
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

A Cost-Efficient QoS-Aware Analytical Model of Future Software
Content Delivery Networks

Beatriz Otero*1 | Eva Rodríguez1 | Otilio Rojas2,3 | Javier Verdú1 | Juan José Costa1 | Manuel
Alejandro Pajuelo1 | Ramón Canal1

1Computer Architecture Department,
Universitat Politècnica de Catalunya,
Barcelona, Spain

2Barcelona Supercomputing Center,
Barcelona, Spain

3Escuela de Computación, Facultad de
Ciencias, Universidad Central de
Venezuela, Caracas, Venezuela

Correspondence
*Beatriz Otero, C/Jordi Girona 1-3, Campus
Nord, Building C6-204, Universitat
Politècnica de Catalunya, 08034, Barcelona,
Spain. Email: botero@ac.upc.edu

Present Address
C/Jordi Girona 1-3, Campus Nord, Building
C6-204, Universitat Politècnica de
Catalunya, 08034, Barcelona, Spain

Summary

Freelance, part-time, work-at-home, and other flexible jobs are changing the concept
of workplace, and bringing information and content exchange problems to com-
panies. For instance, the emerging case of companies with mobile workers with
different types of corporate devices. Geographically spread corporations may use
remote distribution of software and data to attend employees’ demands, by exploiting
emerging delivery technologies. In this context, cost-efficient software distribution
is crucial to allow business evolution and make IT infrastructures more agile. On
the other hand, container based virtualization technology is shaping the new trends
of software deployment and infrastructure design. We envision current and future
enterprise IT management trends evolving towards container based software deliv-
ery over Hybrid CDNs. This paper presents a novel cost-efficient Quality-of-Service
(QoS) aware analytical model and a Hybrid CDN-P2P architecture for enterprise
software distribution. First, we test this model for a wide range of companies rang-
ing from multinationals to SMEs, by using the network simulation tool PeerSim.
These experiments emulate content distribution carry out by the real commercial
delivery networks KeyCDN, MaxCDN, CDN77 and BunnyCDN, operating under
various industrial hypothetical scenarios. We conclude that MaxCDN offers the best
cost-QoS trade-off. Later, we include our CDN-P2P architecture into this experimen-
tal setting, and use CDN-based results as reference. This study aims at assessing if
building a proprietary-owned hybrid CDN-P2P is the most cost-effective solution
in a long-term. Simulation results show overall economic savings between 5% and
20%, compared to just hiring resources from a commercial CDN, while guaranteeing
satisfactory QoS levels in terms of response times and number of served requests.

KEYWORDS:
cost-efficiency, hybrid architecture, containers, P2P, CDN

1 INTRODUCTION

Software distribution, especially among employees of the same company, may be open for optimization in terms of cost reduction
and making IT infrastructures of emerging SMEs more agile. Similarly, well-consolidated companies with remotely distributed

This is the peer reviewed version of the following article: Otero, B. [et al.]. A cost-efficient QoS-aware analytical model of future
software content delivery networks. "International journal of network management", 31 Agost 2020, núm. e2137, p. 1-24, which has
been published in final form at https://doi.org/10.1002/nem.2137. This article may be used for non-commercial purposes in accordance
with Wiley Terms and Conditions for Self-Archiving

2

offices, could be potential optimization scenarios of this sort. From the beginning companies pushed for server -based distribution
software1. As software development evolves new challenges appear, such as mobile workers with different types of corporate
devices, or cases where bring your own device (BYOD) is allowed, and even also corporate-owned personally enabled (COPE)
trends. All of these representing security and management challenges for IT2.
Cloud computing has proven its effectiveness, not only in reducing the execution time of workloads with high computing

and storage requirements, but has also enabling the deployment of a large number of cloud services for enterprises and users
in a simple and scalable way. The key to this deployment lies in the increasing use of application containers3,4. Basically, an
application container (also known as light-weight virtual machine or application virtualizer) is a file that contains an application
along with all its dependencies and an execution environment (usually a container loader). The recent advent of container-based
virtualization technology is shaping the new trends of software deployment and infrastructure design5. In fact, common problems
of corporate software, like legacy issues, are currently addressed by the use of container-based technology (e.g. Docker, Avanade,
Cisco, Microsoft, Hewlett Packard Enterprise partnership6). In no case, an application container emulates the behaviour of a
computer’s hardware, since it is neither designed to create a standard application execution environment, nor to facilitate the
cross-execution of operating systems. An application container only virtualizes the file system in which the application operates
along with the name-space of the operating system for that application. In addition, the execution of an application in a container
is native, which means that hardware is never virtualized. These container features highly facilitate the deployment of cloud
services.
Application containers are displacing the use of more traditional solutions based on virtual machines such as VirtualBox or

VMWare. The container’s main advantage is the reduction of resources needed for deployment7. Specifically, the execution of a
containerized application is native and does not incorporate any virtualization layer, and then it reduces processor consumption
and the amount of memory required to run this application. In addition, only the application code and data are actually stored in a
container, and there is no need to also store the operating system image, as required for virtual machines to run same application.
This significantly reduces both the amount of storage and the bandwidth needed to deploy the container. This further makes the
application maintenance, especially its updates, less expensive to perform and deploy when using containers.
Aforementioned features make containers ideal for mass deployment of elastic infrastructure services in the cloud, so large

providers of cloud infrastructure are developing their own container systems. The popularization of cloud services has led large
companies to build infrastructures based on these technologies to provide container deployment services for other companies
or individuals. Examples of these infrastructures are Microsoft Azure or Amazon Web Services. The fact of being able to build
such container deployments, facilitates the management of the contracted infrastructure, since it avoids all the management of
creation, instantiation, deployment and maintenance of virtual machines.
Several solutions and frameworks work on top of proprietary or outsourced servers, although scalable designs include Content

Delivery Networks (CDN). CDN emerge as solutions to the current problem of a centralized web, unable to guarantee low
response time and minimum loss of information, when moving the content of the information to the end users. Although, some
studies have recently reported CDN throughput reduction during peak hours because of high demands8,9,10, these networks
have become the emerging backbone for content distribution11,12. To alleviate the trafic pressure from peak demands, CDN
architectures have being enhanced by using P2P networks to assist CDN servers, and thereby solve scalability and costs issues of
traditional CDN13,14. Basically, delays on content distribution to end users can be exclusively reduced by a CDN, at the cost of
deploying a large number of network edge cache servers. The deployment cost can be reduced or totally avoided by considering
P2P networks. However, these architectures also spend a significant amount of network bandwidth, and the departure of the
P2P nodes may lead to a reduction of QoS. A hybrid distribution service that nicely couples CDN and P2P can offer a high
content-delivery performance and achieve their complementary advantages, as easy management and high QoS, and also the
low running costs and high scalability of P2P networks15,16,17. The main strength of Hybrid CDNs is that they offer low priced
high-quality services.
Recently, some works18,19 fully exploit the advantages of CDN-P2P architectures to improve content delivery performance,

reduce costs and ease network congestion. However, these works do not include an economic study about the cost of using this
technology, to determine in which cases using CDN-P2P infrastructures is more convenient. Although CDN services have a huge
worldwide demand because of their usefulness for companies, several important corporates, like Netflix, Comcast, Apple, and
Facebook among others, have started to build their own private CDN20. This strategic decision involves a huge initial investment,
but higher a predicted cost reduction. However, it is indeed challenging to design an optimal and cost-aware proprietary CDN.
There are multiple relevant factors that impact the infrastructure design in order to guarantee a required QoS level. There are
studies about workload characteristics and performance metrics that allow QoS analyses, but unfortunately, they are mainly

3

focused on common multimedia delivery21,22,23. To our knowledge, there is an important lack of studies and analyses focused
on the specifications and performance needs of CDNs for enterprise software distribution. In this work, we propose the usage
of a CDN-P2P architecture for this purpose, and develop a model, considering relevant parameters such as demand for content,
bandwidth and storage capacity, for cost benefit analysis, as in the recent works above mentioned. By means of this proposed
model, enterprises will be able to estimate usage or acquisition costs of an infrastructure for software delivery among their
employees, or among their clients, that accounts for these crucial parameters.
We envision current and future enterprise IT management trends towards container-based software delivery over CDNs or

Hybrid CDNs. However, SMEs and large companies present alternative or different sets of problems and challenges, that makes
non-trivial finding the best best ways to build or outsource CDN services. On the one hand, cloud providers offer cost-efficient
hosting of resources and delivery services, avoiding the need of owning a infrastructure and its potential investments on acqui-
sition and maintenance, taking advantage of the pay-as-you-go strategy. Cloud-based infrastructures aim at providing efficient
content delivery services in terms of QoS, scalability and resource efficiency. Cloud vendors lease resources from one or more
cloud providers for a cheaper hosting and deployment of applications, that can scale based on the number of user requests.
There are two alternative considerations that may lead to building a hybrid infrastructure. First, most CDNs have prices

suitable for multimedia contents, except for the few of them especially focused on software distribution. Second, workload
characteristics and corporate needs may present stringent requirements, like huge delivery of software packages and content
protection. This paper presents a novel cost-efficient QoS aware analytical model based on a CDN-P2P architecture for soft-
ware content delivery, which evaluates different industrial scenarios, considers different CDN software providers, and finally
determines if such architecture is cost-effective for software distribution. For a given company, this model estimates installation
and maintenance costs taking into account relevant parameters, such as the content size, transmission rate, number of users, etc.
It is worthy to noting that our model also determines if building a proprietary-owned CDN is the most cost-effective solution
in a long-term. Moreover, our work develops a new delivery framework for enterprise software distribution. To this end, we
first present the initial and essential stage of model definition, that requires stating workload characterization and performance
metrics for enterprise software delivery. To the best of our knowledge, this is the first throughout analysis of the needs and
constraints for software delivery. Moreover, we perform an empirical study of current commercial software delivery CDNs in
terms of costs, storage, performance, and reliability. In addition, we define a hybrid architecture that combines CDN and P2P
delivery and exhibits three main benefits: (i) high QoS of CDNs, (ii) low priced software delivery and, (iii) high scalability of
P2P networks. Finally, we also validate this model against real service and infrastructure providers under different case studies,
representative of several SME and big company scenarios. Results confirm the model accuracy and efficiency by taking optimal
decisions when designing future enterprise software distribution.
In summary, the key contributions of this paper are:

• Definition of essential features characterizing software distribution, specifically for container-based delivery.

• Review and analysis of existing software delivery CDNs considering costs, storage, performance, reliability and delivery
acceleration.

• Definition of a Hybrid CDN-P2P architecture for low priced high QoS (in terms of response time deployment) software
applications.

• Definition of a novel cost-efficient QoS aware analytical model that minimizes deployment costs, and satisfies users’ QoS
in terms of response time and the number of served requests.

• Identification and study of realistic scenarios for model application.

• Model analysis and assessment in all scenarios under consideration.

The rest of this paper is structured as follows. Section 2 discusses the related work. Section 3 presents an analysis of software
distribution networks, that first characterizes workload and performance metrics, and then studies current commercial CDNs.
Section 4 proposes a Hybrid CDN-P2P architecture for cost-efficient QoS deployment of software applications. Section 5 pro-
poses our cost-efficient QoS-aware model. Section 6 presents tested scenarios and carried out empirical experiments, while
Section 7 analyzes all obtained results using the PeerSim simulator. Finally, section 8 presents our conclusions and poses future
research directions.

4

2 RELATEDWORK

This paper proposes a novel cost-analytic model on delivery networks for software distribution. The proposedmodel will provide
companies the best solution in terms of cost and QoS (response time) when externalizing their services and resources. In the
literature, we can find different works proposing economic models for minimizing rental costs in Cloud-based CDNs, as well as
in Hybrid CDN-P2P networks. Below, we describe relevant works focused on both CDNs and Hybrid CDN-P2P, some of them
involving cost modelization, and highlight main differences with respect to the proposed model in this paper.
Large scale and fast dissemination of software updates to millions of Internet users is becoming crucial to offer updated

services and applications. In this way, to study the way in which the updates are carried out is really useful to understand software
distribution. For Windows update, for instance, a well designed implementation of a fast and effective patch dissemination
system has been necessary24. In that work, Gkantsidis and co-authors also analyse an alternative patch delivery strategy such
as caching and peer-to-peer for software distribution. That paper demonstrates that P2P architectures have a great potential for
providing fast and effective patch delivery. However, their results are reported for scenarios where many users download few
large files or many small files, but such scenarios do not correspond to the content distribution systems devised in this work.
In our case, users could download selected contents whenever they wish, and these contents may be the same each time. File
sizes can be variable, and even of large size, accounting for the stringest case of many users downloading a lot of large files.
As mentioned before, our model and results include the consideration of P2P architectures for the distribution of contents with
business purposes, although not exclusively.
More recently,18 studies the usage of content distribution techniques and their suitability to network infrastructures with the

goal of improving service performance. This is still a new research area, with a lot of challenging issues that need to be addressed.
In the literature, we also find works that introduce hybrid solutions blending CDN and Peer-to-Peer (P2P) approaches25,26,27,18,19.
They combine CDNs and P2P networks taking profit of the advantages of both architectures, that is, the easy management and
high QoS of CDNs, and the low running costs and high scalability of P2P networks.
Hu, et al.28 propose different algorithms to rent cloud resources for building CDNs, by caching resources in a way that costs

wereminimized, but at the same time, guaranteeing that all requests are served. The first algorithm is theDifferential Provisioning
and Caching algorithm that minimizes rental cost and optimizes content caching. The second algorithm is the Caching and
Request Balancing algorithm to dynamically adjust the placement of replicas in CDNs to maximize the rented resources at
runtime. Both algorithms were designed to support dynamic demand patterns. Main differences with respect to our algorithm
are the nature of the content, user types, and demand patterns. While, Hu and co-authors consider multimedia contents, media
consumption, and high varying patterns, we consider containerized software applications, employees of a corporation, and well
known (regarding time) demand patterns. It is worth noting that all these factors have a direct impact on model variables.
Other works in the literature present different solutions for replica placement. Sahoo and Glitho propose in29 an efficient

heuristic for the NP-hard replica server placement problem. The heuristic first places replicas on resources, mainly servers with
low operational cost, on the Cloud, and then it reduces redundant cloud sites. This heuristic improves existing ones in terms of
computation time and operational cost. Alternative replica placement algorithms have been developed for cost minimization30,31.
These works provide the best solutions for replica placement, an NP-complete problem, based on tree topologies. The later also
considers reading, writing, and storage costs. These works are similar to ours for replica placement, but we here also account
for economic costs.
Garmehi, et al.15 propose an economic and efficient replica placement algorithm for content streaming. They use the Economic

Mechanism Design Theory to design a recursive hierarchical replica placement mechanism. Advantages of this model become
clear when the system load increases significantly, since it is when edge servers replicate content strategically. This model
reduces costs to content providers, spending less for delivered traffic, and at the same time improves QoS to end-users. The main
difference between15 and our model is that we minimize rental costs, while serving all requests and satisfying QoS in terms of
response time (minimum content delivery time).
Alternative published contributions address auto elasticity algorithms in the Cloud32,33, both reactive and predictive, where

resources are optimized according to user demands. Cerqueira and Solis34 present an architecture based on containers to promote
auto elasticity on a Cloud computing environment. They propose a Proportional-Integral-Derivative (PID) based auto scaler
algorithm to optimize resource allocations complying with response time requirements. The PID controller reacts to variations
of the system’s response time, by changing the number of containers in the load balancing cluster that process web requests.
That work is related to the one presented in this paper, since our model also guarantees users’ QoS in terms of response time.

5

But, the main difference is that response time in our model has an impact on the rented resources; while in Cerqueira-Solis’
algorithm response time impacts the number of containers deployed.
A recent work35 presents an economic study of a request-routing and resource-allocation mechanism in CDN-P2P networks.

However, this mechanism is used to replicate the content in client-server or P2P modes, and determine the optimum level of
end-user’s contribution, but not define a cost-efficient QoS aware analytical model to minimizes deployment costs.

3 ANALYSIS OF SOFTWARE DISTRIBUTION NETWORKS

The state of the art on CDN evaluation metrics reduces to five key metrics36, focused on common content distribution, such as
Web objects, static data, or multimedia content. These metrics are cache hit ratio, saved bandwidth, latency, surrogate server
utilization, and reliability. All of them aim at reducing the waiting time of end-users to get access to the requested content. Even
though, software distribution presents different requirements to guarantee QoS.
This section reviews the first characterization found in the literature of appropriate features for software distribution, specif-

ically for container-based software. First, we introduce a brief description of workload characteristics. Then, we present the
key performance metrics impacting the required QoS. Finally, we study and compare nowadays commercial infrastructures for
content delivery.

3.1 Workload Characteristics and Performance Metrics
This paper envisions future software distribution based on containers. In the beginning, container-based distribution was mainly
used for micro service deployments. Recently, they have been also used for delivering applications, as in the case of enterprise
software6. Container-based software delivery presents particular characteristics, namely:

• Large content sizes. Containerized software applications are much bigger than typical multimedia contents (audio, video,
etc.). The size of a containerized application ranges from 5 GB to 40 GB37, depending on the application.

• Partial downloads. A specific feature of software containers, unlike software images or video games, is that the container-
ized application can be executed only with about 20% of the total data stored in the container38. This significantly reduces
the minimum required data to be delivered, in order to guarantee a QoS level, although it remains much higher than the
essential for multimedia content delivery, in typical CDNs. For example, Netflix requires from 0.3 GB/hour for a movie
in low resolution up to 7 GB/hour for a movie in ultra HD. While, for software containers, the distribution network has
to deliver between 1 GB and 8 GB in a few minutes to execute the application. Thus, the partial download characteristic
allow the hybrid network only transmitting this 20% through the CDN to provide an acceptable QoS to end users.

• With/without data. Depending on user needs, the container may only comprise the software application, or it may also
contain data to be processed by the software. In the latter case, the container contents need to be updated to include the
latest files and required data. This feature has a direct impact on the network traffic (just downloading versus bidirectional
trafic) and consequent costs.

An alternative set of features relevant for network architecture are user related. In software delivery, users usually are part of
the same corporation, unlike users of multimedia content distribution. Thus, it is also necessary have into account the following
system parameters:

• Well identified peaks. User requests will be more frequent at the start of a working day. Thus, peaks will be more
predictable over time.

• The number of delivery requests will not fluctuate. For companies under normal operation, the number of employees
will not significantly vary over time, and therefore, the number of requests for a given application will follow a similar
temporal pattern. Unlike the case of multimedia content distribution, where the number of users can vary a lot.

• Requests will be geographically concentrated. Most of requests will take place on those regions where the company has
its headquarters. This will limit the location of the points of presence within the CDN.

6

TABLE 1 Comparison of commercial CDNs for software delivery

Cost Delivery
CDN provider Network Model Transfer Storage acceleration

keyCDN 25 data centers pay-as-you-go
(minimum 49 $/year)

$0.04 GB/month (first 10 TB)...
$0.02 GB/month (above 500 TB)

$0.047 GB/month (first 250 GB) to
$0.27 GB/month (above 500 GB)

SSD servers
Optimized TCP stack

CDN77 32 data centers pay-as-you-go $0.049 GB/month (first 5 TB)...
$0.029 GB (above 440 TB)

First 50 GB for free
Next 150 GB costs $20/montly,..., up to
$295/monthly for 5 TB

Leading-edge latency-based
routing

MaxCDN 19 edge locations
fix (monthly or annual
packages)

$9/month (100 GB) up to
$1199/month (25 TB) - Anycast DNS traffic routing

algorithm and SSD servers
Custom per-gigabyte
princing

$0.095 (25 TB or under) ...

0.05 (3 PB - 5 PB)

BunnyCDN 23 data centers pay-as-you-go
(minimun 10$/year) $0.01 GB/month $0.01 GB/month SSD servers

Anycast DNS network

Finally, regarding performance metrics, QoS will be measured in terms of response time. In the case of software container
deployment, the users’ satisfaction will mainly depend on the time needed for the application execution. This time will depend
on the delivery time of the complete container, or at least of the 20% of it.

3.2 Infrastructures for Content Delivery
This section provides an analysis of current commercial infrastructures for software delivery in terms of costs, storage, per-
formance, and delivery acceleration. A comparative summary is provided in Table 1. CDNs are distributed networks built of
strategically positioned servers, file storage devices or data centers around the world, which allow fast content delivery since
end-users are served with the replica of their closest edge, or Point of Presence (PoP). CDNs improve user experience by reduc-
ing the response time, and at the same time, alleviating network traffic. Nowadays, few of them are specialized in software
distribution, as KeyCDN39, MaxCDN40, CDN7741, or BunnyCDN42. These providers can better optimize the content pricing
and caching scheme, when compared to the traditional providers for delivery multimedia content, where a subscription service
is hired, instead of on-demand service. As a complementary comparative study, we refer the reader to the works35,43,35, that
evaluate different CDN providers considering a variety of features.
The commercial networks in Table 1 are later used to test our cost-effective model proposed in section 5, which aims at

providing companies an overall efficient delivery of containerized software applications with QoS satisfaction, while minimizing
costs; that is, a trade-off between costs and QoS in terms of response time.

KeyCDN has been designed to be scalable, in order to provide high availability of contents and to speed up their delivery.
This global CDN has been designed to provide high performance, high throughput, and low latency. KeyCDN offers solutions
for software, game and application delivery; and for improving website performance. KeyCDN uses the pay-as-you-go model,
but clients have to spend at least $49 per year, otherwise, their credits expire. KeyCDN has 25 data centers around the world.
Clients have for free five zones, but if they want to use PoP in other zones they have to pay $1 extra per zone/month. KeyCDN
enables data transfer rates of 40 GBps. Content can be uploaded and stored directly on KeyCDN’s storage cluster creating a push
zone. The maximum file size is 5GB. The software delivery platform makes faster downloads because servers benefit from an
optimized TPC stack and 100% SSD coverage.
CDN77 provides solutions for web site acceleration, video on demand, software distribution, and gaming. It has 32 data

centers around the world, in 27 different countries, and uses the pay-as-you-go model based on traffic. Content also can be
uploaded and stored, being the first 50 GB for free, with a maximum number of 500.000 files. CDN77 minimizes delivery time
exploiting their leading-edge latency-based routing.
MaxCDN also provides solutions for gaming and software distribution. It is specialized in delivering software updates to

millions of devices. It offers customized pricing, based on the pay-as-you-model, ranging from $0.095 (25TB or under) to $0.05
(3PB-5PB). However, unlike KeyCDN and CDN77, it also offers monthly or annual packages for entrepreneur or professional
users, depending on their needs. Its network is made up of 19 edge locations, strategically placed, and accelerated by the Anycast
DNS traffic routing algorithm and SSD servers.

7

BunnyCDN is a low-cost fast CDNwith 23 data centers around the world. It offers solutions for software and content delivery,
web site acceleration, and CDN cloud storage. It guarantees latencies less than 30ms. All its servers also are powered by SSD
technology, and they have designed an anycast DNS network to provide users the best possible network route. It offers two
different solutions: the premium tier for high-performance solutions and the volume tier. The latter uses a smaller set of high-
performance PoPs.
From above analysis, we can conclude that CDN77 is the provider with more data centers, which has a direct impact on the

network latency. All of them, except MaxCDN, only offer the pay-as-you-go model. Finally, all these providers supply solutions
for delivery acceleration based on SSD servers and traffic routing algorithms.

4 SOFTWARE DELIVERY ARCHITECTURE: HYBRID CDN-P2P ARCHITECTURE

In the last years, Hybrid CDN-P2P content distribution systems15 have received increasing attention in the research community,
as well as in the industry, especially for video streaming. The hybrid CDN-P2P approach is promising to achieve a trade-off
between QoS (in terms of deployment time) and distribution costs. This paper proposes a Hybrid CDN-P2P distribution system
for software deployment, in particular for containerized software applications. The proposed architecture will profit off the
advantages of CDN servers and P2P networks, as in multimedia scenarios. More specifically, it will benefit of the performance
in terms of delivery time of CDN servers and of the low distribution costs of P2P networks.
Hybrid systems can be classified into two categories44, depending on their mix strategy: Peer-assisted CDN and CDN assisted

P2P. Most of the current commercial approaches fall into the first category, where the P2P network acts as a complement for the
CDN. For example, in video streaming systems, user requests are served by the CDN, and the P2P network mainly improves
user experience and alleviates network load stress. The hybrid system that we propose for software delivery, see Figure 1, also
fall into this first category, Peer-assisted CDN. User requests also will be served by the CDN, and the critical data will be sent
through the CDN architecture, while P2P will alleviate network load stress and reduce costs. In our architecture peer selection
also benefits from CDN redirection scheme.

FIGURE 1 Hybrid CDN for Sw delivery.

A key feature of software containers is that containerized applications only need 20% of the total data in containers to be
executed38. This feature has a direct impact on the design of the hybrid CDN-P2P architecture proposed. This part of the
container will be delivered by the CDN servers to guarantee users’ QoS since the response time is critical for the user to start
to execute the requested application. On the other hand, the remaining 80% of the container will be delivered by both CDN and

8

P2P networks. Therefore, the CDN approach is advantageous to support the delivery of the critical part of the container, and a
P2P approach will provide cost-effective distribution for the remaining modules of the containerized applications.
For the proposed hybrid architecture, the containers’ delivery time falls into one of the three stages sketched in Figure 2.

FIGURE 2 Different stages for software containers’ deployment.

5 COST-EFFICIENT QOS-AWARE MODEL

This section proposes an optimization model to be used by a company that decides to outsource its services and resources by
renting an infrastructure to reduce operation and capital expenses. This infrastructure should blend Cloud and P2Ps services,
taking profit of the delivery costs of P2P and Cloud response time. All model solutions provide elastic resource provisioning to
users by means of an automatic resource allocation and load balancing techniques. The model minimizes resource rental costs,
satisfying all considered standard demands, with a minimum delivery time. The model formulation uses integer programming
with an objective function that minimizes the infrastructure renting costs, and considers certain resource restrictions involving
QoS, bandwidth, and storage; all of which must be taken into account when using both infrastructures. The model assumptions
are the following:

• Bandwidth costs are lower in P2P than in Cloud, but deployment time is higher (Trade-off between deployment time and
cost).

• P2P bandwidth is greater than the chunk size.

• All P2P users are candidates to participate in any request of software distribution.

All contents in the system are divided into multiple equal-sized chunks and delivered. In this work, all contents are of the
same size for each request. The system attends all requests and it is assumed a well-known input demand uniformly distributed.
The numbers of requests are predictable, then the input demand is not a variable function, and it is a parameter instead.
Each request, issued by a user, attempts to access certain content (a containerized application, the user wants to use). We

suppose that user application related data is detached from the container, and stored in a different resource. Then, all user requests
of a concrete software application, are served with the same containerized application or corresponding replica. The content,
for instance, could be file blocks in file downloading systems.

9

TABLE 2 Summary of notations and terminology - CDN network.

Parameter Definition
BCS,i Bandwidth capacity of site i
SCS,i Storage capacity of site i
pbCS,i Unit bandwidth rental price of site i
psCS,i Unit storage rental price of site i

QCS,i,j
Binary parameter indicating whether a request can be routed from location i
to site j

dCS,i Input demands for content on location i
Variable Definition
bCS,i Amount of bandwidth rented on location i
sCS,i Amount of storage rented on location i
rCS,i,0 Ratio of demands for content routed from location i to the root
rCS,i,j Ratio of demands for content routed from location i to the site j

In order to satisfy the quality of service requirements of end-user requests, we consider a binary parameter Qij to denote
whether requests can be routed from location i to site j. We will assume that serving each request consumes the same amount
of resources (bandwidth and storage).
Hereinafter, we will separately present the terms associated with the model objective function, as well as the restrictions

for each infrastructure, being the Cloud infrastructure the first presented. Finally, we will propose a model that combines both
infrastructures.

5.1 Cloud Infrastructure
The delivery network is built on resources leased from N cloud sites located across the Internet, and the users reside on M
locations. We suppose thatN ≪ M .
We define the number of input demands created at location i as dCS,i. Let bCS,i and sCS,i be the amounts of bandwidth capacity

and storage capacity that have been rented at localization i. Similarly, let P b
CS,i be the unit price of site i to rent bandwidth, and

let P s
CS,i be the unit storage price to the same site. We denote and as the bandwidth and storage capacities of site i. The notation

rCS,i,j is used to denote the probability of requests from location i being directed to site j. We denote the root as site 0 and we use
rCS,i,0 to denote the fraction demand sent to the root. Demands routed to the root should suffer a high cost pCS,0,b as punishment.
Finally, let QCS,i,j be the parameter that indicates whether a request can be routed from location i to site j. Table 2 summarizes
the notations and terminology used in this paper to model the providers’ cost in the CDN infrastructure.

As stated above, the main objective is to minimize the total cost of hired resources (bandwidth and storage) to attend all
requests, while satisfying the QoS by means of acceptable deployment times. This problem can be formulated as an integer
programming problem as follows:

minCtype = min

(N
∑

i=0

(

pbtypeCS,i ∗ btypeCS,i + pstypeCS,i ∗ stypeCS,i

)

+
N
∑

i=0

(

pbtypeCS,0 ∗ dCS,i ∗ rtypeCS,i,0

)

+ ctypef

)

(1)

with ctypef the fixed cost of one CDN’s provider to type =KeyCDN, CDN77,⋯, BunnyCDN.
s.t

btypeCS,i ≤ Btype
CS,i i = 0,⋯ , N (2)

stypeCS,i ≤ S type
CS,i i = 0,⋯ , N (3)

M
∑

i=0

(

rtypeCS,i,j ∗ dtype
CS,i

)

≤ btypeCS,i j = 0,⋯ , N (4)

10

TABLE 3 Summary of notations and terminology - P2P network.

Parameter Definition
C t
i Total number of chunks that Peer i intends to download from its neighbors at time slot t

T Chunk size in bytes
BP 2P ,i Upload bandwidth capacity of Peer i
SP 2P ,i Storage capacity of Peer i
pbP 2P ,i Unit bandwidth rental price for Peer to receive a chunk from one neighbor peer
psP 2P ,i Unit storage rental price for Peer to receive a chunk from one neighbor peer

SRC
i,u→d

Server request indicator. Denotes if Peer i can download chunk c (i. e. its value is 1 if a

request is served by the corresponding upstream peer u, and 0 otherwise)
Variable Definition
bP 2P ,i Amount of bandwidth used on the Peer i for uploading a chunk
sP 2P ,i Amount of storage used on the Peer i for storing a chunk

rtypei,j

(

1 −Qtype
CS,i,j

)

= 0 i = 0,⋯ ,M ; j = 0,⋯ , N (5)

rtypeCS,i,0 +
N
∑

j=0
rtypeCS,i,j = 1 i = 0,⋯ ,M (6)

where constraints (2), (3) and (4) include the bandwidth limit and disk limit at each site, the constraint (5) guarantees that the
QoS requirement can be satisfied, and the constraint (6) guarantees that the total fraction of served requests is 1.

5.2 P2P Infrastructure
This section presents the cost-efficient model for the P2P infrastructure. We define C t

i as the total number of chunks that Peer
i intends to download from its neighbours at time slot t. We denote T as the chunk size in bytes. Let BP 2P ,i and SP2P ,i be the
amounts of bandwidth capacity and storage capacity that Peer i has rented. Similarly, let pbP 2P ,i be the unit bandwidth rental price
for Peer i for receiving a chunk from one neighbour peer and let psP 2P ,i be the chunk storage price on Peer i. We denote BP 2P ,i
and SP 2P ,i as the bandwidth and storage capacities of Peer i. The notation SRC

i,u→d is used to denote if Peer i can download the
chunk c (i. e. its value is 1 if a request is served by the corresponding upstream peer u, and 0 otherwise). Table 3 summarizes
the notation for parameters and variables of the P2P infrastructure cost-efficient model.

For the definition of the model we will assume the following:

• For all peers, the upload and download bandwidths are the same.

• Once the distribution of a chunk starts, from a neighbour, chunk downloading is completed. The model does not support
chunks partially downloaded in a given peer i.

• The first neighbour discovered from peer i is the one chosen to receive the chunk.

• Discovered neighbours of peer i will have available the requested chunks.

• The cost of a delivery chunk will be the same for all neighbours. The model will only consider close neighbours.

Same as for the previous case the cost-effective model the P2P infrastructure is an integer programming model, whose
formulation is as follows:

min
∑

c∈C t
i

∑

u∈NP2P ,i

SRC
i,u→d

(

pbP 2P ,i ∗ bP 2P ,i + psP 2P ,i ∗ sP 2P ,i
)

(7)

11

withNP 2P ,i the set of all neighbors of peer i
s.t

T ∗ C t
i ≤ bP 2P ,i ≤ BP 2P ,i i = 0,⋯ , N (8)

T ∗ C t
i ≤ sP 2P ,i ≤ SP 2P ,i i = 0,⋯ , N (9)

where restriction (8) guarantees that a peer cannot download more content than the maximum allowed by the bandwidth hired.
Moreover, it allows peers to download several different chunks at the same time. Finally, restriction (9) guarantees that the
storage used by peer i is lower than its whole capacity.
In this way, the model proposed for the hybrid architecture requires optimizing the following objective function:

min
⎛

⎜

⎜

⎝

N
∑

i=0

(

pbtypeCS,i ∗ btypeCS,i + pstypeCS,i ∗ stypeCS,i

)

+
N
∑

i=0

(

pbtypeCS,0 ∗ dCS,i ∗ rtypeCS,i,0

)

+ ctypef +
∑

c∈C t
i

∑

u∈NP2P ,i

SRC
i,u→d

(

pbP 2P ,i ∗ bP 2P ,i + psP 2P ,i ∗ sP 2P ,i
)
⎞

⎟

⎟

⎠

(10)
subject to restrictions (2)-(6) and (8)-(9) including the follow constraints:

pbtypeCS,i ∗ btypeCS,i > pbP 2P ,i ∗ bP 2P ,i i = 0,⋯ , N (11)

pstypeCS,i ∗ stypeCS,i ≤ psP 2P ,i ∗ sP 2P ,i i = 0,⋯ , N (12)
where constraints (11) and (12) assure that P2P unit bandwidth price is cheaper than CS, but the storage unit price is more
expensive than CS.
In order to minimize the objective function above, it is necessary, whenever it is feasible (that is, when response times will

be acceptable), to deliver contents (software containers) through the P2P architecture.

6 SCENARIOS AND EMPIRICAL EXPERIMENTS

This section presents the scenarios and experiments carried out to test the effectiveness of our empirical cost-efficient model
for commercial CDN providers. This conducted empirical study considers the four CDN providers, specialized in software
distribution and reviewed in section 3.2 (see Table 1, for a summary). This study is later used as reference, for simulation results
when modeling a hybrid CDN-P2P architecture, and give us an idea of the expected limits or ranges of the container delivery
time. Such analyses help us to determine the best option to minimize costs in a concrete real scenario, while guaranteeing the
users’ QoS.

6.1 Scenarios
Our scenarios have been designed aiming at encompassing themost representative number of existing corporations, ranging from
large and medium-sized multinationals to SMEs. For each of these company types, we have define the number of employees,
the employee profiles, and an average number of applications used by each type of employees (see Table 4).

For all our scenarios, three different specific cases can be considered:

1. Users (employees) who download containers with the desired application only once for updating purposes. Each user has
his/her own terminal (PC or laptop).

2. Users who download containers every day, because of they work with shared resources, as for instance, technical
employees in a lab.

3. Users who download containers, with the required application and personal documents every day, and upload them back
to the server, at the end of their working day.

12

TABLE 4 Corporations’ key features.

Scenario Corporation type Employee profile Containerized applications

#1 Multinational
(2500-4000 employees)

Administrative (60%)

4 containers/day

(average per request)
Container size: 5-10 GB

#2 Technical (40%)

5 containers/day

(average per request)
Container size: 10-20 GB

#3 SME
(20-100 employees)

Administrative (60%)

4 containers/day

(average per request)
Container size: 5-10 GB

#4 Technical (40%)

5 containers/day

(average per request)
Container size: 10-20 GB

For these three cases, we consider the worst scenario, in terms of the number of requests, given when all employees attempt
to download containers at the same time of the day, probably because they start working at the same hour. The conducted study
defines different scenarios for each company, depending on the profile of the employees. Those profiles are well differentiated
in two different types, either administrative or technical. This is a common situation when companies, especially multinationals,
want to solve a concrete problem in one of their departments. Therefore, our model can be applied separately using both profiles,
when determining the best choice for a content delivery provider.

6.2 Empirical Experiments for CDN Providers
These empirical experiments determine the best CDN provider, i.e. the one that minimizes costs and guarantees QoS in terms of
response time. Our underlying model is a trade-off between QoS and economic costs, where response time is closely tied to the
bandwidth contracted by companies. Based on a recent study of the European Commission about connectivity in the UE45, and
the positives trends on broadband adoption46, we suppose that SMEs have a connectivity of at least 400Mbps, andmultinationals
of at least 1 Gbps. Moreover, the European Commission is providing funding to guarantee to SMEs, as well as to providers of
public services and schools, connections of 1 Gbps by 2025. Taking into account these European Commission considerations,
all CDN providers can currently guarantee acceptable response times for users, and user satisfaction will remain in the future.
Figure 3 sketches delivery times of software containers in the four scenarios considered. For all scenarios, we consider the
worst case of simultaneous attempts of downloading a concrete containerized application by all system users. Administrative
employees of a multinational will wait between 40 seconds and 3 minutes for a container delivery, depending on the size of
desired containerized application. Taking into account that the execution of a containerized application only requires 20% of its
whole size38, these applications only need 35 seconds to start running. Alternatively, response times for the technical staff of
this multinational will vary between 35 seconds and 1 minute. In the case of a SME, container deliveries for its administrative
staff will spend between 30 seconds and 2 minutes, and between 1.5 and 3 minutes for the case of its technical staff.
The rest of this section focuses on minimizing corporations’ rental costs. Figures 4 to 7 sketch the prediction models obtained

for each scenario and for each CDN provider under consideration. In all these use cases, we define two models that delimit, for
each provider and scenario, the spectrum of lowest and highest costs. The band of lowest cost is drawn with a dashed line, while
the one of highest cost is represented with a continuous line. A linear prediction model fitting the empirical data of delivery
costs charged by commercial CDN providers (according to the public information on CDN’s websites). Note that resulting linear
models are highly accurate, since they close follow our empirical data, with R-squared value between 0.6 and 1.0. Prediction
models are overlapped with empirical trends for all considered scenarios, as shown in Figures 4 to 7. Labels on these figures,
give the analytical expressions of data regression models.

13

FIGURE 3 Software container delivery times in the four experimental scenarios of section.

FIGURE 4 Empirical results and prediction models for Scenario # 1. Two containers sizes are considered 5 GB and 10 GB.

Finally, it is important to remark that for all the scenarios under consideration, results in figures 4 to 7 establish that MaxCDN
is cheaper than alternative assessed providers, and guarantees QoS levels in terms of response time.

14

FIGURE 5 Empirical results and prediction models for Scenario # 2. Two containers sizes are considered 10 GB and 20 GB.

FIGURE 6 Empirical results and prediction models for Scenario # 3 considering all providers and container sizes of 5 GB and
10 GB.

15

FIGURE 7 Empirical results and prediction models for Scenario # 4 considering all providers and container sizes of 10 GB and
20 GB.

7 SIMULATION OF A HYBRID CDN-P2P NETWORK

This section describes the simulation software used to model the Hybrid CDN-P2P network proposed in this paper for software
distribution, along with all simulation parameters that allow evaluating the effectiveness of our new QoS aware solution. In
addition, we also present scenarios and experiments designed to assess the effectiveness of our network and cost-efficient model.
Finally, we discuss simulation results and establish a comparison with empirical experiments detailed in section 6.2.

7.1 Simulation Software and Parameters
In this work, we use PeerSim44,47 for our CDN-P2P modeling given its reliability and amenability. PeerSim is a scalable simula-
tion environment, which supports dynamic scenarios. It is an open software simulator written in Java programming language and
designed to be modular and easy to configure. It enables network modeling, as a list of nodes, each one having a list of protocols.
It also gives access to simulation parameters for network configuration and control. Network configuration includes information
about network size, node information, control objects, communication protocols, and some additional information for specific
requirements, particular to each simulation. PeerSim supports two different simulation models: cycle-based model and event-
based model. The former is based on a very simple scheduling algorithm and its main limitation is that users cannot intervene
during the simulation process. The later overcomes this limitation enabling the simulation of complex operational networks.
The event-based model is the most suitable to simulate and validate our architecture. However, it requires some source code

modifications to adapt network nodes to new functionalities. Specifically, there are two main modifications considered in our
implementation are next detailed. First, we categorize nodes into two different types: (i) nodes representing CDN servers and,
(ii) peer nodes. CDN nodes have a larger bandwidth than peer nodes, and these CDN bandwidth values have been estimated
according to those studied in section 6.2. More specifically, the chosen bandwidth and storage values correspond to those pro-
vided by MaxCDN, since this provider offered the minimum costs, and at the same time, guarantees minimum QoS in terms
of response times and the number of served requests. On the other hand, Peer bandwidths are, on average, 400 Mbps. This is
a typical average value that small and big companies rent from commercial telephone providers. Furthermore, we consider as

16

TABLE 5 Parameter values used in our simulations.

Parameter Assumed values
Network size Employees (scenario depending)
Container size 5-10 GB, 10-20 GB (profile depending)
Chunk size 500 Kb
CDN bandwidth 1 Gbps
Peer bandwidth 400 Mbps
P2P percentage in a buffer 50
Delay between CDN.P2P 20 ms
Delay between P2P-P2P 20-100 ms

the same transfer delay, those requests sent or received between a CDN server and a peer couple, than in case of peer-to-peer
transfers. Therefore, we assume the same delay for either uploading or downloading traffic.
The second code modification we made, is defining the percentage of P2P nodes in the PeerSim network configuration file.

We add a common buffer to be used by all network nodes, whose size corresponds to the number of slots required to store a
chunk during a container deployment. However, there is an additional requirement for this buffer in both cases of a CDN or a
peer node. The buffer for CDN nodes has an unlimited capacity, while the buffer used by peer nodes has a finite capacity. This
feature is based on our model assumption that all CDN servers are always available to provide all requested chucks to peer nodes,
since the provider has enough bandwidth to guarantee it. As we have mentioned in section 4, the first 20% of the container is
delivered via CDN, because transmission time is critical to the execution of the containerized software application. Then, the
remaining container parts can be delivered by a CDN-P2P, or by a P2P-P2P, configuration. Note that the number of peers in
simulations is fixed, but the amount of peers may vary in real scenarios.
All experiments of this section are performed 30 times. The inter-arrival times of the requested software are generated follow-

ing a Normal distribution, with mean is based on this time divided by the number of requests. Content demand is proportional to
the number of requests considered for each scenario, and divided by the number of network nodes. The server request indicator
and the parameter indicating whether a request can be routed is 1 for all locations. These parameters are available for adjustment
from the current CDN providers considered in our study. Our simulations do not include dynamic network conditions, such as
traffic, since providers receive enough payment per content delivery that acceptable performances for users is guaranteed.

7.2 Results
This section presents simulation results performed on the proposed hybrid network, where values for PeerSim parameters are
given in Table 5. At CDN nodes, we consider bandwidth and storage values as those offered by MaxCDN, since this provider
offers the best QoS at a low cost. We also assume a fixed 400 Mbps bandwidth on P2P nodes with a 26 âĆň/month flat-rate.
Furthermore, each P2P node has enough disc capacity to store the whole software container. We already have defined container
sizes in section 6 when describing testing scenarios. On the other hand, 20 ms delays have been introduced into CDN-P2P and
P2P-P2P communications. Finally, we have also considered in our simulations that the number of nodes and the number of
user/requests are the same. The request percentage stored in a buffer is 50% of the whole capacity. This percentage value has been
adjusted after performing 100 simulations by varying its value. This percentage value has been optmized after performing 100
simulations, where we vary this value. This minimum value enables the container deployment on response times that guarantee
the system QoS.

We suppose amaximumdeployment time of 2min for software containerized applications between 5GB and 10GB.However,
when the container size exceeds 10 GB, the deployment response time increases and surpasses 2 minutes, even if the whole
container is delivered through the CDN. Thus, we estimate 3 minutes as an acceptable deployment time, which guarantees the
network QoS. Figures 8 to 11 present our simulation results. In particular, they show that multinationals with a large number
of employees could save between 5%-20%, when adopting a hybrid solution based on our proposed Cost-Efficient QoS-Aware
model, rather than just renting a commercial CDN. In this case, savings are higher when container sizes do not exceed 10 GB.

17

On the other hand, savings are worthless in environments with few users. In particular, our hybrid infrastructure does not provide
great benefits to SMEs with only few users (see Figures 10 and 11). In such cases, fixed costs, arising mainly from renting
the broadband service, result comparable to deploying costs of the whole container through a CDN. Hence, the overall cost
significantly increases due to fixed costs. Therefore, in these contexts our architecture does not bring important benefits.

FIGURE 8 Test of our CDN-P2P architecture to deploy containers size of 5 GB and 10 GB for Scenario # 1

8 CONCLUSIONS AND FUTUREWORK

This paper have presented a novel cost-efficient QoS-aware model to assess costs of containerized software distribution, and a
hybrid CDN-P2P architecture to reduce such costs, making IT infrastructures more agile, in both consolidated corporations and
emerging SMEs.We demonstrate that by combining both our architecture and model, companies could achieve higher economic
savings, when compared to the case of renting a commercial CDN. A throughout analysis of existing commercial CDNs for soft-
ware distribution has been conducted, concluding that MaxCDN is the one providing the lowest costs for a given QoS minimum
level. To better understand the parametrization of these architecture and model, key metrics for software delivery are required,
as opposed to some related works on hybrid networks that mainly focus on media streaming. To this end, a categorization of
crucial features for software distribution has been presented, along with some performance metrics. This categorization pro-
vides suitable metrics that have been subsequently used to optimize relevant architecture and model parameters. Metrics depend
upon content properties (e.g. content size, partial downloads, or attached/detached data), and also on user related parameters
(e.g. distribution, number, or location of requests). The integer-programming simulation software PeerSim has been modified
to test both the hybrid CDN-P2P architecture, and the novel cost-efficient QoS aware model, under various realistic scenarios.
Testing results show the possibility of deploying over 20% of the whole container traffic through a P2P infrastructure, and this
applies to both multinationals and SMEs. Our simulation results also reveal that a hybrid architecture is valuable when container
sizes do not exceed 10 GB. It is important to remark that our architecture and model provide economic savings between 5%
and 20%, with respect to just renting resources from a commercial CDN, and guarantee desired QoS in terms of response times

18

FIGURE 9 Test of our CDN-P2P architecture to deploy containers size of 10 GB and 20 GB for Scenario # 2

FIGURE 10 Test of our CDN-P2P architecture to deploy containers size of 5 GB and 10 GB for Scenario # 3

and the number of served requests. Future work should focus on the generalization of our simulator in order to consider a vari-
able number of P2P nodes. We also consider that extending our current architecture and cost-efficient model to fog computing
environments is a feasible and promising research topic.

19

FIGURE 11 Test of our CDN-P2P architecture to deploy containers size of 10 GB and 20 GB for Scenario # 4

References

1. Da Silva L, Abreu F. Software Distribution to Remote Locations. In: 15th European Conference on Pattern Languages of
Programs. ; July 7–11, 2010; Irsee, Germany.

2. Walters R. Bringing IT Out of the Shadows. Network Security 2013; 2013(4): 5–11.

3. Datadog . 8 Surprising Facts about real DOCKER adoption. https://www.datadoghq.com/docker-adoption/; . Accessed:
2019-10-19.

4. Portwox . 2017 Annual Container Adoption Survey: Huge Growth in Containers. https://portworx.com/
2017-container-adoption-survey; . Accessed: 2019-10-19.

5. Lee H, Fox G. Efficient Software Defined Systems Using Common Core Components. In: IEEE 10th International
Conference on Cloud Computing. ; June 25–30, 2017; Honolulu, Hawaii, United States: 407–414.

6. Johnston S. Introducing the Modernize Traditional Apps Program, in DockerCon. https://blog.docker.com/2017/04/
modernizing-traditional-apps-with-docker/; . Accessed: 2019-10-19.

7. Li W, Kanso A. Comparing Containers versus Virtual Machines for Achieving High Availability. In: IEEE International
Conference on Cloud Engineering. ; 2015; Tempe, AZ, USA.

8. LiuX,Dobrian F,Milner H, et al. A case for a coordinate internet video control plane. In: ACMSIGCOMM2012Conference
onApplications, Technologies, Architectures and Protocols for Computer Communications. ; August 13–17, 2012; Helsinki,
Finland: 359–370.

9. Wendell P, Freedman M, Milner H, et al. Going viral: flash crowds in an open cdn. In: 2011 ACM SIGCOMM Conference
on Internet Measurement. ; November 02–04, 2011; Berlin, Germany: 549–558.

10. Liu H, Wang Y, Yang Y,Wang H, Tian C. Optimizing cost and performance for content multihoming. In: ACM SIGCOMM
2012 Conference on Applications, Technologies, Architectures and Protocols for Computer Communications. ; August
13–17, 2012; Helsinki, Finland: 371–382.

https://www.datadoghq.com/docker-adoption/
https://portworx.com/2017-container-adoption-survey
https://portworx.com/2017-container-adoption-survey
https://blog.docker.com/2017/04/modernizing-traditional-apps-with-docker/
https://blog.docker.com/2017/04/modernizing-traditional-apps-with-docker/

20

11. Cong X, Shuang K, Su S, Yang F. An efficient server bandwidth costs decreased mechanism towards mobile devices in
cloud-assisted p2p-vod system. Peer-to-peer. Peer-to-Peer Networking Applications 2014; 7(2): 175–187.

12. Pathan A, Buyya R. A taxonomy and survey of content delivery networks. Tech. Rep. Technical Report, Grid Computing
and Distributed Systems Laboratory; 2007.

13. Bronzino F, Gaeta R, Grangetto M, Pau G. An adaptive hybrid CDN/P2P solution for content delivery networks. In: Visual
Communications and Image Processing. ; November 27–30, 2012; San Diego, CA, USA.

14. Lu Z, Wang Y, Yang Y. An analysis and comparison of CDN-P2P-hybrid content delivery system and model. Journal of
Communications 2012; 7(3): 232–245.

15. Garmehi M, Analoui M, Pathan M, Buyya R. An economic replica placement mechanism for streaming content distribution
in Hybrid CDN-P2P networks. Computer Communications 2014; 53: 60–70.

16. Zhang G, Liu W, Zou Y. Simulator for hybrid CDN-P2P video-on-demand systems. In: 9th International IEEE Conference
on Communication Software and Networks. ; May 6–8, 2017; Guangzhou, China.

17. Ha T, Kim J, Nam J. Design and Deployment of Low-Delay Hybrid CDNâĂŞP2P Architecture for Live Video Streaming
Over the Web. Wireless Personal Communications 2017; 94(3): 513–525.

18. Jia Q, Xie R, Huang T, Liu J, Liu Y. The collaboration for content delivery and network Infrastructures: A survey. IEEE
Access 2017; 5: 18088–18106.

19. AnjumN, KaramshukD, Shikh-BahaeiM, Sastry N. Survey on peer-assisted content delivery networks.Computer Networks
2017; 116: 79–95.

20. Michael C. Do It Yourself CDN: Netflix, Comcast and Facebook, Bizety. https://www.bizety.com/2016/02/23/
do-it-yourself-cdn-netflix-comcast-and-facebook/; . Accessed: 2019-10-19.

21. Yeadon N, Garcia F, Hutchison D, Shepherd D. Filters: QoS support mechanisms for multipeer communications. IEEE
Journal on Selected Areas in Communications 1996; 14: 1245–1262.

22. Evensen K, Kaspar D, Griwodz C, Halvorsen P, Hansen A, Engelstad P. Improving the Performance of Quality-adaptive
Video Streaming over Multiple Heterogeneous Access Networks. In: ; February 23–25, 2011: 57–68.

23. Trestian R, Comsa IS, Tuysuz MF. Seamless Multimedia Delivery within a Heterogeneous Wireless Networks
Environment: Are we there yet?. IEEE Communications Surveys & Tutorials PP(99) 2018; 20: 945–977. doi:
10.1109/COMST.2018.2789722

24. Gkantsidis C, Karagiannis T, Rodriguez P, Vojnović M. Planet scale software updates. In: SIGCOMM’06. ; September
11–15, 2006; Pisa, Italy: 11–15.

25. Passarella A. A Survey on Content-centric Technologies for the Current Internet: CDN and P2P Solutions. Computer
Communications 2012; 35(1): 1–32.

26. Yin H, Liu X, Zhan T, et al. Design and deployment of a hybric CDN-P2P system for live video streaming: experiences
with LiveSky. In: 17th ACM International Conference on Multimedia. ; October 19–24, 2009; Beijing, China: 25–34.

27. Xu D, Kulkarni S, Rosenberg C, Chai HK. Analysis of a CDN-P2Phybrid architecture for cost-effective streaming media
distribution. Multimedia Systems 2006; 11(4): 383–399.

28. HuM, Luo J,WangY, Veeravalli B. Practical Resource Provisioning and Cachingwith Dynamic Resilience for Cloud-Based
Content Distribution Networks. IEEE Transactions on Parallel and Distributed Systems 2014; 25(8): 2169–2179.

29. Sahoo J, Glitho R. Greedy heuristic for replica server placement in Cloud based Content Delivery Networks. In: IEEE
Symposium on Computers and Communication. ; June 27–30, 2016; Messina, Italy: 302–309.

30. Krishnan P, Raz D, Shavitt Y. The cache location problem. IEEE/ACM Transactions on Networking 2000; 8(5): 568–582.

https://www.bizety.com/2016/02/23/do-it-yourself-cdn-netflix-comcast-and-facebook/
https://www.bizety.com/2016/02/23/do-it-yourself-cdn-netflix-comcast-and-facebook/
http://dx.doi.org/10.1109/COMST.2018.2789722
http://dx.doi.org/10.1109/COMST.2018.2789722

21

31. Kalpakis K, Dasgupta K, Wolfson O. Optimal Placement of Replicas in Trees with Read, Write, and Storage Costs. IEEE
Transactions on Parallel and Distributed Systems 2001; 12(6): 628–637.

32. Kubernetes . Horizontal pod Autoscaling. https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/; .
Accessed: 2019-10-19.

33. Poddar R, Vishnoi A, Mann V. HAVEN: Holistic Load Balancing and Auto Scaling in the Cloud. In: 7th International
Conference on Communication Systems and Networks. ; January 6–10, 2015; Bangalore, India.

34. Abranches C. dM, Solis P. An Algorithm Based on Response Time and Traffic Demands to Scale Containers on a Cloud
Computing System. In: IEEE 14th International Symposium on Network Computing and Applications. ; September 28–30,
2015; Cambridge, MA, USA: 343–350.

35. Overview C. CDN resource website. https://www.cdnoverview.com/; . Accessed: 2019-10-19.

36. Vakali A, Pallis G. Content Delivery Networks: Status and Trends. IEEE Internet Computing 2003; 7(6): 68–74.

37. Microsoft . Docker Hub. https://hub.docker.com/u/microsoft/; . Accessed: 2019-10-19.

38. Harter T, Salmon B, Liu R, Arpaci-Dusseau A, Arpaci-Dusseau R. Slacker: Fast Distribution with Lazy Docker Containers.
In: 14th USENIX Conference on File and Storage Technologies. ; February 22–26, 2016; Santa Clara, CA, USA: 181–195.

39. KeyCDN . keyCDN Website. https://www.keycdn.com/; . Accessed: 2019-10-19.

40. MaxCDN . MaxCDN Website. https://www.maxcdn.com/; . Accessed: 2019-10-19.

41. CDN77 . CDN77 Website. http://www.cdn77.com; . Accessed: 2019-10-19.

42. BunnyCDN . BunnyCDN Website. https://bunnycdn.com/; . Accessed: 2019-10-19.

43. James H. 25 Best CDN Providers 2019. https://haydenjames.io/best-cdn-providers/; . Accessed: 2019-10-19.

44. Hoa D, Silverton T, Fourmaux O. A novel Hybrid CDN-P2P mechanism for effective real-time media streaming. In:
Semantic scholar. : 1–8.

45. Commission E. Broadband market developments in the EU 2017. https://ec.europa.eu/digital-single-market/en/
european-digital-progress-report; . Accessed: 2019-10-19.

46. Commission E. Connectivity for a European Gigabit Society. https://ec.europa.eu/digital-single-market/en/policies/
improving-connectivity-and-access; . Accessed: 2019-10-19.

47. Montresor A, Jelasity M. PeerSim: a scalable P2P simulator. In: 9th International Conference on Peer-to-Peer (P2P’09). ;
September 8–11, 2009; Seattle, WA, USA: 99–100.

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://www.cdnoverview.com/
https://hub.docker.com/u/microsoft/
https://www.keycdn.com/
https://www.maxcdn.com/
http://www.cdn77.com
https://bunnycdn.com/
https://haydenjames.io/best-cdn-providers/
https://ec.europa.eu/digital-single-market/en/european-digital-progress-report
https://ec.europa.eu/digital-single-market/en/european-digital-progress-report
https://ec.europa.eu/digital-single-market/en/policies/improving-connectivity-and-access
https://ec.europa.eu/digital-single-market/en/policies/improving-connectivity-and-access

	A Cost-Efficient QoS-Aware Analytical Model of Future Software Content Delivery Networks
	Abstract
	Introduction
	Related Work
	Analysis of Software Distribution Networks
	Workload Characteristics and Performance Metrics
	Infrastructures for Content Delivery

	Software Delivery Architecture: Hybrid CDN-P2P Architecture
	Cost-Efficient QoS-Aware Model
	Cloud Infrastructure
	P2P Infrastructure

	Scenarios and Empirical Experiments
	Scenarios
	Empirical Experiments for CDN Providers

	Simulation of a Hybrid CDN-P2P network
	Simulation Software and Parameters
	Results

	Conclusions and Future Work
	References

