142 research outputs found

    Improving The Efficiency Of Video Transmission In Computer Networks

    Get PDF
    In-depth examination of current techniques for enhancing the efficiency of video transmission over digital networks is provided in this study. Due to the growing need for high-quality video content, optimizing video transmission is an important area of research. This review categorizes and in-depth examines a range of methods proposed in the literature to enhance video transmission effectiveness. ABR, DNN architecture, adaptive streaming, Quality of Service (QoS), error resilience, congestion control, video compression, and hardware acceleration for video provisioning are just a few of the cutting-edge techniques that are covered in the discussion, which ranges from the more traditional to the cutting-edge. This essay provides a methodical evaluation of the numerous tactics that are available, along with an analysis of their guiding principles, advantages, and disadvantages. The paper also offers a comparative analysis of various approaches, highlighting trends, gaps, and potential future research directions in this crucial domain, all of which help to create more efficient video compression and transmission paradigms in computer networks

    A Holistic Approach to Lowering Latency in Geo-distributed Web Applications

    Get PDF
    User perceived end-to-end latency of web applications have a huge impact on the revenue for many businesses. The end-to-end latency of web applications is impacted by: (i) User to Application server (front-end) latency which includes downloading and parsing web pages, retrieving further objects requested by javascript executions; and (ii) Application and storage server(back-end) latency which includes retrieving meta-data required for an initial rendering, and subsequent content based on user actions. Improving the user-perceived performance of web applications is challenging, given their complex operating environments involving user-facing web servers, content distribution network (CDN) servers, multi-tiered application servers, and storage servers. Further, the application and storage servers are often deployed on multi-tenant cloud platforms that show high performance variability. While many novel approaches like SPDY and geo-replicated datastores have been developed to improve their performance, many of these solutions are specific to certain layers, and may have different impact on user-perceived performance. The primary goal of this thesis is to address the above challenges in a holistic manner, focusing specifically on improving the end-to-end latency of geo-distributed multi-tiered web applications. This thesis makes the following contributions: (i) First, it reduces user-facing latency by helping CDNs identify and map objects that are more critical for page-load latency to the faster CDN cache layers. Through controlled experiments on real-world web pages, we show the potential of our approach to reduce hundreds of milliseconds in latency without affecting overall CDN miss rates. (ii) Next, it reduces back-end latency by optimally adapting the datastore replication policies (including number and location of replicas) to the heterogeneity in workloads. We show the benefits of our replication models using real-world traces of Twitter, Wikipedia and Gowalla on a 8 datacenter Cassandra cluster deployed on EC2. (iii) Finally, it makes multi-tier applications resilient to the inherent performance variability in the cloud through fine-grained request redirection. We highlight the benefits of our approach by deploying three real-world applications on commercial cloud platforms

    A cost-efficient QoS-aware analytical model of future software content delivery networks

    Get PDF
    Freelance, part-time, work-at-home, and other flexible jobs are changing the concept of workplace, and bringing information and content exchange problems to companies. Geographically spread corporations may use remote distribution of software and data to attend employees' demands, by exploiting emerging delivery technologies. In this context, cost-efficient software distribution is crucial to allow business evolution and make IT infrastructures more agile. On the other hand, container based virtualization technology is shaping the new trends of software deployment and infrastructure design. We envision current and future enterprise IT management trends evolving towards container based software delivery over Hybrid CDNs. This paper presents a novel cost-efficient QoS aware analytical model and a Hybrid CDN-P2P architecture for enterprise software distribution. The model would allow delivery cost minimization for a wide range of companies, from big multinationals to SMEs, using CDN-P2P distribution under various industrial hypothetical scenarios. Model constraints guarantee acceptable deployment times and keep interchanged content amounts below the bandwidth and storage network limits in our scenarios. Indeed, key model parameters account for network bandwidth, storage limits and rental prices, which are empirically determined from their offered values by the commercial delivery networks KeyCDN, MaxCDN, CDN77 and BunnyCDN. This preliminary study indicates that MaxCDN offers the best cost-QoS trade-off. The model is implemented in the network simulation tool PeerSim, and then applied to diverse testing scenarios by varying company types, number and profile (either, technical or administrative) of employees and the number and size of content requests. Hybrid simulation results show overall economic savings between 5\% and 20\%, compared to just hiring resources from a commercial CDN, while guaranteeing satisfactory QoS levels in terms of deployment times and number of served requests.This work was partially supported by Generalitat de Catalunya under the SGR Program (2017-SGR-962) and the RIS3CAT DRAC Project (001-P-001723). We have also received funding from Ministry of Science and Innovation (Spain) under the project EQC2019-005653-P.Peer ReviewedPostprint (author's final draft

    Shrinking VOD Traffic via RĂ©nyi-Entropic Optimal Transport

    Get PDF
    In response to the exponential surge in Internet Video on Demand (VOD) traffic, numerous research endeavors have concentrated on optimizing and enhancing infrastructure efficiency. In contrast, this paper explores whether users’ demand patterns can be shaped to reduce the pressure on infrastructure. Our main idea is to design a mechanism that alters the distribution of user requests to another distribution which is much more cache-efficient, but still remains ‘close enough’ (in the sense of cost) to fulfil each individual user’s preference. To quantify the cache footprint of VOD traffic, we propose a novel application of RĂ©nyi entropy as its proxy, capturing the ‘richness’ (the number of distinct videos or cache size) and the ‘evenness’ (the relative popularity of video accesses) of the on-demand video distribution. We then demonstrate how to decrease this metric by formulating a problem drawing on the mathematical theory of optimal transport (OT). Additionally, we establish a key equivalence theorem: minimizing RĂ©nyi entropy corresponds to maximizing soft cache hit ratio (SCHR) — a variant of cache hit ratio allowing similarity-based video substitutions. Evaluation on a real-world, city-scale video viewing dataset reveals a remarkable 83% reduction in cache size (associated with VOD caching traffic). Crucially, in alignment with the above-mentioned equivalence theorem, our approach yields a significant uplift to SCHR, achieving close to 100%

    Livenet: A low-latency video transport network for large-scale live streaming

    Get PDF
    Low-latency live streaming has imposed stringent latency requirements on video transport networks. In this paper we report on the design and operation of the Alibaba low-latency video transport network, LiveNet. LiveNet builds on a flat CDN overlay with a centralized controller for global optimization. As part of this, we present our design of the global routing computation and path assignment, as well as our fast data transmission architecture with fine-grained control of video frames. The performance results obtained from three years of operation demonstrate the effectiveness of LiveNet in improving CDN performance and QoE metrics. Compared with our prior state-of-The-Art hierarchical CDN deployment, LiveNet halves the CDN delay and ensures 98% of views do not experience stalls and that 95% can start playback within 1 second. We further report our experiences of running LiveNet over the last 3 years

    Adaptive Content Management for UGC Video Delivery in Mobile Internet Era

    Get PDF

    A Cognitive Routing framework for Self-Organised Knowledge Defined Networks

    Get PDF
    This study investigates the applicability of machine learning methods to the routing protocols for achieving rapid convergence in self-organized knowledge-defined networks. The research explores the constituents of the Self-Organized Networking (SON) paradigm for 5G and beyond, aiming to design a routing protocol that complies with the SON requirements. Further, it also exploits a contemporary discipline called Knowledge-Defined Networking (KDN) to extend the routing capability by calculating the “Most Reliable” path than the shortest one. The research identifies the potential key areas and possible techniques to meet the objectives by surveying the state-of-the-art of the relevant fields, such as QoS aware routing, Hybrid SDN architectures, intelligent routing models, and service migration techniques. The design phase focuses primarily on the mathematical modelling of the routing problem and approaches the solution by optimizing at the structural level. The work contributes Stochastic Temporal Edge Normalization (STEN) technique which fuses link and node utilization for cost calculation; MRoute, a hybrid routing algorithm for SDN that leverages STEN to provide constant-time convergence; Most Reliable Route First (MRRF) that uses a Recurrent Neural Network (RNN) to approximate route-reliability as the metric of MRRF. Additionally, the research outcomes include a cross-platform SDN Integration framework (SDN-SIM) and a secure migration technique for containerized services in a Multi-access Edge Computing environment using Distributed Ledger Technology. The research work now eyes the development of 6G standards and its compliance with Industry-5.0 for enhancing the abilities of the present outcomes in the light of Deep Reinforcement Learning and Quantum Computing
    • 

    corecore