369 research outputs found

    Minimizing the AoI in Resource-Constrained Multi-Source Relaying Systems: Dynamic and Learning-based Scheduling

    Full text link
    We consider a multi-source relaying system where the independent sources randomly generate status update packets which are sent to the destination with the aid of a relay through unreliable links. We develop transmission scheduling policies to minimize the sum average age of information (AoI) subject to transmission capacity and long-run average resource constraints. We formulate a stochastic control optimization problem. To solve the problem, a constrained Markov decision process (CMDP) approach and a drift-plus-penalty method are proposed. The CMDP problem is solved by transforming it into an MDP problem using the Lagrangian relaxation method. We theoretically analyze the structure of optimal policies for the MDP problem and subsequently propose a structure-aware algorithm that returns a practical near-optimal policy. By the drift-plus-penalty method, we devise a dynamic near-optimal low-complexity policy. We also develop a model-free deep reinforcement learning policy, which does not require the full knowledge of system statistics. To do so, we employ the Lyapunov optimization theory and a dueling double deep Q-network. Simulation results are provided to assess the performance of our policies and validate the theoretical results. The results show up to 91% performance improvement compared to a baseline policy.Comment: 30 Pages, preliminary results of this paper were presented at IEEE Globecom 2021, https://ieeexplore.ieee.org/document/968594

    Age of Semantics in Cooperative Communications: To Expedite Simulation Towards Real via Offline Reinforcement Learning

    Full text link
    The age of information metric fails to correctly describe the intrinsic semantics of a status update. In an intelligent reflecting surface-aided cooperative relay communication system, we propose the age of semantics (AoS) for measuring semantics freshness of the status updates. Specifically, we focus on the status updating from a source node (SN) to the destination, which is formulated as a Markov decision process (MDP). The objective of the SN is to maximize the expected satisfaction of AoS and energy consumption under the maximum transmit power constraint. To seek the optimal control policy, we first derive an online deep actor-critic (DAC) learning scheme under the on-policy temporal difference learning framework. However, implementing the online DAC in practice poses the key challenge in infinitely repeated interactions between the SN and the system, which can be dangerous particularly during the exploration. We then put forward a novel offline DAC scheme, which estimates the optimal control policy from a previously collected dataset without any further interactions with the system. Numerical experiments verify the theoretical results and show that our offline DAC scheme significantly outperforms the online DAC scheme and the most representative baselines in terms of mean utility, demonstrating strong robustness to dataset quality.Comment: This work has been submitted to the IEEE for possible publicatio

    Update or Wait: How to Keep Your Data Fresh

    Full text link
    In this work, we study how to optimally manage the freshness of information updates sent from a source node to a destination via a channel. A proper metric for data freshness at the destination is the age-of-information, or simply age, which is defined as how old the freshest received update is since the moment that this update was generated at the source node (e.g., a sensor). A reasonable update policy is the zero-wait policy, i.e., the source node submits a fresh update once the previous update is delivered and the channel becomes free, which achieves the maximum throughput and the minimum delay. Surprisingly, this zero-wait policy does not always minimize the age. This counter-intuitive phenomenon motivates us to study how to optimally control information updates to keep the data fresh and to understand when the zero-wait policy is optimal. We introduce a general age penalty function to characterize the level of dissatisfaction on data staleness and formulate the average age penalty minimization problem as a constrained semi-Markov decision problem (SMDP) with an uncountable state space. We develop efficient algorithms to find the optimal update policy among all causal policies, and establish sufficient and necessary conditions for the optimality of the zero-wait policy. Our investigation shows that the zero-wait policy is far from the optimum if (i) the age penalty function grows quickly with respect to the age, (ii) the packet transmission times over the channel are positively correlated over time, or (iii) the packet transmission times are highly random (e.g., following a heavy-tail distribution)

    Statistical Age-of-Information Optimization for Status Update over Multi-State Fading Channels

    Full text link
    Age of information (AoI) is a powerful metric to evaluate the freshness of information, where minimization of average statistics, such as the average AoI and average peak AoI, currently prevails in guiding freshness optimization for related applications. Although minimizing the statistics does improve the received information's freshness for status update systems in the sense of average, the time-varying fading characteristics of wireless channels often cause uncertain yet frequent age violations. The recently-proposed statistical AoI metric can better characterize more features of AoI dynamics, which evaluates the achievable minimum peak AoI under the certain constraint on age violation probability. In this paper, we study the statistical AoI minimization problem for status update systems over multi-state fading channels, which can effectively upper-bound the AoI violation probability but introduce the prohibitively-high computing complexity. To resolve this issue, we tackle the problem with a two-fold approach. For a small AoI exponent, the problem is approximated via a fractional programming problem. For a large AoI exponent, the problem is converted to a convex problem. Solving the two problems respectively, we derive the near-optimal sampling interval for diverse status update systems. Insightful observations are obtained on how sampling interval shall be tuned as a decreasing function of channel state information (CSI). Surprisingly, for the extremely stringent AoI requirement, the sampling interval converges to a constant regardless of CSI's variation. Numerical results verify effectiveness as well as superiority of our proposed scheme
    • …
    corecore