16,670 research outputs found

    Optimizing energy storage participation in emerging power markets

    Full text link
    The growing amount of intermittent renewables in power generation creates challenges for real-time matching of supply and demand in the power grid. Emerging ancillary power markets provide new incentives to consumers (e.g., electrical vehicles, data centers, and others) to perform demand response to help stabilize the electricity grid. A promising class of potential demand response providers includes energy storage systems (ESSs). This paper evaluates the benefits of using various types of novel ESS technologies for a variety of emerging smart grid demand response programs, such as regulation services reserves (RSRs), contingency reserves, and peak shaving. We model, formulate and solve optimization problems to maximize the net profit of ESSs in providing each demand response. Our solution selects the optimal power and energy capacities of the ESS, determines the optimal reserve value to provide as well as the ESS real-time operational policy for program participation. Our results highlight that applying ultra-capacitors and flywheels in RSR has the potential to be up to 30 times more profitable than using common battery technologies such as LI and LA batteries for peak shaving

    Optimizing Energy Storage Participation in Emerging Power Markets

    Get PDF
    The growing amount of intermittent renewables in power generation creates challenges for real-time matching of supply and demand in the power grid. Emerging ancillary power markets provide new incentives to consumers (e.g., electrical vehicles, data centers, and others) to perform demand response to help stabilize the electricity grid. A promising class of potential demand response providers includes energy storage systems (ESSs). This paper evaluates the benefits of using various types of novel ESS technologies for a variety of emerging smart grid demand response programs, such as regulation services reserves (RSRs), contingency reserves, and peak shaving. We model, formulate and solve optimization problems to maximize the net profit of ESSs in providing each demand response. Our solution selects the optimal power and energy capacities of the ESS, determines the optimal reserve value to provide as well as the ESS real-time operational policy for program participation. Our results highlight that applying ultra-capacitors and flywheels in RSR has the potential to be up to 30 times more profitable than using common battery technologies such as LI and LA batteries for peak shaving.Comment: The full (longer and extended) version of the paper accepted in IGSC 201

    Optimizing Energy Storage Participation in Emerging Power Markets

    Get PDF
    The growing amount of intermittent renewables in power generation creates challenges for real-time matching of supply and demand in the power grid. Emerging ancillary power markets provide new incentives to consumers (e.g., electrical vehicles, data centers, and others) to perform demand response to help stabilize the electricity grid. A promising class of potential demand response providers includes energy storage systems (ESSs). This paper evaluates the benefits of using various types of novel ESS technologies for a variety of emerging smart grid demand response programs, such as regulation services reserves (RSRs), contingency reserves, and peak shaving. We model, formulate and solve optimization problems to maximize the net profit of ESSs in providing each demand response. Our solution selects the optimal power and energy capacities of the ESS, determines the optimal reserve value to provide as well as the ESS real-time operational policy for program participation. Our results highlight that applying ultra-capacitors and flywheels in RSR has the potential to be up to 30 times more profitable than using common battery technologies such as LI and LA batteries for peak shaving

    Final report: Workshop on: Integrating electric mobility systems with the grid infrastructure

    Full text link
    EXECUTIVE SUMMARY: This document is a report on the workshop entitled ā€œIntegrating Electric Mobility Systems with the Grid Infrastructureā€ which was held at Boston University on November 6-7 with the sponsorship of the Sloan Foundation. Its objective was to bring together researchers and technical leaders from academia, industry, and government in order to set a short and longterm research agenda regarding the future of mobility and the ability of electric utilities to meet the needs of a highway transportation system powered primarily by electricity. The report is a summary of their insights based on workshop presentations and discussions. The list of participants and detailed Workshop program are provided in Appendices 1 and 2. Public and private decisions made in the coming decade will direct profound changes in the way people and goods are moved and the ability of clean energy sources ā€“ primarily delivered in the form of electricity ā€“ to power these new systems. Decisions need to be made quickly because of rapid advances in technology, and the growing recognition that meeting climate goals requires rapid and dramatic action. The blunt fact is, however, that the pace of innovation, and the range of business models that can be built around these innovations, has grown at a rate that has outstripped our ability to clearly understand the choices that must be made or estimate the consequences of these choices. The group of people assembled for this Workshop are uniquely qualified to understand the options that are opening both in the future of mobility and the ability of electric utilities to meet the needs of a highway transportation system powered primarily by electricity. They were asked both to explain what is known about the choices we face and to define the research issues most urgently needed to help public and private decision-makers choose wisely. This report is a summary of their insights based on workshop presentations and discussions. New communication and data analysis tools have profoundly changed the definition of what is technologically possible. Cell phones have put powerful computers, communication devices, and position locators into the pockets and purses of most Americans making it possible for Uber, Lyft and other Transportation Network Companies to deliver on-demand mobility services. But these technologies, as well as technologies for pricing access to congested roads, also open many other possibilities for shared mobility services ā€“ both public and private ā€“ that could cut costs and travel time by reducing congestion. Options would be greatly expanded if fully autonomous vehicles become available. These new business models would also affect options for charging electric vehicles. It is unclear, however, how to optimize charging (minimizing congestion on the electric grid) without increasing congestion on the roads or creating significant problems for the power system that supports such charging capacity. With so much in flux, many uncertainties cloud our vision of the future. The way new mobility services will reshape the number, length of trips, and the choice of electric vehicle charging systems and constraints on charging, and many other important behavioral issues are critical to this future but remain largely unknown. The challenge at hand is to define plausible future structures of electric grids and mobility systems, and anticipate the direct and indirect impacts of the changes involved. These insights can provide tools essential for effective private ... [TRUNCATED]Workshop funded by the Alfred P. Sloan Foundatio

    Smart Grid Technologies in Europe: An Overview

    Get PDF
    The old electricity network infrastructure has proven to be inadequate, with respect to modern challenges such as alternative energy sources, electricity demand and energy saving policies. Moreover, Information and Communication Technologies (ICT) seem to have reached an adequate level of reliability and flexibility in order to support a new concept of electricity networkā€”the smart grid. In this work, we will analyse the state-of-the-art of smart grids, in their technical, management, security, and optimization aspects. We will also provide a brief overview of the regulatory aspects involved in the development of a smart grid, mainly from the viewpoint of the European Unio
    • ā€¦
    corecore