operations (insert, lookup, delete, scan,
update) and a create_index function for instantiating the benchmarked data structure.
To use PiBench, the user only needs to derive a class that implements the API. PiBench
then issues requests against the instantiated object.

PiBench executes a 1oad phase and a run phase, like YCSB [CST™10]. It provides various
options for customization, such as key/value sizes, the number of records to be loaded,
the numbers and types of operations to be executed, and ratio of each type of operation.
Keys and values are generated randomly following a chosen distribution and seed to allow
reproducible executions. PiBench supports three random distributions as defined by Gray
et al. [GSET94]: uniform, self similar, and zipfian. Since the random distributions
generate integers in a contiguous range, with the skewed distributions favoring smaller
values, we apply a multiplicative hashing function [Knu98] to each generated integer to
scatter the keys across the complete integer domain, thus avoiding frequently accessed
keys to be clustered together. A prefix can be prepended to keys to analyze the impact
of key compression and comparison methods. PiBench uses multiple threads to issue
requests and relies on the data structure under evaluation to handle concurrent accesses.

PiBench dedicates a thread to periodically collect statistics, such as the number of com-
pleted operations within a specified time window. This allows a better understanding of
performance over time by enabling standard deviation to be easily calculated in addition to
the average throughput. Finally, we use the Processor Counter Monitor (PCM) library [Int19]
and ipmwatch’ to collect hardware counter metrics (such as memory accesses and cache
misses). As shown in Figure A.2, PCM measures memory traffic between CPU caches and
both DRAM and DCPMMs at 64 B granularity. The DCPMMs rely on a buffer layer to hold
hot data [Int20d, YKHT20]. We use ipmwatch to measure the traffic between the buffer
and the media itself, which happens at 256 B granularity. Finally, PiBench is open-source?
and available at a web application®.

'Available as part of Intel VTune Amplifier 2019 since Update 5.
Zhttps://github.com/sfu-dis/pibench
Shttps://pibench.org/

125

— PiBench

| Stats |

ipmwatch

Monitor Thread I

ﬂ Processor Counter Monitor I

Key Generatoriprefix=—> Thread A
Value Generator | 1 > 4 ebzliee 5o
Operation Generator|» 2 /I —
— Stats /
< — libwrapper.so =31 libfptree.so
\
Key Generator Jprefix—»] Thread \\ r
Value Generator [n > libnvtree.so
Oeeration Generator 3
. B Stats

Figure A.1: Overview of the PiBench architecture. Independent worker threads issue re-
quests to data structures and a monitor thread aggregates them in specified time intervals.

Cache
64 By
————————————————————————— ~—-=% PCM
\ 4 \ 4
Buffer
DRAM 256 B> ipmwatch
DCPMM

Figure A.2: Tools used by PiBench to measure memory traffic. PCM measures traffic on
the memory bus, which happens at a cache line granularity (64 B). The ipmwatch tool is
DCPMM specific, and it measures the traffic between the on-chip buffer and the underlying
persistent media, which happens at a granularity of 256 B.

126 Appendix A PiBench

CONFIRMATION

| confirm that | independently prepared the thesis and that | used only the references and
auxiliary means indicated in the thesis.

st 5 o

Dresden, den 30. Oktober 2020

127

	Introduction
	Background
	Non-Volatile Memory
	Types of NVM
	Access Modes
	Byte-addressability and Persistency
	Performance

	Related Work
	Case Study: Persistent Tree Structures
	Persistent Trees
	Evaluation

	Log-Structured Merge-Trees
	LSM and NVM
	LSM Architecture
	LevelDB

	Persistent Memory Environment
	2Q Cache Policy for NVM
	Evaluation
	Write Performance
	Read Performance
	Mixed Workloads

	Additional Case Study: RocksDB
	Evaluation

	B+Trees
	B+Tree and NVM
	Category #1: Buffer Extension
	Category #2: DRAM Buffered Access
	Category #3: Persistent Trees

	Persistent Buffer Pool with Optimistic Consistency
	Architecture and Assumptions
	Embracing Corruption

	Detecting Corruptions
	Possible States

	Repairing Corruptions
	Performance Evaluation and Expectations
	Checksum Overhead
	Runtime and Recovery

	Discussion

	Index+Log Key-Value Stores
	The Case for Tail Latency
	Goals and Overview
	Execution Model
	Reactive Systems and Actor Model
	Message-Passing Communication
	Cooperative Multitasking

	Log-Structured Storage
	Networking
	Implementation Details
	NVM Allocation on RStore
	Log-Structured Storage and Indexing
	Garbage Collection
	Logging and Recovery

	System Operations
	Evaluation
	Methodology
	Environment
	Other Systems
	Throughput Scalability
	Tail Latency
	Scans
	Memory Consumption

	Related Work

	Conclusion
	Bibliography
	PiBench
	Introduction
	Non-Volatile Memory
	Challenges
	Non-Volatile Memory & Database Systems
	Contributions and Outline

	Background
	Non-Volatile Memory
	Types of NVM
	Access Modes
	Byte-addressability and Persistency
	Performance

	Related Work
	Case Study: Persistent Tree Structures
	Persistent Trees
	Evaluation

	Log-Structured Merge-Trees
	LSM and NVM
	LSM Architecture
	LevelDB

	Persistent Memory Environment
	2Q Cache Policy for NVM
	Evaluation
	Write Performance
	Read Performance
	Mixed Workloads

	Additional Case Study: RocksDB
	Evaluation

	B+Trees
	B+Tree and NVM
	Category #1: Buffer Extension
	Category #2: DRAM Buffered Access
	Category #3: Persistent Trees

	Persistent Buffer Pool with Optimistic Consistency
	Architecture and Assumptions
	Embracing Corruption

	Detecting Corruptions
	Possible States

	Repairing Corruptions
	Performance Evaluation and Expectations
	Checksum Overhead
	Runtime and Recovery

	Discussion

	Index+Log Key-Value Stores
	The Case for Tail Latency
	Goals and Overview
	Execution Model
	Reactive Systems and Actor Model
	Message-Passing Communication
	Cooperative Multitasking

	Log-Structured Storage
	Networking
	Implementation Details
	NVM Allocation on RStore
	Log-Structured Storage and Indexing
	Garbage Collection
	Logging and Recovery

	System Operations
	Evaluation
	Methodology
	Environment
	Other Systems
	Throughput Scalability
	Tail Latency
	Scans
	Memory Consumption

	Related Work

	Conclusion
	Bibliography
	PiBench

