701 research outputs found

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    On the application of reservoir computing networks for noisy image recognition

    Get PDF
    Reservoir Computing Networks (RCNs) are a special type of single layer recurrent neural networks, in which the input and the recurrent connections are randomly generated and only the output weights are trained. Besides the ability to process temporal information, the key points of RCN are easy training and robustness against noise. Recently, we introduced a simple strategy to tune the parameters of RCNs. Evaluation in the domain of noise robust speech recognition proved that this method was effective. The aim of this work is to extend that study to the field of image processing, by showing that the proposed parameter tuning procedure is equally valid in the field of image processing and conforming that RCNs are apt at temporal modeling and are robust with respect to noise. In particular, we investigate the potential of RCNs in achieving competitive performance on the well-known MNIST dataset by following the aforementioned parameter optimizing strategy. Moreover, we achieve good noise robust recognition by utilizing such a network to denoise images and supplying them to a recognizer that is solely trained on clean images. The experiments demonstrate that the proposed RCN-based handwritten digit recognizer achieves an error rate of 0.81 percent on the clean test data of the MNIST benchmark and that the proposed RCN-based denoiser can effectively reduce the error rate on the various types of noise. (c) 2017 Elsevier B.V. All rights reserved

    Machine learning applications in science

    Get PDF

    FPGA accelerator for gradient boosting decision trees

    Get PDF
    A decision tree is a well-known machine learning technique. Recently their popularity has increased due to the powerful Gradient Boosting ensemble method that allows to gradually increasing accuracy at the cost of executing a large number of decision trees. In this paper we present an accelerator designed to optimize the execution of these trees while reducing the energy consumption. We have implemented it in an FPGA for embedded systems, and we have tested it with a relevant case-study: pixel classification of hyperspectral images. In our experiments with different images our accelerator can process the hyperspectral images at the same speed at which they are generated by the hyperspectral sensors. Compared to a high-performance processor running optimized software, on average our design is twice as fast and consumes 72 times less energy. Compared to an embedded processor, it is 30 times faster and consumes 23 times less energy

    NASA JSC neural network survey results

    Get PDF
    A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc

    Compact and Extended Radio Sources Classification using Deep Convolutional Neural Networks

    Get PDF
    Upcoming surveys with new radio observatories such as the Square Kilometer Array will generate a wealth of imaging data containing large numbers of radio sources. Different classes of radio sources can be used as tracers of the cosmic environment, including the dark matter density field, to address key cosmological questions. Classifying these sources based on morphology is thus an important step toward achieving the science goals of next generation radio surveys. Extended Radio Sources have been traditionally classified as Fanaroff-Riley (FR) I and II, although some exhibit more complex 'bent' morphologies arising from environmental factors or intrinsic properties. In this work we present the FIRST Classifier, an on-line system for automated classification of Compact and Extended radio sources. We developed the FIRST Classifier based on a trained Deep Convolutional Neural Network Model to automate the morphological classification of compact and extended radio sources observed in the FIRST radio survey. Our model was trained independently for 20 times and achieved an average accuracy, precision, recall and F1 of 0.98. The current version of the FIRST classifier is able to identify the morphological class for a single source or for a list of sources as Compact or Extended (FRI, FRII and BENT)
    corecore