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ABSTRACT

Puzhavakath Narayanan, Shankaranarayanan Ph.D., Purdue University, August 2016. A
Holistic Approach to Lowering Latency in Geo-distributed Web Applications. Major
Professor: Sanjay G. Rao.

User perceived end-to-end latency of web applications have a huge impact on the rev-

enue for many businesses. The end-to-end latency of web applications is impacted by:

(i) User to Application server (front-end) latency which includes downloading and parsing

web pages, retrieving further objects requested by javascript executions; and (ii) Applica-

tion and storage server(back-end) latency which includes retrieving meta-data required for

an initial rendering, and subsequent content based on user actions.

Improving the user-perceived performance of web applications is challenging, given

their complex operating environments involving user-facing web servers, content distribu-

tion network (CDN) servers, multi-tiered application servers, and storage servers. Further,

the application and storage servers are often deployed on multi-tenant cloud platforms that

show high performance variability. While many novel approaches like SPDY and geo-

replicated datastores have been developed to improve their performance, many of these

solutions are specific to certain layers, and may have different impact on user-perceived

performance.

The primary goal of this thesis is to address the above challenges in a holistic manner,

focusing specifically on improving the end-to-end latency of geo-distributed multi-tiered

web applications. This thesis makes the following contributions: (i) First, it reduces user-

facing latency by helping CDNs identify and map objects that are more critical for page-

load latency to the faster CDN cache layers. Through controlled experiments on real-world

web pages, we show the potential of our approach to reduce hundreds of milliseconds in

latency without affecting overall CDN miss rates. (ii) Next, it reduces back-end latency



xiii

by optimally adapting the datastore replication policies (including number and location

of replicas) to the heterogeneity in workloads. We show the benefits of our replication

models using real-world traces of Twitter, Wikipedia and Gowalla on a 8 datacenter Cas-

sandra cluster deployed on EC2. (iii) Finally, it makes multi-tier applications resilient to

the inherent performance variability in the cloud through fine-grained request redirection.

We highlight the benefits of our approach by deploying three real-world applications on

commercial cloud platforms.
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1. INTRODUCTION

User perceived end-to-end latency of web applications have a huge impact on the revenue

for many businesses [1–4]. For e.g., Amazon finds that every 100ms of latency costs 1%

in sales [3], while Google Search found that a 400 millisecond delay resulted in a 0.59%

reduction in searches per user [5]. Beyond e-commerce, bringing the latency under 100

ms [6] would imply that the user cannot differentiate between whether an application is

running locally or is making remote requests. Service level agreements (SLAs) on such

interactive web applications often require bounds on the 90th (and higher) percentile la-

tencies [7], which must be met while scaling to hundreds of thousands of geographically

dispersed users.

Modern web applications have multiple constituent components including Application

servers, Datastore servers (DS) and Content Delivery Network (CDN) servers. Further,

one or more of these components are geo-replicated and often hosted on third-party service

providers including commercial cloud datacenters and CDNs. The end-to-end latency of

web application depends on both : (i) user to application server latency, and (ii) application

and storage layer latency. Consequently, we have seen recent efforts that aim towards

reducing the latency at these different layers. On the one hand, there is a wide-spread

interest in geo-replicated datastores [7–14] which help bring data closer to the users. On

the other hand, we see the emergence of new protocols such as SPDY [15], which aims at

faster delivery of objects from the server to the client.

Despite these efforts, lowering web-page latencies remains a challenging proposition,

primarily due to the complexity of the web-pages and its deployment ecosystem. In partic-

ular, each page is typically composed of tens to hundreds of inter-dependent objects arriv-

ing from different application components, which have varying impact on the end-to-end

latency of the web-page. The goal of this thesis is to develop frameworks that can simul-

taneously reduce both user to application latency as well as the application and storage
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CDN server

Web server Storage

DC1

App server

Clients

Web server Storage

DC2

App server

Front-end latency: User to Application/CDN latency 

Back-end latency: Application and Storage layer latency

Fig. 1.1. Ecosystem of modern web applications

layer latency. The rest of this chapter presents in further detail, the complexities involved

in serving web-pages, the challenges in lowering web-page latencies, and the contributions

of this thesis towards addressing these challenges.

1.1 Modern web applications

Figure 1.1 shows the ecosystem of a typical web application comprising of the vari-

ous components involved in serving a web-page to a user. Downloading a web-page is

a complex activity and requires multiple request-response round-trips from multiple do-

mains to fetch all the required objects in the page. When the user loads a web-page, the

client browser resolves the domain address for the page URL, and sends a request to the

corresponding web server (client-facing server). The web server forwards the request to

the application servers, which query the storage servers to retrieve the meta-data required

to compose an initial rendering of the web-page and responds back to the client with the

initial HTML. The browser parses the initial HTML and initiates requests to fetch the dif-

ferent objects in the page. Further, a large fraction of these objects are often served from

the Content Delivery Networks (CDN) servers that are located closer to the user.

Clearly, there are two sources of latency that contribute to the user perceived end-to-end

latency.



3

User to web server (front-end) latency, which includes downloading the web-pages, pars-

ing them, retrieving further objects requested by dynamic JavaScript executions. As de-

scribed earlier, these objects can arrive either from the application server or from the CDN

servers.

Application and Storage layer (back-end) latency, which includes retrieving the meta-

data required for the initial rendering, responding to user queries and fetching content from

the storage servers accordingly. Further, most real-world web-pages are multi-tiered appli-

cations, requiring interaction between multiple components to serve a web-page. Typical

web applications have client facing web servers, business logic servers that determine the

objects required to compose the web-page, and storage servers that store the meta-data

along with the actual content. Also, composing a web-page often requires multiple calls

from the business logic servers to the storage servers.

1.2 Emerging trends in lowering web application latency

The push towards reducing web-page latencies has brought forth many efforts from both

academia and industry to develop tools and techniques to reduce web application latencies

along both the sources described above.

Tackling front-end latency: To tackle the front-end latency, we have seen the emergence

of new protocols such as SPDY [15] (expected to be a key part of the HTTP 2.0 standard)

which tries to reduce page-load latency by employing a combination of techniques like

compression, prioritization and multiplexing the delivery of objects between the client and

server. SPDY allows multiple, simultaneously multiplexed requests over a single connec-

tion, saving on round trips between client and server, and preventing low-priority resources

from blocking higher-priority requests.

Tackling back-end latency: Back-end latency has been typically handled by scaling and

resource provisioning at the application servers. The cloud industry already provides mech-

anisms to scale up or down the number of server instances in commercial cloud plat-

forms. Since these applications serve thousands of geographically dispersed users, retriev-
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ing content from the storage servers for such geo-distributed applications can have signifi-

cant latencies. Consequently, a number of datastores that replicate data across geographi-

cally distributed datacenters (DCs) have emerged in recent years [7–14]. A distinguishing

aspect of such cloud datastores is the use of algorithms (e.g., quorum protocols [7, 9],

Paxos [8, 13, 14]) to maintain consistency across distributed replicas. This is necessitated

given these datastores often store application content (e.g. user information, application

meta-data, etc.,) that require stronger consistency.

While prior works help reduce the latency at a specific component, they often have

different impact on the end-to-end user perceived latency. Hence, despite these efforts,

web-page latencies continue to remain significant, constituting 80-90% of overall applica-

tion response time by some reports [1, 5].

1.3 Challenges in reducing web application latency

A key challenge in reducing web application latency is their complexity [16,17]. Web-

pages comprised of tens to hundreds of static and dynamic objects (images, style-sheets

(CSS), Javascript (JS) files, etc.) served from multiple domains including CDNs. How-

ever, the benefits with large-scale edge-caching employed by today’s CDNs is limited by

the fact that some objects are more critical to web-page latencies than others (e.g., JS that

fetch further objects might be more important for an initial rendering than JS that support

subsequent user requests). Yet, CDN placement and caching algorithms are agnostic of the

criticality of objects to the page-load process, which could impact overall page latencies.

The issues are particularly significant for the vast majority of pages beyond the most pop-

ular few hundreds, since the objects of these pages may not be sufficiently popular to be

cached naturally at the edge.

The interactive nature of these web applications pose stringent requirements on the con-

sistency and availability of content (including the application state) stored by the applica-

tions. Hence, an important requirement on the datastores used by these applications, is the

need to support consistent updates on distributed replicas while ensuring both low write and
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read latencies across geographically distributed users. Tailoring datastores to application

workloads is especially challenging given the scale of applications (potentially hundreds of

thousands of data items), workload diversity across individual data items (e.g. celebrities

and normal users in Twitter have very different workload patterns), and workload dynamics

(e.g. due to user mobility, changes in social graph etc).

Further, meeting these stringent SLA requirements is a challenge given the outages in

cloud DCs [18, 19], and the high variability in the performance of cloud services [20–22].

This variability arises from a variety of factors such as the sharing of cloud services across

a large number of tenants, and limitations in virtualization techniques [20]. For example,

[21] showed that the 95%ile latencies of cloud storage services such as tables and queues

is 100% more than the median values for four different public cloud offerings.

1.4 Thesis contributions

The primary goal of this thesis is to develop frameworks that reduce the end-to-end

latency of geo-distributed web applications. We present solutions that can simultaneously

tackle both the front-end and back-end latencies described earlier.

•To reduce the front-end latency, we present a framework that allows CDNs to map objects

more important for page latencies to the faster CDN cache layers. We consider a family

of schemes for determining object priorities including a strategy based on content type, a

strategy that prioritizes objects needed for an initial rendering of the page, and a scheme

that explicitly takes the dependencies across objects of the page into account. We present

adaptations of CDN cache placement and replacement algorithms that take object priorities

into account, while still considering object popularity. In order to avoid staleness related

misses, We present a family of schemes for proactive refreshing that differ in terms of

which objects are refreshed. We consider an approach where, to keep bandwidth overheads

small, only objects that has the most impact on page-load latency are proactively refreshed.

•We reduce the back-end latency by developing frameworks that can tailor the replication

policies of geo-distributed datastores to the application workloads. We develop analytical
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models automatically determine how best to customize replication configuration including

the number and location of the replicas, as well as the underlying consistency parameters

(e.g., quorum sizes in a quorum based system) to meet the desired application objectives.

While our initial focus is on quorum-based systems given their wide usage in produc-

tion [7,9], and the rich body of theoretical work they are based on [23–26], our frameworks

can be extended to other classes of cloud storage systems as well. Our models are distin-

guished from theoretical quorum protocols in that we consider various practical aspects that

arise in the context of datastores like impact of DC failures on latency, latency percentiles,

asymmetry in read-write traffic and focus on realistic workloads in wide-area settings.

•Finally, we reduce the end-to-end latency by making multi-tiered applications resilient

to the inherent performance variability in today’s multi-tenant commercial cloud environ-

ments. To this end, we developed a system called Dealer, which dynamically re-routes re-

quests across different application component replicas. Dealer abstracts application struc-

ture as a component graph, with nodes being application components and edges capturing

inter-component communication patterns. To predict which combination of replicas can

result in the best performance, Dealer continually monitors the performance of individual

component replicas and communication latencies between replica pairs. Modern web ap-

plications consist of many components, not all of which are represent in each DC, and the

costs are extremely high to over-provision each component in every DC to be able to handle

all the traffic from another DC. Dealer is able to redistribute work away from poorly per-

forming components by utilizing the capacity of all component replicas that can usefully

contribute to reducing the latency of requests.

1.5 Research Methodology

We adopt a systematic approach for solving the above challenges, by beginning with

real-world measurement studies on commercial cloud platforms to understand the impact

and scope of the problem. Leveraging on the insights gained from the initial study, we

develop solutions grounded by sound theoretical principles, and adapt them to the specific
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problem being solved. Finally, we evaluate our ideas under realistic conditions to show

their benefits – using real applications on commercial cloud deployments, or through ex-

tensive real-world application traces.

Importance of page-aware content-prioritization in reducing user perceived latency:

To understand the importance of priority-based caching and delivery of content from the

CDN, we conduct end-to-end measurements by downloading and analyzing 100 real-world

pages selected randomly across all ranges of popularity from the Alexa Top pages. Us-

ing CDN specific pragmas which are set along with each request header when loading the

pages, we derive insights on how the various objects in a page are served from within the

CDN hierarchy. Through controlled experiments on these pages, we show the potential to

achieve hundreds of milliseconds reduction in latency by prioritization of content at the

CDNs. Through trace-based analysis of real CDN deployments, we also show the feasi-

bility of priority based caching to reduce the miss rate for critical content while incurring

only modest increases in the overall miss rates.

Importance of customizing datastore replication to application workloads: We demon-

strate the benefits of our replica configuration framework using real-world traces of three

popular applications: Twitter, Wikipedia and Gowalla, and through experiments with a

multi-region Cassandra cluster [9] spanning all 8 EC2 geographic regions. While latencies

with Cassandra vary widely across different replication configurations, our framework gen-

erates replica configurations which perform very close to predicted optimal on our multi-

region EC2 setup. Further, our schemes that explicitly optimize latency under failure are

able to out-perform failure-agnostic schemes under the failure of a DC by more than 40%

while incurring only modest penalties under normal operation. Our results show the impor-

tance of adapting and customizing replica configurations to the heterogeneity in workloads.

Importance of application-aware fine grained request re-routing: We show the bene-

fits of our system, Dealer, by integrating it with two real-world applications – Thumbnail

and StockTrader. We deployed these applications on commercial cloud infrastructures (in-

cluding Amazon AWS, and Windows Azure), and show that Dealer was able to reduce

the 90th percentile application response times by a factor of 3 compared to a system that
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used traditional DNS based redirection techniques. Further, Dealer ensures low latency,

and significantly out-performs application level redirection mechanisms under a range of

controlled experiments.

1.6 Thesis Organization

This thesis is further organized as follows. Chapter 2 presents our work on reducing the

front-end latency of web-applications through page-aware content prioritization at CDNs.

Chapter 3 describes our performance-aware replication configuration frameworks for geo-

distributed datastores. Chapter 4 presents Dealer, our system that performs application-

aware fine grained request redirection.
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2. REDUCING LATENCY THROUGH PAGE-AWARE
MANAGEMENT OF WEB OBJECTS BY CONTENT DELIVERY

NETWORKS

2.1 Introduction

Reducing the latency of web pages is critical for electronic commerce as it directly

impacts user engagement and revenue [2,4,27]. Amazon, e.g., found that 100ms of latency

costs 1% in sales [27], while Google Search found that a 400 millisecond delay resulted in

a 0.59% reduction in searches per user [5].

The quest to reduce web-page latencies has triggered much effort in the networking

community among both researchers and practitioners. On the one hand, we have seen the

large-scale adoption of widely distributed Content Delivery Networks (CDNs), that involve

placing caches at thousands of Internet vantage points, close to end users. On the other

hand, we have seen the recent emergence of new protocols such as SPDY [15] that signifi-

cantly influenced the HTTP 2.0 standard. Despite these efforts, web-page latencies remain

significant, constituting 80-90% of overall application response time by some reports [1,5].

A key challenge in reducing the latencies of web-pages (the time to get an acceptable

initial rendering of the page, formally defined in §2.3.1) is their complexity [16, 17]. Web

pages are comprised of tens to hundreds of static and dynamic objects such as images,

style-sheets (CSS), and JavaScript (JS) files, which may be served from multiple domains.

Web-page download process has complex dependencies [28, 29], where some objects may

have more impact on web-page latencies than others. The first objects fetched during a

download (e.g., HTML, CSS, and JS) may need to be parsed or executed to decide which

objects to fetch subsequently. Objects needed for an initial rendering of the page (e.g., to

trigger a browser load event) may be more critical to the user experience than those that

refine the initial rendering.
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The need to accommodate the varying impact of individual objects on overall latencies

has begun to receive attention from the community [15, 30]. Specifically, SPDY allows

servers to transmit objects out of order to reflect their priority in the page load process.

While useful in single server settings, most web pages today are served from multiple do-

mains, and make extensive use of CDNs. Simply enabling SPDY between clients and CDN

servers addresses only part of the problem. It is also necessary to reduce the CDN retrieval

time of critical objects, especially since CDNs are typically organized as a hierarchy of

caches [31] with different capacities and latencies at each layer.

Our motivation arises in part from the results of a study we conducted in which we

collected end-to-end measurements of clients downloading pages from a number of web

sites. The data shows that (i) objects appearing on the same web page are often served

from multiple layers of the CDN cache hierarchy; (ii) critical objects are not always served

from the fastest caches; and (iii) delays in serving a small number of critical objects can

disproportionately impact overall latency.

Motivated by these findings, we present a framework that allows CDNs to map objects

more important for page latencies to faster cache layers. Our framework is enabled by

the increasing shift of popular web-sites to CDNs for full-site delivery (e.g., for 89% of the

pages in our study above, the main HTML document was served by the CDN). We consider

a family of schemes for determining object priorities including a strategy based on content

type, a strategy that prioritizes objects needed for an initial rendering of the page, and a

scheme that explicitly takes the dependencies across objects of the page into account. We

show how CDN cache placement and replacement algorithms may be redesigned to take

object priorities into account, while still considering object popularity. We consider an

approach where, to keep bandwidth overheads small, only objects most critical for latency

are proactively refreshed to avoid staleness related misses. We present a family of schemes

for proactive refreshing that differ in terms of which objects are refreshed.

We present an extensive evaluation study of our schemes using a combination of con-

trolled experiments that emulate real web pages in hierarchical CDN settings, as well as

trace data from a real CDN deployment. Our evaluations seek to understand the benefits
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Fig. 2.1. Dependency graph for a single load of www.apple.com. Each
node shows download or execution of an object, and the directed arrow
shows the dependency between them.

of prioritization in CDN placement and refresh schemes, the relative benefits of different

schemes for prioritization, and the sensitivity of our results to page popularity and compo-

sition.

Our evaluations with 83 real-world pages show that 30% of the most popular pages

and 59% of the other pages show latency reduction larger than 100ms, with some pages

showing latency reductions as high as 500ms. Both placement and proactive refreshing

are important in achieving the benefits. For the vast majority of pages, considering content

type in both placement and proactive refreshing provides most of the benefit. However,

the additional benefits with other prioritization schemes can be significant in lower hit rate

regimes, and when the penalty of going to the origin is higher. Finally, using trace driven

simulations, we show the feasibility of the priority-based caching approach for reducing

miss rates of page-critical objects in CDNs by 60% with modest increases (less than 2%)

in the overall byte miss rates. We also highlight the opportunity of minimizing stale misses

for objects critical for latency by as much as 60% while incurring additional bandwidth

costs of less than 0.02%.
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2.2 Motivating measurement study

Web pages consist of tens to hundreds of objects of multiple content types (HTML,

CSS, JS, images). A typical page load process involves significant dependencies across

objects [28, 29]. An initially downloaded HTML, CSS or JS (henceforth referred to as

HCJ) object (which often embeds pointers to other objects) must be parsed (and executed)

to identify further objects to download. Browser policies may dictate dependencies – e.g.,

execution of a JS must wait for a prior CSS to complete execution. Figure 2.1 shows

an example dependency graph obtained using wprof [28]. Clearly, not all objects have

the same impact on page latencies – e.g., C1 is much more important than W1. Further,

content type need not necessarily reflect object importance – e.g., some HCJ objects may

not be required for an initial rendering of a page most important for user experience, while

Non-HCJ objects such as images may in fact be required. Moreover, other objects may be

dependent on Non-HCJ objects – e.g., a JS execution may wait on the arrival of a sprited

image.

CDNs consist of a hierarchy of caches [31], typically consisting of clusters of servers

deployed in multiple edge locations, and in parent locations. A user request that arrives at

a server in an edge cluster (First server) could “hit” either at the memory or disk layer of

that server. On a cache miss at the First server, requests could be directed to other servers

in the CDN hierarchy (Second server), which could be a peer server in the same cluster or

a server in a parent cluster. The latency of CDN served objects may vary widely depending

on whether the object hits at the CDN and the layer that serves it.

To understand opportunities for reducing page latencies with CDNs by better mapping

more important objects to faster CDN caches, we analyzed a prominent CDN that exten-

sively provides edge caching (which we refer to as CDN). In the rest of this section, we

discuss our measurement approach, and our findings.
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2.2.1 Measurement methodology

We conduct end-to-end experiments by downloading real web pages from web clients

and for each page measure the fraction of objects served from the different CDN layers.

To determine the layer in the CDN hierarchy from which an object is served, we leverage

HTTP pragma headers supported by CDNs for debugging purposes. Specifically, CDN

supports the following pragma headers – CDN-x-cache-on, CDN-x-remote-cache-on and

CDN-x-get-request-id. We set these pragma headers on all HTTP requests issued from the

client. If the object is served by CDN, then the first contacted CDN server appends an X-

Cache header in the HTTP response, and if a second CDN server is involved it appends an

X-Cache-Remote header. The response also contains an X-CDN-Request-ID header with a

dot-separated list of request IDs appended by each of the contacted CDN servers.

The X-Cache and X-Cache-Remote response headers contain values such as TCP MEM

HIT, TCP HIT, TCP MISS, TCP REFRESH MISS, which respectively indicate a hit in the

memory of that server, a disk hit, a server miss and a TTL expiry of a cached object with

a new version fetched from the origin. We also count the number of request IDs in the X-

CDN-Request-ID header to obtain the total number of CDN servers contacted. We use the

values in these three headers to determine the layer from which the object was served. For

instance, a TCP MEM HIT in the X-Cache header with one ID in the X-CDN-Request-ID

header implies the object was served from the memory of the first CDN server. Like-wise

a TCP MISS in the X-Cache header with a TCP MEM HIT in the X-Cache-Remote with

two IDs implies the object was served from the second CDN server, while a MISS in both

the headers means the object was fetched from origin. Note that, if we see a TCP MISS in

both the headers with more than two IDs, due to limitations of the pragma headers, it is not

possible to precisely tell if the object was served from the origin or another CDN server.

But in our real runs we find these cases to be insignificant. For 90% of the pages fewer than

6 requests had more than two IDs in the X-CDN-Request-ID header.

We chose 100 Web pages for our measurement study across a wide range of popularity

(Alexa US top sites [32]). Our measurement set has 40 pages in the Alexa rank top 1–1000
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and 60 pages beyond rank 1000 which we refer to as Top1K and Beyond1K respectively

in the rest of this chapter. These pages were selected based on whether they had a good

fraction of their objects served from CDN. Across all pages, at least 38% of the objects

were served from CDN and for 25% of the pages more than 68% of the objects were served

from CDN. Further, at least 92% of CDN served objects were cacheable for 90% of the

pages. We also find that the main HTML for 89% of these pages were served from CDN.

Back-to-back downloads of the same page may artificially inflate the hit rates in sub-

sequent runs owing to objects cached by the CDN from the earlier runs. To ensure our

measurements themselves do not impact the hit rates, our entire set of measurements were

spaced out across several weeks with consecutive downloads of the same page separated

by 3 days – an analysis of the TTLs of objects in the pages indicated most objects would

expire by this time.

2.2.2 Key findings

We now present key observations from our study.

• Objects of a Web page may be served from different CDN caching layers incurring very

different latencies: Figure 2.2 presents the fraction of cacheable CDN objects served from

each layer in the CDN hierarchy for a given run of the Alexa Top1K websites. Each stacked
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bar corresponds to a web page, and the segments in the bar show the breakdown – e.g., for

the second most popular page (second stacked bar from the left), going from top to bottom,

19% of the cacheable CDN objects are served from the disk of the first server, 5% from the

second server, 10% from at least 2 CDN servers (or origin) and the rest (66% – not shown)

are served from the memory of the first server.

Figure 2.3 shows a distribution of the Time To First Byte (TTFB) of objects across all

pages categorized by the layer from which it was served. The TTFB for an object is the

time elapsed from when the request was sent from the client until the first byte of the

response was received at the client, including the network time and retrieval time at the

cache (or server). As expected, the TTFB observed across the different CDN layers vary

substantially.

Figure 2.4 shows the fraction of cacheable CDN objects that are served from beyond the

first contacted CDN server for the Top1K and Beyond1K classes for three different days.

The figure shows that a significant fraction of objects are served from beyond the first CDN

server even for the Top1K pages – e.g., the 50th(90th) %ile of objects served from beyond

the first server were more than 11%(34%). Further, for the Beyond1K pages more objects

are served from the farther layers in the CDN hierarchy – e.g., the 50th(90th) %ile of

objects served from beyond the first server were more than 37%(74%). Moreover across
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multiple days, the hit rates remain similar for both the classes indicating the trends are

consistent across many days and the hit rates are representative of the page popularity. We

performed similar analysis across multiple days from different geographical locations and

we find the trends to be similar. For instance, the median percentage of objects served

from beyond the first server across the Top1K pages from another US location for three

days were 15%, 12% and 10%, while for the Beyond1K pages they were 31%, 24% and

32%, with the 90%ile being higher than 38% and 71% across the days for the Top1K and

Beyond1K respectively.

• Critical objects are not always served from the fastest CDN layers: Figure 2.5 shows

a stacked bar graph with the number of objects served from each level in the dependency

graph (as described earlier in this section) of www.weather.com. Each bar corresponds

to a level in the graph and the stacks in the bar show the number of objects served from

the corresponding CDN layer. The figure shows that many critical objects (generally the

internal nodes of the dependency graph) are served from beyond the first server indicating

the potential to reduce page latencies by considering object priorities in CDN mechanisms.

Figure 2.6 shows a breakdown of the CDN layers from which the HCJ objects are

served for the Alexa Top1K pages. While HCJ objects do not exactly correspond with
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objects important for a page load, we consider them here for simplicity. Note that a sig-

nificant fraction of the CDN served cacheable objects are HCJ objects – e.g., 42% of CDN

served cacheable objects are HCJ for 50% of the pages. The figure shows that in general

across all pages a significant fraction of HCJ objects are served from different layers of the

CDN hierarchy incurring vastly different latencies – e.g., for 50% of the Top1K pages more

than 10% of the CDN served cacheable HCJ objects are served from higher layers with this

fraction being greater than 48% for 10% of the pages.
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Fig. 2.7. Serving delays in HCJ objects disproportionately impacts latency

• Delays in serving a few critical objects can disproportionately impact page latency: Fig-

ure 2.7 shows a section of the waterfall diagram which depicts how the objects arrive at a

client during the download of an actual web page. The X-Axis is the time since the start of

the download (only the relevant time segment is shown). Each bar corresponds to an ob-

ject, and extends from when a request to that object was made, to when the object was fully

downloaded at the client. Further, each bar shows the breakdown of the time spent waiting

for a connection to the server (blocked), time spent waiting for the first byte of the response

(wait) and time spent in receiving the object (receive). From the figure, we see that many

objects were delayed because they depended on two JS objects, which got delayed (267ms,

135ms respectively with the time dominated by wait time). Further investigation showed

both JS objects were cacheable and served from CDN, but were served beyond the first

two servers in the hierarchy. Interestingly, many of the dependent objects hit in the CDN.

Avoiding delays of these two JS objects would potentially reduce page load times by over

400ms (a 19% reduction).

• Both true misses and stale misses contribute to objects being served from beyond the first

CDN server: We conducted a deeper analysis on the causes for the first CDN server misses.

We found that even though true misses contribute greatly to the first server misses, we also

find significant fractions of staleness related misses – e.g., the fraction of first server misses
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that were staleness related misses is more than 29% and 45% at the median and 75%ile

respectively, with the rest being true misses.

2.3 Enabling page-awareness in CDNs

In §2.2, we have shown that there is opportunity to reducing web-page latency by map-

ping objects in a page most critical for latency to the fastest caches in the CDN hierarchy.

In this section, we revisit CDN design to exploit this opportunity. In doing so, a number of

issues must be tackled including (i) determining which objects to prioritize; (ii) reconcil-

ing the need to prioritize objects more critical for latency with the traditional CDN goals

of placing more popular objects at the edge to save bandwidth, by appropriately tailoring

cache placement and replacement policies; and (iii) avoiding staleness misses for important

objects in addition to capacity misses. We discuss our schemes for each of these issues in

the following sections.

2.3.1 Schemes for prioritization

We consider a range of schemes for assigning priorities to objects, which involve dif-

ferent trade-offs between the complexity of the priority-marking scheme, and the potential

latency benefits as we discuss below:

• Prioritizing objects based on content type: (Type) Our first scheme is content-type

based priority assignment, where objects are accorded priorities based on content type –

specifically, HTML objects receive higher priority, followed by JS and CSS, and finally

images and others. This, in fact, conforms to the best-practices for prioritization with the

SPDY protocol, and is implemented by Chrome today [33].

• Prioritizing objects needed for initial page rendering (OLType): Content type may

not accurately reflect the importance of an object to page latency. Objects needed for an

initial acceptable rendering of a page are more critical to user experience than other objects.

While images may be important for such an initial rendering, some HCJ objects may not

be required. A commonly used indicator to identify such an initial version of the page is an
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Onload event triggered by the browser. The time to generate a browser Onload event, which

we refer to as Onload Time (OLT), is a commonly used metric to measure web page load

performance [34]. This motivates our OLType strategy which prioritizes objects prior to

the Onload event, and among such objects, prioritizes objects based on content type. More

generically, this strategy could be refined to consider other indicators of an initial page load

such as ”above the fold” content, content related to most critical visual progress [35], or

content with the highest utility to users [36].

• Prioritization based on page dependency graph (OLDep): While Type and OLType

are fairly coarse-grained strategies, a more fine grained prioritization scheme is to consider

the actual dependency graph associated with the page, and assign prioritizes based on the

graph – e.g., in Figure 2.1, J1 would be accorded higher priority than J4. This motivates the

OLDep algorithm. Like OLType, OLDep prioritizes objects needed to trigger the Onload

event over other objects. However, among objects needed for the Onload event, it prioritizes

objects based on their depth in the dependency graph, with HCJ objects preferred among

those at the same depth. Likewise, objects after the Onload event are also prioritized based

first on their depth in the dependency graph, and then their content-type.

2.3.2 Balancing popularity and priority in cache placement and replacement

CDNs have two potentially conflicting goals that they must consider in deciding whether

to cache objects at a given edge location: (i) cost savings; and (ii) minimizing user latency.

For cost savings, it is desirable to cache the most popular objects at the edge. However, for

user latency savings, it is desirable to cache high priority objects at the edge. Since more

popular objects might not be the highest priority and vice versa (e.g., page logos vs product

related images), it is important to carefully reconcile these considerations.

A naive approach to tackling these issues is to use multiple LRU queues with one queue

per priority level. When an eviction is required, incoming objects evict the least recently

used objects in lower priority queues, before evicting the least recently used objects in the

queue having the same priority as the incoming object. A key limitation of this approach
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is that objects with higher priority tend to remain in the cache even if they are no longer

accessed, creating cache starvation for the popular, but low priority objects.

Instead, our approach is inspired by the notable Greedy-Dual-Size algorithm [37] which

considers how to balance locality of access patterns with object size and the variable costs

associated with fetching objects. We adapt this algorithm to balance object priority and

popularity by assigning a utility to each object based on its priority (Pi), and implement

our cache as a priority queue ordered by the utility of the objects. When an eviction is

required, objects with the lowest utility value (which are located at the tail of the queue)

are evicted first. To prevent high priority objects from residing permanently at the head

of the queue, we gradually decrement the utility value of the objects in the queue that

are no longer accessed. This may be achieved in a computationally efficient manner by

maintaining a monotonically increasing global clock for the cache, which is added to the

utility value of the object (U(i)) as follows:

U(i) = clock + 1 + (R− 1) ∗ Pmin − Pi

Pmin − 1
(2.1)

Here, Pmin is the lowest assignable priority and is higher than Pmax, the highest assignable

priority. For simplicity, we fix Pmax = 1 in our formulation and hence Pi varies between

1 and Pmin. The parameter R is the ratio of the lowest and highest assignable priorities

(Pmin/Pmax). A linear interpolation is used to assign the initial utility to objects with any

priority. R is a knob that the CDN could tune to decide how much to favor hits to higher pri-

ority objects over lower priority objects, and we evaluate the impact of R with real traces in

§2.6.1. The utility value of the object is updated using the above equation when the object

is accessed from the cache. The monotonicity of the clock is maintained by incrementing

the clock on an eviction to the utility value of the evicted object. Therefore, objects that

are accessed more frequently will have a higher utility value than objects in the cache that

do not see any further accesses. This ensures that high priority objects that are no longer

accessed, eventually get evicted from the cache. Finally, note that an item is placed in the

cache only if its utility exceeds the utility of the lowest utility object in the queue.
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2.3.3 Priority based proactive refreshing

Staleness related misses could be avoided by proactively refreshing objects that are cur-

rently in the cache, but are about to expire in the near future, at the cost of some bandwidth

related to unnecessary refreshes. Given the trade-off between reducing staleness misses

and the bandwidth penalty, it is desirable to only proactively refresh those objects most

important for page latency. We consider a family of strategies which primarily differ in

terms of which objects are proactively refreshed:

• HCJ, which only proactively refreshes HCJ objects. The primary advantage of the

scheme is the simplicity in identifying objects to refresh.

• BO, which only proactively refreshes all objects required for the page Onload event.

While the strategy has the potential to better mirror objects most important for latency, it is

more involved to identify these objects.

• HCJ BO, which only proactively refreshes HCJ objects needed for the page load event.

This strategy has the potential to reduce the bandwidth overheads compared to HCJ while

matching its latency benefits.

For all schemes, a refresh is triggered only when a request for the object is received and

the following conditions are satisfied: (i) the object is unlikely to receive further accesses

until it expires; and (ii) the estimated number of accesses in its lifetime is sufficiently high

to warrant a proactive refresh. Specifically, we require that

Ai ∗ ei ≤ TPi
(2.2)

Ai ∗ li ≥ KPi
(2.3)

Here, Ai, li, ei, and Pi are respectively the average request rate, lifetime, time left to expiry

and priority of the object. Ai is computed by tracking the number of accesses seen by

the object since it entered the cache, and li and ei are obtained from the cache-TTL or

expiry-time of the object. TPi
is ideally kept smaller (close to 1) to trigger just-in-time

refreshes. Note that larger TPi
and smaller KPi

support more aggressive refreshing. We

evaluate the impact of these parameters with real traces in §2.6.2. These thresholds may be
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Fig. 2.8. Experimental setup for evaluating latency benefits.

set differently across priority classes to support more aggressive or conservative refreshing

for each class.

2.4 Evaluation Methodology

Our evaluations have two primary goals. First, we seek to understand the potential

latency benefits of our various schemes for priority-based placement and proactive refresh-

ing, as well as their sensitivity to factors such as page popularity, CDN hit rates, page

composition, and the relative latencies of various CDN cache layers. Second, we also seek

to understand the impact of prioritization on CDN cache hit rates, and the bandwidth costs

associated with the proactive refresh schemes.

We achieve the first goal by conducting a detailed emulation study of our schemes for

the real-world pages analyzed in §2.2). Our emulations allow us to compare schemes in

a fair manner while capturing the heterogeneity in latency (and object fetch times) across

the CDN hierarchy, and realistic factors such as client execution times. We tackle the

second goal by conducting a detailed analysis of traces from a real CDN. We present our

experimental setup for latency comparisons in the rest of the section, latency benefits results

in §2.5.1, and our trace-driven analysis in §2.6.
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Table 2.1
Placement and refresh schemes studied in our evaluation.

Placement schemes Proactive refresh schemes

OBS None

Type HCJ

OLType BO

OLDep HCJ BO

All

2.4.1 Methodology for latency comparisons

We use Onload Time (OLT) (defined in §2.3.1) to quantify the page load latency. We

focus on OLT since it is objective, easy to determine, and widely used as a measure of page

latency, while other indicators [35] are inherently more subjective. We do not consider

the time to download the last byte for the page since many of the pages we evaluated tend

to request objects indefinitely, and the time for an initial rendering is more important in

practice.

We next discuss factors impacting our comparisons. A first factor is the CDN hit rates

in terms of how many objects are served from each layer of the hierarchy. Of particular im-

portance is the edge hit rate (EHR,) which we define as the fraction of objects served from

the first CDN server (edge). A second factor is the composition of pages. Specifically, the

fraction of HCJ and BO objects as well as the complexity of the dependency graph, can

impact our comparisons. We compare our schemes with 83 real-world web pages analyzed

in §2.2, which exhibit a wide range of diversity in terms of popularity and page compo-

sition. We highlight the characteristics of a page which impact the relative performance

of schemes when appropriate. A third factor is the relative ratio of latency to the various

layers of the CDN hierarchy, which we vary based on real measurements.
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2.4.2 Schemes compared

Our schemes (Table 2.1) include:

Baseline for comparison (OBS): The OBS scheme corresponds to the placement observed

when the page was loaded in the real-world measurements (§ 2.2). All objects served by

CDN are fixed to the same layer from which it was served during the real page-load. All

cacheable objects not served through CDN are split across the caching layers according to

the hit-rates for cacheable objects observed in the real page-load.

Placement schemes: Our CDN placement schemes differ in their algorithms for assigning

objects to the cache layers according to the fractions described above. We consider the

Type, OLType and OLDep schemes are as described in § 2.3.1.

Proactive refresh strategies: This includes the HCJ, BO and HCJ BO schemes described

in §2.3.3 which primarily differ in terms of which objects are proactively refreshed. We

also consider the None and All strategies as baselines for comparison which indicate none

or all of the objects are proactively refreshed.

To ensure fair comparisons with OBS, for all schemes, all non-cacheable objects were

always pinned to the farthest layer (origin). All objects that observed a staleness miss with

OBS were served from the same layer as they were with OBS if they were not proactively

refreshed. For example, with no proactive refresh all objects that saw refresh misses in

OBS were pinned, while with the HCJ strategy non-HCJ objects with refresh misses were

pinned. All remaining objects were assigned to the CDN cache layers as per the placement

strategy. In doing so, the total number of objects served from each CDN layer was ensured

to be (i) the same as OBS in the absence of proactive refreshing; and (ii) the same as OBS

augmented with that proactive refreshing strategy otherwise.

If only a subset of objects of a given priority class (e.g., a subset of HCJ objects with

Type) can be accommodated at a given CDN layer to satisfy the constraints on the number

of objects that could be served from each layer, our schemes pick objects from within the

priority class randomly. To ensure a robust comparison, we generate 50 different placement

configurations with each scheme. We load each web-page with each scheme for each of its
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50 configurations, alternating across schemes. We clear the browser cache between runs to

eliminate the impact of local browser caching. We usually summarize the performance of

a scheme for a given page by presenting the median OLT across the 50 configurations, but

we also report on higher percentiles.

Many of our schemes require knowledge of objects needed for Onload and their depen-

dencies. Rather than detailed activity dependence graphs [28] that may vary across runs,

we obtain more static object level dependencies [29, 38]. Through multiple controlled ex-

periments that each delay an object in a page, we determine the objects needed for Onload

based on whether the Onload event is delayed. Likewise, dependent objects may be deter-

mined based on delays observed in their download times. We determine object importance

based on its depth in the dependency graph rather than consider critical paths which may

vary across runs.

2.4.3 Experimental setup

Figure 2.8 presents our experimental setup. Web pages are hosted on a web server

(corresponds to an edge server in a CDN cluster), where TTFBs to the different caching

layers are emulated and the page-load latency from an actual web browser is measured.

Web pages exhibit significant variability in the number of objects and aggregate down-

load size for a given web page, even over short intervals of time. To ensure fair com-

parisons, we used an open source tool called web-page-replay [39]. Entire web pages

including all constituent objects were first recorded through downloads from the actual

web server(s). Then, the same recording was replayed for all schemes in later experiments.

Some web pages still showed variability as they had JS that requested different URLs (e.g.,

using a random number or date) over different runs. We modified the web-page-replay code

to replace such occurrences with constant values to ensure the same objects were requested

for all schemes.

We focus our evaluations on settings where SPDY is enabled between the client and the

edge server, in order to highlight that our benefits are complementary to SPDY. We also
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note that our schemes show similar benefits in the presence of traditional HTTP as well.

We use apache mod spdy server co-located with WPR, and Chrome browser (version 43.0)

running SPDY (version 3.0) as the client in all our experiments. The client uses SPDY to

forward object requests to the mod spdy server, which in turn proxies the requests (and

responses) to (and from) WPR. We modify the local DNS resolver configuration file in

Linux to resolve all domains to localhost so that the requests are issued to the apache

proxy during the replay experiments and no requests are served over the Internet. In all

our experiments, the client uses the default priorities set by the SPDY implementation of

Chrome when issuing requests to the server.

In order to minimize the impact of browser variability on page-load times, we disable

all extensions, background and sync activities in the browser using Chrome command line

flags [40]. We set the browser cache and user profile directories to RAMDisk [41] to

minimize the impact of disk read/write variability on page-load times. We also clear the

RAM disk across runs to ensure clean-slate page-loads where all objects are fetched from

the emulated CDN layer.

2.5 Results

We begin by evaluating the potential benefits of our placement and proactive refresh

schemes, focusing on content type prioritization (§2.5.1). We next compare all our place-

ment strategies in the absence of proactive refresh (§2.5.2), and all our proactive refresh

schemes in the absence of priority-based placements (§2.5.3), with a view to understand-

ing the potential benefits of prioritizing objects based on factors other than content type.

Finally, §2.5.4 evaluates the benefits when such richer prioritization is used as part of both

placement and proactive refresh.

To emulate heterogeneous latencies associated with CDN cache hierarchies, by default,

we use the median TTFB observed across all objects fetched from each layer in our mea-

surement study (Figure 2.3), but we present a sensitivity study to our latency settings in

§2.5.4.
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We compare the performance of the schemes with 83 real-world web pages (out of the

100 pages analyzed in §2.2). The remaining 17 pages either did not consistently trigger an

Onload, or had 100% of its objects being served from the edge server(mem), in which case

all placement schemes are equivalent. In comparisons where both placement and proactive

refresh strategies vary, we use names such as Type:HCJ (indicating placement using the

Type strategy and proactive refreshing of HCJ objects). When schemes compared vary in

only in their placement (or refresh) strategy, we abbreviate by only using names of the

placement (or refresh) schemes.

2.5.1 Latency benefits of prioritization

In this section, we evaluate the potential benefits of prioritized placement and proactive

refresh, in isolation and in combination. We focus on schemes that primarily distinguish

objects based on their content type (Type and HCJ).

Figure 2.9(a) shows a CDF of the OLTs observed (across 50 placement configurations

as described in §2.4) with OBS, OBS:HCJ indicating OBS placement with HCJ refresh

strategy, Type:None, and Type:HCJ for a popular web-page www.mercurynews.com (Alexa

Rank:1245). The breakdown of objects served from different layers in the real download

(OBS) for this page was 54% at the edge server (34%mem, 20%disk), 26%remote, and

20%origin. The figure shows that both priority based placement and proactive refresh

independently help reduce the OLT when compared to OBS. However, the combination of

the two provides significantly higher benefits, reducing the OLT by more than 200ms.

Figure 2.9(b) shows the reduction in median OLT achieved by the three schemes relative

to OBS for all pages. The figure shows that Type:HCJ provides significant reductions in

OLT over OBS, despite the high EHRs for some of these pages. For instance, we see a

median OLT reduction of more than 100ms for 40% of the pages and more than 200ms for

10% of the pages. Our results also show the importance of priority based placement only

(Type:None), which reduces the median OLT by more than 50ms for 30% of the pages.

Interestingly, we also find OBS:HCJ strategy providing significant latency reductions when
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Fig. 2.9. Latency benefits of prioritized placement and proactive refresh
strategies in isolation and combination.

compared to OBS by avoiding refresh misses for some HCJ objects. For example, for 15%

of the pages OBS:HCJ provides a latency reduction of more than 68ms. These correspond

to pages where > 17% of all objects were HCJ and saw refresh misses. We also found

similar trends for the reduction in 90%ile latency for all the schemes, though the benefits

were marginally higher.

To understand the impact of prioritization for pages with different popularities, in Fig-

ure 2.9(c) we show the OLT reduction with Type:HCJ over OBS split by the Alexa Top1K

and Beyond1K classes (§ 2.2). The figure shows that though the benefits are more pro-

nounced for the Beyond1K pages, prioritization provides significant reduction in Median
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Fig. 2.10. Comparing the reduction in the median OLT for our
schemes over OBS, validated with Mann-Whitney-Wilcoxon hypothesis
testing [42] at a significance level of p < 0.05.

OLT even for the Top1K pages. For example, though Type:HCJ provides 93ms (225ms)

reduction in median OLT for 50%(10%) of the Beyond1K pages, we see benefits of over

157ms for 10% of the Top1K pages also. Overall, our results clearly emphasize the impor-

tance of prioritization through better placement and proactive refresh strategies.

To ensure statistical significance of our results, we conducted a Mann-Whitney-Wilcoxon

Test (MWW) [42, 43], a non-parametric hypothesis test to compare two populations. The

null hypothesis is that the OLT distributions observed with the two schemes being com-

pared are identical. We use a significance level of 0.05 (two-tailed p-value) and reject the

null hypothesis when p < 0.05.

Figure 2.10 (a) shows a stacked bar graph, indicating the percentage of pages where the

null hypothesis can be rejected and there is a reduction (increase) in median OLT. The re-

maining pages (not shown, adding upto 100% in each bar) correspond to pages which have

similar performance across the schemes. The figure shows that the null hypothesis can be

rejected for 86%, 69% and 30% of the pages respectively for the Type:HCJ, Type:None and

OBS:HCJ schemes. The remaining pages typically correspond to pages in Figure 2.9(b)
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Fig. 2.11. CCDF of median OLT reduction with Type, OLType and
OLDep for all pages with Y-Axis in log-scale. Proactive refresh is dis-
abled for all schemes.

where the median OLT differences between the schemes is small (under 10 ms). Note that

the OBS:HCJ performs comparably to OBS for many pages because these pages had rela-

tively few staleness misses for HCJ objects. Figure 2.10 (b) corroborates this by showing

the fraction of pages for which the null hypothesis can be rejected, and the reduction in

median OLT exceeds a certain threshold for all schemes and a range of thresholds. For in-

stance, the figure shows that for the Type:HCJ scheme, the reduction exceeds 50ms for 63%

of the pages, and 100ms for 35% of the pages. Finally, we found exactly two pages where

Type increases the OLT over OBS. Further investigation showed these were cases where

a strictly type-based prioritization was inadequate, and where OBS was already serving

important Non-HCJ objects from the edge as discussed in §2.5.1.

2.5.2 Comparing placement strategies

We next evaluate the benefits of OLType and OLDep which consider factors besides

content type in placement decisions. Since our focus is on placement schemes, our com-

parisons are done without proactive refresh.

Figure 2.11(a) presents a CCDF of the median OLT reduction relative to OBS for all

the placement schemes, and all the pages in our experiment set. While all schemes show
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Fig. 2.12. Impact of page composition on the relative performance of schemes

significant reductions compared to OBS, OLType and OLDep provide only slightly higher

benefits than Type. The benefits are marginal for most pages, however somewhat more

significant at the tail. Note that the CCDF is shown with Y-Axis in log scale since the

schemes show more prominent difference in the tail. Figure 2.11(b) shows the median

OLT reduction of OLType and OLDep relative to Type. Across all pages, OLDep achieves a

median OLT reduction higher than 35ms for 12% of the pages, while for 6% of the tail pages

both schemes achieve median OLT reduction higher than 50ms relative to Type. Though

we find higher benefits for the Beyond1K pages, we also see latency savings of more than

35ms for 14% of the Top1K pages as well, with as much as 71ms for the tail page. We have

also verified the statistical significance of our results using the MWW test.
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To better understand these results, and when different schemes are most helpful, we

analyze the page composition into objects in 4 categories as follows – (i)HCJ and Non-

HCJ objects; and (ii) required for Onload (BO) or not (AO). Figure 2.12(a) shows the

composition of objects in these 4 categories for two example pages where OLDep and

OLType show benefits over Type. In general, the benefits with these schemes depend both

on the EHR, and the composition of the page, among other factors.

When do OLType and OLDep perform better than Type? Both OLType and OLDep

prioritize objects before Onload. For www.att.com, the EHR is sufficiently high that all BO

objects may be placed in the edge, hence both OLType and OLDep prioritize all BO objects

to the edge. However, Type prioritizes HCJ objects (agnostic of whether they were required

for Onload) over Non-HCJ BO objects, and is unable to accommodate all Non-HCJ BO

objects at the edge. Indeed, Figure 2.12(b) confirms that for this page, OLType and OLDep

perform better than Type. Note that the two schemes themselves perform comparably - this

makes sense due to the high EHR both schemes are able to place all BO objects in the edge.

Interestingly, we observed many other pages where Type performs comparably to OLType

and OLDep even though it is not able to place all Non-HCJ BO objects in the edge. On

further analysis, we found that the Non-HCJ objects were leaves in the dependency graph

for these pages – consequently, the performance with Type was relatively unaffected even

though these objects were not placed in the edge. In contrast, for pages like www.att.com

some of the Non-HCJ objects were internal nodes in the dependency graph, in the sense

that a lot of object fetches were dependent on these objects (delaying the internal Non-HCJ

objects delays a lot of other objects being fetched). For example, in www.att.com some

of the Non-HCJ internal nodes were sprited images and the execution of JS code waits

on these images. As a result, delaying these images delays all the objects to be fetched

after executing the JS code. Thus careful placement of the internal Non-HCJ objects was

particularly important to reduce the page latencies.

We now analyze the statistical significance of the above results using Mann-Whitney-

Wilcoxon Test (MWW) [42, 43] as described earlier. Figure 2.13 (a) shows the stacked

bar graph indicating the percentage of pages where the null hypothesis is rejected, and
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Fig. 2.13. Comparing the reduction in the median OLT with OLType
and OLDep over Type, validated with Mann-Whitney-Wilcoxon hypoth-
esis testing [42] at a significance level of p < 0.05. Proactive refreshing is
disabled for all schemes in this experiment.

there is a reduction (increase) in median OLT with OLType and OLDep relative to Type.

The figure shows that the null hypothesis can be rejected for 29% and 28% of the pages

respectively for the OLDep and OLType schemes. Figure 2.13 (b) shows that the schemes

reduce median OLT by > 20ms for about 15% of the pages, and median OLT by > 50ms

for 4% of pages. This is consistent with our observations in Figure 2.11(b) that OLType

and OLDep primarily provide benefits over Type at the tail.

When does OLDep perform better than OLType? For www.conduit.com, 93% of the

objects are required before Onload with more HCJ BO objects (60%) than can fit in the

edge. While both OLDep and OLType prioritize HCJ BO objects, OLDep makes finer-

grained distinctions, and prioritizes objects at the highest levels of the dependency graph,

which are more critical for latency. Indeed, Figure 2.12(c) confirms that OLDep performs

better than OLType for this page. OLType and Type perform similar - this is because there

are only a few HCJ AO objects and hence OLType and Type are choosing from relatively

the same set of objects to place in the edge. More generally, OLDep also provides benefits
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over OLType for pages where all HCJ BO but not all BO objects fit in the edge, and some

Non-HCJ BO objects are internal nodes in the dependency graph.

Finally, we found rare cases where OLDep performs worse than Type, when objects

deeper in the dependency graph have more impact on the OLT than the objects closer to

the root in the graph. For example, in www.comcast.com, a JS object (appearing as a leaf in

the dependency graph) had a larger impact on the OLT owing to its higher execution times

than other internal Non-HCJ objects, while Type placed all HCJ objects at the edge. While

prioritizing objects occurring consistently on the critical path across runs (and clients) may

help, determining such objects is not trivial, and we did not explore such a technique in

depth given the small number of occurrences.

2.5.3 Comparing proactive refresh strategies

In this section, we fix the placement scheme as OBS, and compare the performance

of various proactive refresh strategies described in §2.4. Since proactive refresh strategies

differ only in their handling of refresh misses, we confine this study to only those pages(61

pages) that saw at least one stale access in the real page-load. Figure 2.14(a) shows that all

strategies give significant latency reductions relative to OBS. For the vast majority of pages,

the schemes perform similarly, though there are a small number of pages where BO and

All perform better. Interestingly, we also find that the HCJ BO scheme performs similar to

HCJ while incurring lesser bandwidth costs.

When does BO perform better than HCJ? We illustrate this using one of the pages

www.mercurynews.com, where BO performs better than HCJ. Figure 2.14(b) shows the

CDF of OLTs observed with each of the proactive refresh strategies. Clearly, all refresh

schemes perform better than None, while BO performs even better than HCJ (and HCJ

BO). We note that the page observed multiple refresh misses for Non-HCJ BO objects in

the higher levels (L 9-14) of the dependency graph as shown in Figure 2.14(c). These

objects have further dependent objects (in L15), and impacts the critical path of the page-
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Fig. 2.14. Latency reduction with proactive refresh. All schemes use the OBS placement.

load. Therefore, the BO scheme, which proactively refreshes all objects needed for Onload

(including Non-HCJ BO objects), provides significant latency reductions.

Overall our results show that (i) HCJ suffices in most cases, though BO can provide

further latency reduction for some pages; (ii) BO itself gives all the benefits of ALL with

lower bandwidth costs; and (iii) HCJ BO provides comparable benefits to HCJ with lower

bandwidth costs.
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2.5.4 Sensitivity to origin TTFB

In this section, we achieve two goals. First, we evaluate the benefits achievable by

considering factors other than content type in both placement and proactive refresh strate-

gies together. Second, we study the sensitivity of the observed latency reductions with

our schemes to heterogeneity in TTFBs for fetching objects. We focus on the TTFB to

origin servers since they show the highest variability and have the highest impact on the

page-load latency. Therefore, we conduct the sensitivity study by varying the TTFB to the

highest layer retaining the same values for the other cache layers (used in §2.5). We com-

pare OLDep:BO with OBS for three different ratios of CDN edge to origin server TTFBs

viz. 1 : 4, 1 : 8 and 1 : 16 (rounded-off) representing the 25th, median and 75th per-

centiles respectively from the real downloads (see §2.2). Note that the ratio used in all our

prior experiments (§2.5) is 1 : 8.

Figure 2.15 shows the reduction in median OLT with OLDep:BO compared to OBS split

by pages in Alexa Top1K and Beyond1K classes. Clearly, OLDep:BO which combines

both placement and proactive refresh provides significant benefits – with 1 : 8, the median
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latency reduction is > 100ms for 30% of the Top 1K pages and > 100ms for 59% of the

Beyond 1K pages. As expected, the benefits with prioritization increases with larger origin

TTFB. Interestingly, the benefits are higher for both the Top1K and Beyond1K pages when

the origin TTFB is high (ratio 1 : 16). For instance, the median OLT reduction for 50% of

the Beyond1K pages is about 2X higher with 1 : 16 than 1 : 8, while for 50% of the Top1K

pages we see almost 3X higher reduction with 1 : 16 than 1 : 8. Though not shown, the

reduction in median OLT with OLDep:BO was as much as > 1s for 1 : 16 (and 586ms for

1 : 8) at the tail.

We now study the relative benefits of OLDep:BO over Type:HCJ, with the various edge

to origin ratios. Figure 2.16 shows a CCDF of the reduction in median and 90%ile OLTs

with OLDep:BO over Type:HCJ for all pages. The figure shows that the latency benefits of

OLDep:BO over Type:HCJ increases with higher ratios. The trends hold for reductions in

both the median and 90%ile OLTs, with reductions in the median OLTs as high as 700ms

for www.mercurynews.com which had many Non-HCJ refresh misses. Overall our results

show that OLDep:BO gives higher benefits over Type:HCJ for pages at the tail, especially

when the TTFB to origin is high.
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Fig. 2.17. Miss rates of priority based caching schemes when compared to
LRU(Size), and LRU-Pin.

2.6 Trace-driven evaluation

In this section, we conduct trace-driven simulations for evaluating the feasibility of

priority-based caching and proactive refresh in CDNs. The request traces for this study

were obtained from the edge cluster of a real CDN deployment, which serves a wide class of

web traffic, and consists of 162 million requests for about 13.5 million distinct objects. The

week long trace is non-sampled and consists of all client requests observed at each of the

18 servers in the edge cluster. For all simulations in this section, we set the cache capacity

to those seen in the real deployment. Since the page structure (dependencies) and Onload

information is not deducible from the trace, we use content-type based prioritization, and

focus on miss-rate reduction (and bandwidth overhead) for all experiments in this section.

2.6.1 Feasibility of priority based caching policy

We first show the feasibility of our approach in reducing the miss rate for the critical

objects without significantly affecting the overall hit rates of the caches. We emulate the

cache using our week-long trace for two caching algorithms - our priority-based caching

described in §2.3.2, and (ii) LRU(size) - LRU with a size threshold, that is commonly
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employed by CDNs today. We evaluate our algorithm by varying the relative importance

of the HCJ and Non-HCJ objects, which is captured by the parameter R, the ratio of the

priority of HCJ objects to the priority of Non-HCJ objects. We also compare our algorithm

with a variant of LRU which preferentially pins the HCJ objects to the cache and ensures

that they are never evicted by a Non-HCJ object. However, HCJ objects may evict Non-

HCJ objects and other HCJ objects similar to LRU. We use the same cache size and object-

size threshold used by the LRU across all the schemes.

Figure 2.17(a) shows the reduction in miss rates for the HCJ objects for the different

schemes relative to the miss rates observed with the LRU(size). The horizontal line at the

top of the graph shows the maximum achievable reduction in miss rates, where the rest of

the misses are compulsory misses in our trace. Figure 2.17(b) shows the corresponding

increase in the overall miss rate as well as in the miss rate for Non-HCJ objects. From

the figure, we see that as R increases, the reduction in miss rate for HCJ objects ramps

up quickly for smaller R (flattens out at higher R), while the increase in miss rate for

Non-HCJ objects increases gradually for smaller R and more rapidly for higher R. This

shows the opportunity for the CDN to tune R, such that, it reduces the miss rate for HCJ

objects without increasing the overall miss rate of the cache. In our trace, this occurs

around R = 7 and R = 15, which reduces the miss rate for HCJ objects by 49% and 61%

respectively, without significant impact on the overall miss rate. We also see that while

LRU-pin performs the best for HCJ objects, it drastically affects the overall miss rates.

Figure 2.18(a) shows the reduction in byte miss rates (the ratio of number of bytes

for objects that were missed from the cache over the total number of bytes requested) for

the HCJ objects for the different schemes relative to the byte miss rates observed with

the LRU(size). Figure 2.18(b) shows the corresponding increase in the overall byte miss

rate as well as in the byte miss rate for Non-HCJ objects. From the figures, we see that

our schemes are able to reduce byte miss rates of HCJ objects by 52% and 65%, with

modest increases of 0.7% and 1.8% in the overall byte miss rates for R = 7 and R = 15

respectively. We note that increase in overall byte miss rates are higher than the increase in

overall cache miss rates (Figure 2.17) for any given value of R. This is because Non-HCJ
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Fig. 2.18. Byte miss rates of priority based caching schemes when com-
pared to LRU(Size)

objects typically tend to be larger in size compared to HCJ objects, which results in higher

number of bytes missed when HCJ objects are prioritized over Non-HCJ objects.

Overall, our results show that our priority based caching scheme is able to significantly

reduce the miss rates (and byte miss rates) for HCJ objects, while incurring only a modest

increase in the overall miss rates (and byte miss rates).

2.6.2 Bandwidth impact of proactive refresh schemes

We now show the benefits of prioritization in reducing the additional bandwidth costs

associated with proactive refreshing. Since our traces do not have Onload information

for objects, we focus our evaluation in this section on the HCJ and All proactive refresh

schemes. We augment our priority-based caching algorithm with proactive refreshing as

described in §2.3.3 and emulate the cache with our week long traces. In all our experiments,

we set the threshold T = 2 (for just-in-time refreshes), but vary the parameter K for the

HCJ objects to illustrate the bandwidth-cost and performance trade-off with conservative

and aggressive proactive refreshing.

Figure 2.19 compares the percentage reduction in stale accesses for HCJ objects, and

the corresponding increase in bandwidth incurred with both the schemes. Note that the

bandwidth costs estimated here are an upper bound since entire objects need not be fetched
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Fig. 2.19. Impact of the HCJ and All proactive refresh strategies. Note that
both schemes reduce stale accesses for HCJ objects by identical amounts.

again if they are not modified at the origin, but that information is not available to us in the

trace. The figure shows that both All and HCJ schemes reduce stale accesses for HCJ ob-

jects by 60%, while incurring an overall bandwidth increase of 3% and 0.02% respectively.

Note that a smaller K (aggressive refreshing) results in fewer stale accesses, while a larger

K (conservative refreshing) lowers the bandwidth costs of proactive refreshing. Overall,

our results highlight the opportunity for priority-based proactive refresh in significantly

reducing staleness for HCJ objects, while incurring only modest bandwidth penalties.

2.7 Related work

While SPDY [15] allows resource prioritization, it supports only priority based process-

ing (and transmission) of objects from the server to a client [44]. Recent work [30] looks

at re-prioritizing delivery of objects in a web page when they are pushed from a server

to a mobile client. In contrast, our focus is on an orthogonal problem – enabling priority

awareness within the CDN infrastructure. All our experiments including the OBS baseline

are run with SPDY enabled, and our benefits are complementary to SPDY. Recent research

has shown that SPDY is not always beneficial [38,45]. Our proposals in this chapter do not

rely on SPDY - incorporating priority awareness in CDNs has benefits even with HTTP.
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Our work builds on the rich literature on caching algorithms for web caches, proxy

caches and CDNs (e.g., [37, 46–51]). We adapt the well known Greedy-Dual-Size algo-

rithm [37] which considers how to balance locality of access patterns with object size and

the variable costs associated with fetching objects on a miss, given some network paths

could be more expensive than others. Others have extended the algorithm to more explic-

itly bias it towards more popular objects [46, 47]). In contrast to all these works, our focus

is on determining the importance of an object within a page for lowering page latency, and

balancing object popularity and priority.

Prefetching to reduce web latencies has been extensively studied since the earliest days

of the web (e.g., [52]). Many of the early works focused on client-side prefetching (e.g.,

[52]) in which clients initiate prefetching guided by predictions on which files are likely to

be accessed soon (e.g., based on models that indicate which hyper-links a client is likely to

click when on a given page [52]). Others [53–56] have investigated prefetching in CDNs

and proxy servers by using global access patterns to identify which objects should be proac-

tively replicated to caches. While we leverage these techniques, we consider the more

limited goal of avoiding refresh misses on objects already in the cache by proactively re-

freshing them. Further, we seek to proactively refresh objects that are more important for

reducing page latencies, given refresh misses are a key component of overall miss rates for

popular pages.

Researchers have explored how objects must be placed in a hierarchical caching sys-

tem [57–60] so that the average latencies are minimized given constraints on cache capac-

ities [58] or bandwidth [60]. [59] propose mechanisms to improve end user response times

by tracking the data location and minimizing the number of hops on hits and misses within

the CDN hierarchy. In contrast, our focus is on placement of objects taking priority into

account - specifically, objects that are not as popular may be placed lower in the hierarchy

since they may be critical for page-load.
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2.8 Conclusions

In this chapter, we have made two contributions. First, we have shown that there is sig-

nificant potential to reduce web-page latencies through page-structure-aware strategies for

placing objects in CDN cache hierarchies. Second, we have presented several strategies to

this end which differ in their degree of page-awareness, and conducted a detailed evaluation

study of their benefits. Our evaluations with more than 80 real-world web pages show that

for popular pages, more than 30% of pages see median OLT reductions higher than 100ms,

while for less popular pages, the median OLT reduction is more than 100ms for more than

59% of the pages, with some pages showing latency reductions as high as 500ms. Both

placement and proactive refreshing are important in achieving the benefits, though each

can help in isolation. For the vast majority of pages, the Type:HCJ scheme provides most

of the benefit. However, OLDep:BO can provide significant additional benefits for some

pages, especially in lower hit rate regimes, when there are Non-HCJ internal nodes in the

dependency graph, and when the penalty of going to the origin is higher. Finally, using

trace driven simulations, we show the feasibility of priority-based caching approach to re-

duce miss rates of page-critical objects in CDNs by 60% with modest increases (less than

2%) in overall byte miss rates. We also highlight the opportunity of minimizing staleness

related misses for objects critical for latency by as much as 60% while incurring additional

bandwidth costs of less than 0.02%.
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3. PERFORMANCE SENSITIVE REPLICATION IN
GEO-DISTRIBUTED DATASTORES

3.1 Introduction

Interactive web applications face stringent requirements on latency, and availability.

Service level agreements (SLAs) often require bounds on the 90th (and higher) percentile

latencies [7], which must be met while scaling to hundreds of thousands of geographically

dispersed users. Applications require 5 9’s of availability or higher, and must often be

operational despite downtime of an entire DC. Failures of entire DCs may occur due to

planned maintenance (e.g. upgrade of power, cooling and network systems), and unplanned

failure (e.g. power outages, and natural disasters) [7, 8, 14, 61] (Figure 3.1). Application

latencies and downtime directly impact business revenue [3].

In response to these challenges, a number of systems that replicate data across geo-

graphically distributed data-centers (DCs) have emerged in recent years [7–14]. An impor-

tant requirement on these systems is the need to support consistent updates on distributed

replicas, and ensure both low write and read latencies. This is necessitated given datas-

tores target interactive web applications that involve reads and writes by geographically

distributed users (e.g. Facebook timelines, collaborative editing). Consequently, a distin-

guishing aspect of cloud datastores is the use of algorithms (e.g., quorum protocols [7, 9],

Paxos [8, 13, 14]) to maintain consistency across distributed replicas.

Achieving low read and write latencies with cloud datastores while meeting the con-

sistency requirements is a challenge. Meeting these goals requires developers to carefully

choose the number of replicas maintained, which DCs contain what data, as well as the

underlying consistency parameters (e.g., quorum sizes in a quorum based system). Replica

placement techniques in traditional Content Delivery Networks (CDNs) (e.g., [62]) do not

apply because consistency has to be maintained with distributed writes while maintaining
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Fig. 3.1. Downtime and number of failure episodes (aggregated per year)
of the Google App Engine data store obtained from [65].

low latencies. Tailoring cloud datastores to application workloads is especially challenging

given the scale of applications (potentially hundreds of thousands of data items), workload

diversity across individual data items (e.g. celebrities and normal users in Twitter have very

different workload patterns), and workload dynamics (e.g. due to user mobility, changes in

social graph etc.)

The problem of customizing replication policies in cloud datastores to application work-

loads has received limited systematic attention. Some datastores like [7, 9] are based

on consistent hashing, which limits their flexibility in placing replicas. Other datastores

like [12, 63] assume that all data is replicated everywhere, which may be prohibitively

expensive for large applications. While a few datastores can support flexible replication

policies [8,64], they require these replication decisions to be configured manually which is

a daunting task.

In this chapter, we present frameworks that can automatically determine how best to

customize the replication configuration of geo-distributed datastores to meet desired ap-

plication objectives. We focus our work on systems such as Amazon’s Dynamo [7], and

Cassandra [9] that employ quorum protocols. We focus on quorum-based systems given

their wide usage in production [7, 9], the rich body of theoretical work they are based

on [23–26], and given the availability of an open-source quorum system [9]. However, we

believe our frameworks can be extended to other classes of cloud storage systems as well.

We focus on optimization frameworks to obtain insights into the fundamental limits on

application latency achievable for a given workload while meeting the consistency require-
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ment. Our models are distinguished from quorum protocols in the theoretical distributed

systems community [23–26], in that we focus on new aspects that arise in the context of

geo-distributed cloud datastores. In particular, our models consider the impact of DC fail-

ures on datastore latency, and guide designers towards replica placements that ensure good

latencies even under failures. Further, we optimize latency percentiles, allow different pri-

orities on read and write traffic, and focus on realistic application workloads in wide-area

settings.

We validate our models using traces of three popular applications: Twitter, Wikipedia

and Gowalla, and through experiments with a multi-region Cassandra cluster [9] spanning

all 8 EC2 geographic regions. While latencies with Cassandra vary widely across differ-

ent replication configurations, our framework generates configurations which perform very

close to predicted optimal on our multi-region EC2 setup. Further, our schemes that ex-

plicitly optimize latency under failure are able to out-perform failure-agnostic schemes by

as much as 55% under the failure of a DC while incurring only modest penalties under nor-

mal operation. Our results also show the importance of choosing configurations differently

across data items of a single application given the heterogeneity in workloads. For instance,

our Twitter trace required 1985 distinct replica configurations across all items, with optimal

configurations for some items often performing poorly for other items. Overall the results

confirm the importance and effectiveness of our frameworks in customizing geo-distributed

datastores to meet the unique requirements of cloud applications.

3.2 Replication in geo-distributed datastores

A commonly used scheme for geo-replicating data is to use a master-slave system, with

master and slave replicas located in different DCs, and data asynchronously copied to the

slave [61, 66]. However, slaves may not be completely synchronized with the master when

a failure occurs. The system might serve stale data during the failure, and application-

level reconciliation may be required once the master recovers [14, 61]. On the other hand,

synchronized master-slave systems ensure consistency but face higher write latencies.
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To address these limitations with master-slave systems, many geo-distributed cloud

storage systems [8,10,12,13,13,14,63,64,67,68] have been developed in the recent years.

A distinguishing aspect of cloud datastores is the use of algorithms to maintain consistency

across distributed replicas, though they differ in their consistency semantics and algorithms

used. Systems like Spanner [8] provide database-like transaction support while other sys-

tems like EIGER [12] and COPS [63] offer weaker guarantees, primarily with the goal of

achieving lower latency.

Quorum-based datastores: Quorum protocols have been extensively used in the dis-

tributed systems community for managing replicated data [23]. Under quorum replication,

the datastore writes a data item by sending it to a set of replicas (called a write quorum)

and reads a data item by fetching it from a possibly different set of replicas (called a read

quorum). While classical quorum protocols [23] guarantee strong consistency, many geo-

distributed datastores such as Dynamo [7], and Cassandra [9] employ adapted versions of

the quorum protocol, and sacrifice stronger consistency for greater availability [7]. In these

systems, reads (or writes) are sent to all replicas, and the read (or write) is deemed success-

ful if acknowledgments are received from a quorum. In case the replicas do not agree on

the value of the item on a read, typically, the most recent value is returned to the user [7,9],

and a background process is used to propagate this value to other replicas. Replication in

these systems can be configured so as to satisfy the strict quorum property:

R +W > N (3.1)

where N is the number of replicas, R and W are the read and write quorum sizes

respectively. This ensures that any read and write quorum of a data item intersect. Con-

figuring replication with the strict quorum property in Cassandra and Dynamo guarantees

read-your-writes consistency [69]. Further, any read to a data item sees no version older

than the last complete successful write for that item (though it may see any later write that

is unsuccessful or is partially complete). Finally, note that Dynamo and Cassandra can be

explicitly configured with weaker quorum requirements leading to even weaker consistency

guarantees [70].
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3.3 Motivating example

In using cloud storage systems, application developers must judiciously choose several

parameters such as the number of replicas (N ), their location, and read(R) and write(W )

quorum sizes. In this section, we illustrate the complexity in the problem using a real

example, and highlight the need for a systematic framework to guide these choices. The

example is from a real Twitter trace (Section 3.7.1), and represents a set of users in the

West Coast who seldom tweet but actively follow friends in Asia and the East Coast.

Figure 3.2 depicts the placement with multiple replica configuration schemes. The

DC locations and inter-DC delays were based on Amazon EC2, and we required that at

most one replica may be placed in any EC2 Availability Zone (AZ). Table 3.1 summarizes

the performance of the schemes. Our primary performance metric is the quorum latency,

which for the purpose of this example is the maximum of the read and write latency from

any DC. The read (write) latency in a quorum datastore is the time to get responses from as

many replicas as the read (write) quorum size. Our frameworks are more general and can

generate configurations optimized for different priorities on read and write latencies. We

discuss possible schemes:
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User centric: This scheme is representative of traditional CDN approaches and aims to

place replicas as close to users as possible with no regard to quorum requirements. In the

limit, replicas are placed at all DCs from which accesses to the data item arrive (USW-1,

APS-1, and USE-1 in our example). It may be verified that for this choice of replicas, the

best quorum latency achievable is 186 msec, obtained with read and write quorum sizes

of 2. Note that this placement would also be generated by the classical Facility Location

problem when facilities may be opened with zero cost.

Globally central: This scheme seeks to place replicas at a DC which is centrally located

with respect to all users by minimizing the maximum latency from all DCs with read/write

requests. In our example, this scheme places a replica at USW-1. Note that for resiliency,

replicas could be placed in additional availability zones of the US West region, but the

quorum latency would still remain 186 msec.

Basic Availability: This is our model (Section 3.6), which optimizes quorum latencies

under normal conditions (all DCs are operational) while ensuring the system is functional

under the failure of a single DC. This scheme chooses 4 replicas, one at each of the DCs,

as shown in Figure 3.2, with R = 3 and W = 2. This configuration has a quorum latency

of 117msec - a gain of 69 msec over other schemes. Intuitively, the benefit comes from

our scheme’s ability to exploit the asymmetry in read and write locations, increasing the

number of replicas and appropriately tuning the quorum sizes.

N-1 Contingency: While the Basic Availability scheme guarantees operations under any

single DC failure, latencies could be poor. For e.g., on the failure of APN-1, the write

latency from USE-1 increases to 258msec. Our N-1 Contingency scheme (Section 3.6)

suggests configurations that guarantee optimal performance even under the failure of an

entire DC. In our example, the N-1 Contingency scheme configures 6 replicas (3 in APN-

1, 2 in USE-1 and 1 in USW-1) with R = 5 and W = 2. This configuration ensures

the quorum latency remains 117 msec even under any single DC failure. Note that this

configuration has the same performance as the BA scheme under normal conditions as well.

Overall, these results indicate the need and benefits for a systematic approach to con-

figure replication policies in cloud datastores. Further, while our example only considers a
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Table 3.1
Comparing performance of schemes

Scheme Quorum latency (msec) N,R,W

Normal Failure

Globally central 186 186 3, 2, 2

User centric 186 258 3, 2, 2

Basic Availability 117 191 4, 3, 2

N-1 Contingency 117 117 6, 5, 2

subset of items, applications may contain tens of thousands of groups of items with differ-

ent workload characteristics. Manually making decisions at this scale is not feasible.

3.4 System Overview

Figure 3.3 shows the overview of our system. The datastore is deployed in multiple

geographically distributed DCs (or availability zones), with each data item replicated in a

subset of these DCs. Since our focus is on geo-replication, we consider scenarios where

each DC hosts exactly one replica of each item, though our work may be easily extended

to allow multiple replicas.

Applications consist of front-end application servers and back-end storage servers. To

read/write data items, an application server contacts a ”coordinator” node in the storage

layer which is typically co-located in the same DC. The coordinator determines where the

item is replicated (e.g. using consistent hashing or explicit directories), fetches/updates the

item using a quorum protocol, and responds to the application server.

We use the term “requests” to denote read/write accesses from application servers to

the storage service, and we consider the request to “originate” from the DC where the

application server is located. We model “request latency” as the time taken from when an

application server issues a read/write request to when it gets a response from the storage

service. It is possible that the application issues a single API call to the storage service that
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Fig. 3.3. System overview

accesses multiple data items. (e.g. a multi-get call in Cassandra with multiple keys). We

treat such a call as separate requests to each data item.

Users are mapped to application servers in DCs nearest to them through traditional DNS

redirection mechanisms [71]. While application servers typically contact a coordinator in

the same DC, a coordinator in a nearby DC may be contacted if a DC level storage service

failure occurs (Section 3.6).

3.5 Latency optimized replication

In this section, we present a model that can help application developers optimize the

latency seen by their applications with a quorum-based datastore. Our overall goal is to

determine the replication parameters for each group of related data items. These include

(i) the number, and location of DCs in which the data items must be replicated; and (ii) the

read and write quorum sizes.

We expect our formulations to be applied over classes of items that see similar access

patterns. For e.g., while access patterns for Wikipedia vary across languages, documents

within a language see accesses from the same geographic regions, and could be grouped

together. Systems like Spanner [8] require applications to bucket items into “directories”,
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Table 3.2
Parameters and inputs to the model

Term Meaning

M Number of available DCs.

Dij Access latency between DCs i and j.

Ci Cost of outgoing traffic at DC i.

N l
i Number of reads/writes from DC i.

T l Read/Write Latency Threshold.

pl Fraction of requests to be satisfied within T l.

xi Whether DC i hosts a replica.

qlij Whether i’s requests use replica in j to meet quorum.

Ql Quorum size.

Y l
i Whether requests from i are satisfied within T l.

Y l
ik Whether requests from i are satisfied within T l

on failure of replica in k.

nij Whether reads from i fetch the full data item from j.

l l ∈ r, w indicates if term refers to reads/writes.

and items in the bucket see the same replica configuration. Our formulations would be

applied at the granularity of directories.

In this section, we focus on latency under normal operation. In Sections 3.6 and 3.6.2,

we show how our models may be extended to consider latency under failure, and incorpo-

rate communication costs.

3.5.1 Meeting SLA targets under normal operation

We consider settings where the datastore is deployed in up to M geographically dis-

tributed DCs. Dij denotes the time to transfer a data item from DC j to DC i. For the

applications we consider, the size of objects is typically small (e.g., tweets, meta-data,
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small text files etc.), and hence data transmission times are typically dominated by prop-

agation delays rather than the bandwidth between the DCs. Therefore, the Dij parameter

in our formulations (and evaluation) are based on the round trip times between the DCs.

For applications dealing with large data objects, the measured Dij values would capture the

impact of data size and bandwidth as well.

Our focus is on regimes where the load on the storage node is moderate, and the primary

component of the access latency is the network delay. Hence, we do not model the process-

ing delays at the datastore node which are not as critical in the context of geo-replication.

We do not model details specific to implementation – e.g., on a read operation, the

Cassandra system retrieves the full item from only the closest replica, and digests from

the others. If a replica besides the closest has a more recent value, additional latency is

incurred to fetch the actual item from that replica. We do not model this additional latency

since the probability that a digest has the latest value is difficult to estimate and small in

practice. Our experimental results in Section 3.8 demonstrate that, despite this assumption,

our models work well in practice.

Let xi be a binary indicator variable which is 1 iff DC i holds a replica of the data

item. Let Qr and Qw be the read and write quorum sizes, and T r and Tw respectively

denote the latency thresholds within which all read and write accesses to the data item

must successfully complete. Let qrij and qwij respectively be indicator variables that are 1

if read and write accesses originating from DC i use a replica in location j to meet their

quorum requirements.

Typical SLAs require bounds on the delays seen by a pre-specified percentage of re-

quests. Let pr and pw denote the fraction of read and write requests respectively that must

have latencies within the desired thresholds. A key observation is that, given the replica lo-

cations, all read and, similarly all write requests, that originate from a given DC encounter

the same delay. Thus, it suffices that the model chooses a set of DCs so that the read (resp.

write) requests originating at these DCs experience a latency no more than T r (resp. Tw)

and these DCs account for a fraction pr (resp. pw) of read (resp. write) requests. Let N r
i

(resp. Nw
i ) denote the number of read (write) requests originating from DC i. Let Y r

i (resp.
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Y w
i ) denote indicator variables which are 1 iff reads (resp. writes) from DC i meet the delay

thresholds. Then, we have :

qlij ≤ xj ∀i, j l ∈ {r, w} (3.2)

Dijq
l
ij ≤ T l ∀i, j l ∈ {r, w} (3.3)∑

j

qlij ≥ QlY l
i ∀i; l ∈ {r, w} (3.4)

∑
i

N l
iY

l
i ≥ pl

∑
i

N l
i ∀i; l ∈ {r, w} (3.5)

Equations (3.2) and (3.3) require that DC i can use a replica in DC j to meet its quorum

only if (i) there exists a replica in DC j; and (ii) DC j is within the desired latency threshold

from DC i. Equation (3.4) ensures that, within i’s quorum set, there are sufficiently many

replicas that meet the above feasibility constraints for the selected DCs. Equation (3.5)

ensures the selected DCs account for the desired percentage of requests.

To determine the lowest latency threshold for which a feasible placement exists, we treat

T r and Tw as variables of optimization, and minimize the maximum of the two variables.

We allow weights ar and aw on read and write delay thresholds to enable an application

designer to prioritize reads over writes (or vice-versa). In summary, we have the Latency

Only(LAT) model:

(LAT) min T

subject to T ≥ alT l, l ∈ {r, w}
Qr +Qw =

∑
j xj + 1

Quorum constraints (3.2), (3.3), (3.4)

Percentile constraints (3.5)

Ql ∈ Z, l ∈ {r, w}
qlij, xj, Y

l
i ∈ {0, 1}, ∀i, j; l ∈ {r, w}

Note that the constraint on quorum sizes captures the strict quorum requirement (Sec-

tion 3.2) that each read sees the action of the last write. Also, when pr = pl = 1, (LAT)

minimizes the delay of all requests and we refer to this special case as (LATM). Finally,
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Fig. 3.4. An optimal multi replica solution with Qr = 2, Qw = 2 ensures a
latency threshold of l, while an optimal single replica solution increases it to

√
3l

while (3.4) is not linear, it may be easily linearized as we show in [72]. Hence, our model

can be solved using ILP solvers like CPLEX [73].

3.5.2 How much can replication lower latency?

Given the consistency requirement of quorum datastores, can replication lower latency,

and, if so, by how much? In this section, we present examples to show that replication

can lower latency, and provide bounds on the replication benefit (ratio of optimal latency

without and with replication). In assessing the benefits of replication, two key factors are

(i) symmetric/asymmetric spread: whether read and write requests originate from an iden-

tical or different set of DCs; and (ii) symmetric/asymmetric weights: whether the weights

attached to read and write latency thresholds (ar, aw) are identical or different.

Figure 3.4 shows an example where spread and weights are symmetric and the repli-

cation benefit is
√
3 ≈ 1.732. When replicas can be placed arbitrarily on a Euclidean

plane, it can be shown via an application of Helly’s theorem [74] that the replication ben-

efit is bounded by 2√
3
≈ 1.155. The setup of Figure 3.4 shows that this is a tight bound

since replication achieves this benefit over single placement at the centroid of the triangle.

Replication benefit can be even higher with asymmetric weights as seen in the observation

below.
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Observation 3.5.1 With asymmetric spreads and metric delays, the replication benefit for

(LATM) and (LAT) is at most 4max(ar,aw)
min(ar,aw)

.

The proof can be found in our technical report [72].

3.6 Achieving latency SLAs despite failures

So far, we have focused on replication strategies that can optimize latency under normal

conditions. In this section we discuss failures that may impact entire DCs, and present

strategies resilient to such failures.

3.6.1 Failure resilient replication strategies

While several techniques exist to protect against individual failures in a DC [75], geo-

distributed DCs are primarily motivated by failures that impact entire DCs. While failures

within a DC have been studied [75, 76], there are few studies on failures across DCs to

the best of our knowledge. Discussions with practitioners suggests that while DC level

failures are not uncommon (Figure 3.1), correlated failures of multiple geographically dis-

tributed DCs are relatively rare (though feasible). Operators strive to minimize simulta-

neous downtime of multiple DCs through careful scheduling of maintenance periods and

gradual roll-out of software upgrades.

While a sufficiently replicated geo-distributed cloud datastore may be available despite

a DC failure, the latency are likely negatively impacted. We present replication strategies

that are resilient to such failures. Pragmatically, we first focus on the common case scenario

of single DC failures. Then, in Section 3.6.2, we show how our models easily extend to

more complex failure modes. Our models are:

Basic Availability Model (BA): This model simply optimizes latency using (LAT) with

the additional constraints that the read and write quorum sizes are at least 2 (and hence

the number of replicas is at least 3). Clearly, read and write requests can still achieve

quorum when one DC is down and basic availability is maintained. This model does not

explicitly consider latency under failure and our evaluations in Section 3.8 indicate that the
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scheme may perform poorly under failures – for e.g., the 90th percentile request latency for

English Wikipedia documents increased from 200msec to 280msec when one replica was

unavailable.

N-1 Contingency Model (N-1C): This model minimizes the maximum latency across a

pre-specified percentile of reads and writes allowing at most one DC to be unavailable at

any given time. The model is motivated by contingency analysis techniques commonly

employed in power transmission systems [77] to assess the ability of a grid to withstand

a single component failure. Although this model is similar in structure to (LAT), there

are two important distinctions. First, the quorum requirements must be met not just under

normal conditions, but under all possible single DC failures. Second, the desired fraction

of requests serviced within a latency threshold, could be met by considering requests from

different DCs under different failure scenarios.

Formally, let prf (resp. pwf ) be the fraction of reads (resp. writes) that must meet the

delay thresholds when a replica in any DC is unavailable. Note that the SLA requirement

on failures may be more relaxed, possibly requiring a smaller fraction of requests to meet

a delay threshold. Let Y r
ik (resp. Y w

ik ) be indicator variables that are 1 if read (resp. write)

requests from DC i are served within the latency threshold when the replica in DC k is

unavailable. Then, we replace (3.5) and (3.4) with the following:∑
i

Ql
iY

l
ik ≥ plf

∑
i

N l
i ∀i∀k (3.6)

∑
j,j 6=k

qlij ≥ QlY l
ik ∀i, k l ∈ {r, w} (3.7)

The first constraint ensures that sufficient requests are serviced within the latency threshold

no matter which DC fails. The index k for the Y variables allows the set of requests satisfied

within the latency threshold to depend on the DC that fails. The second constraint ensures

that the quorum requirements are met when DC k fails with the caveat that DC k cannot
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be used to meet quorum requirements. We remark that (3.7) may be linearized in a manner

similar to (3.4). Putting everything together, we have:

(N-1C) min Tf

subject to Tf ≥ alT l, l ∈ {r, w}
Qr +Qw =

∑
j xj + 1

Quorum constraints (3.2), (3.3), (3.7)

Percentile constraints (3.6)

Ql ∈ Z, l ∈ {r, w}
qlij, xj, Y

l
ik ∈ {0, 1}, ∀i, j, k; l ∈ {r, w}.

3.6.2 Model Enhancements

We discuss enhancements to the N-1 Contingency model:

Cost-sensitive replication: When datastores are deployed on public clouds, it is important

to consider dollar costs in addition to latency and availability. We focus on wide-area

communication costs since (i) this is known to be a dominant component of costs in geo-

replicated settings [78]; (ii) best practices involve storing data in local instance storage with

periodic backups to persistent storage [79] - the costs of such backups are independent

of our replication policy decision; and (iii) instance costs are comparable to a single DC

deployment with the same number of replicas. Most cloud providers today charge for out-

bound bandwidth transfers at a flat rate per byte (in-bound transfers are typically free),

though the rate itself depends on the location of the DC. Let Ci be the cost per byte of

out-bound bandwidth transfer from DC i. Consider an operation that originates in DC i

and involves writing a data item whose size is S bytes. Then, the total cost associated with

all write operations is
∑

i N
w
i SCi

∑
j Xj . However, read operations in Cassandra retrieve

the full data item only from its nearest neighbor but receives digest from everyone. Let nij

denote an indicator variable, which is 1 if the full data item is fetched from DC j. The size

of the digest is assumed negligibly small. The total cost associated with all read operations

is:
∑

i

∑
j N

r
i nijSCj . It is now straight-forward to modify (N-1C) to optimize costs subject
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to a delay constraint. This may be done by making threshold (T) a fixed parameter rather

than a variable of optimization and adding additional constraints on nij .

Jointly considering normal operation and failures: Formulation (N-1C) finds replication

strategies that reduce latency under failure. In practice, a designer prefers strategies that

work well in normal conditions as well as under failure. This is achieved by combining

the constraints in (LAT) and (N-1C), with an objective function that is a weighted sum

of latency under normal conditions T and under failures Tf . The weights are chosen to

capture the desired preferences.

Failures of multiple DCs: While we expect simultaneous failures of multiple DCs to be

relatively uncommon, it is easy to extend our formulations to consider such scenarios. Let

K be a set whose each element is a set of indices of DCs which may fail simultaneously

and we are interested in guarding the performance against such a failure. We then employ

(N-1C) but with k iterating over elements of K instead of the set of DCs. A naive approach

may exhaustively enumerate all possible combination of DC failures, could be computa-

tionally expensive, and may result in schemes optimized for unlikely events at the expense

of more typical occurrences. A more practical approach would involve explicit operator

specifications of correlated failure scenarios of interest. For e.g., DCs that share the same

network PoP are more likely to fail together, and thus of practical interest to operators.

Network partitions: In general, it is impossible to guarantee availability with network par-

tition tolerance given the strict quorum requirement [80]. For more common network out-

ages that partition one DC from others, our N-1C model ensures that requests from all other

DCs can still be served with low latency. To handle more complex network partitions, an

interesting future direction is to consider weaker quorum requirements subject to bounds

on data staleness [70].

3.7 Evaluation Methodology

1Aggregating all articles per language (e.g. 4 million articles in English Wikipedia are aggregated.)
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Table 3.3
Trace characteristics

Application # of keys/classes Span

Twitter [81] 3,000,000 2006-2011

Wikipedia [82] 1961 2009-2012

Gowalla [83] 196,591 Feb 2009-Oct 2010

We evaluate our replication strategies Latency Only (LAT), Basic Availability (BA), and

N-1 Contingency (N-1C) with a view to exploring several aspects such as:

• Accuracy of our model in predicting performance

• Limits on latency achievable given consistency constraints

• Benefits and costs of optimizing latency under failures

• Importance of employing heterogeneous configurations for different groups of data items

within an application

• Robustness to variations in network delays and workloads

We explore these questions using experiments on a real wide-area Cassandra cluster de-

ployed across all the 8 regions (and 21 availability zones) of Amazon EC2 and using trace-

driven simulations from three real-world applications: Twitter, Wikipedia and Gowalla.

Our EC2 experiments enable us to validate our models, and to evaluate the benefits of our

approach in practice. Simulation studies enable us to evaluate our strategies on a larger

scale (hundreds of thousands of data items), and to explore the impact of workload char-

acteristics and model parameters on performance. We use GAMS [84] (a modeling system

for optimization problems) and solve the models using the CPLEX optimizer.

3.7.1 Application workloads

The applications we choose are widely used, have geographically dispersed users who

edit and read data, and fit naturally into a key-value model. We note that both Twitter and
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Gowalla are already known to use Cassandra [85]. We discuss details of the traces below

(see table 3.3 for summary):

Twitter: We obtained Twitter traces [81] which included a user friendship graph, a list of

user locations, and public tweets sent by users (along with timestamp) over a 5 year period.

We analyzed Twissandra, an open-source twitter-like application, and found three types of

data items: users, tweets and timelines. We focus our evaluations on timeline objects which

are pre-materialized views that map each user to a list of tweets sent by the user and her

friends. Writes to a timeline occur when the associated user or her friends post a tweet, and

can be obtained directly from the trace. Since the traces do not include reads, we model

reads by assuming each user reads her own timeline periodically (every 10 min), and reads

her friend’s timeline with some probability (0.1) each time the friend posts a tweet.

Wikipedia: We obtained statistics regarding Wikipedia usage from [82], which lists the

total as well as the breakdown of the number of views and edits by geographic region for

each language and collaborative project. The data spans a 3 year period with trends shown

on quarterly basis. Our model for the Wikipedia application consists of article objects with

the document id as a key and the content along with its meta data (timestamps, version

information, etc). Article page views are modeled as reads while page edits are modeled

as writes. Since per article access data is not available, we model all articles of the same

language and project as seeing similar access patterns since access patterns are likely dom-

inated by the location of native speakers of the language.

Gowalla: Gowalla is a (now disabled) geo-social networking application where users

”check-in” at various locations they visit and friends receive all their check-in messages.

The traces [86] contained user friendship relationships, and a list of all check-ins sent over

a two year period. Since the application workflows are similar, we model Gowalla in a

similar fashion to Twitter. Check-ins represent writes to user timelines from the location of

the check-in, and reads to timelines were modeled like with Twitter.
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Fig. 3.5. Validating the accuracy of models.

3.8 Experimental Validation

In this section, we present results from our experiments using Cassandra deployed on

Amazon EC2.

3.8.1 Implementation

Off-the-shelf, Cassandra employs a random partitioner that implements consistent hash-

ing to distribute load across multiple storage nodes in the cluster. The output range of a

hash function is treated as a fixed circular space and each data item is assigned to a node

by hashing its key to yield its position on the ring. Nodes assume responsibility for the re-

gion in the ring between itself and its predecessor, with immediately adjacent nodes in the

ring hosting replicas of the data item. Cassandra allows applications to express replication

policies at the granularity of keyspaces (partitions of data). We modified the applications to

treat groups of data items as separate keyspaces and configure distinct replication policy for

each keyspace. Keyspace creation is a one-time process and does not affect the application

performance. The mapping from data object to the keyspace is maintained in a separate

directory service. We implemented the directory service as an independent Cassandra clus-
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Fig. 3.6. Comparing the performance of BA scheme with Cassandra’s de-
fault random partitioner.

ter deployed in each of the DCs and configured its replication such that lookups(reads) are

served locally within a DC (e.g. R = 1,W = N ).

3.8.2 Experimental platform on EC2

We performed our experiments and model validations using Cassandra deployed on

medium size instances on Amazon EC2. Our datastore cluster comprises of nodes deployed

in each of the 21 distinct availability zones (AZ) across all the 8 regions of EC2 (9 in US,

3 in Europe, 5 in Asia, 2 in South America and 2 in Australia). We treat availability zones

(AZs) as distinct DC in all our experiments. The inter-DC delays (21 ∗ 21 pairs) were

simultaneously measured for a period of 24 hours using medium instances deployed on all

the 21 AZs and the median delays values (MED) were used as input to our models. We

mapped users from their locations to the nearest DC. Since the locations are free-text fields

in our traces, we make use of geocoding services [87] to obtain the user’s geographical

co-ordinates.
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3.8.3 Accuracy and model validation

We validate the accuracy of our models with experiments on our EC2 Cassandra cluster

described above. We use the example from our Twitter trace (Figure 3.2) for this experi-

ment. Replica configurations were generated with the MED delay values measured earlier

and read/write requests to Cassandra cluster were generated from application servers de-

ployed at the corresponding DCs as per the trace data. The duration of the entire experiment

was about 6 hours.

Figure 3.5 shows the CDFs of the observed and predicted latencies for read and write

requests for the BA configuration. The CDFs almost overlap for write requests, while we

observe a delay of approximately 9 msec evenly for all read requests. This constant de-

lay difference in the reads can be attributed to the processing overhead of read requests in

Cassandra which includes reconciling the response of multiple replicas to ensure consis-

tency of the read data. Overall, our results validate the accuracy of our models. They also

show that our solutions are fairly robust to the natural delay variations present in real cloud

platforms.

3.8.4 Benefits of performance sensitive replication

We first evaluate the benefits of flexible replication policy over a fixed replication policy

on the EC2 Cassandra cluster described above. For this experiment, we use a month long

trace from Twitter consisting of 524, 759 objects corresponding to user timelines in Twitter.

The replica configurations were generated for each timeline object using the BA model and

the corresponding directory entries were created in all the regions. Reads and writes were

initiated as per the traces from the Twissandra application servers deployed in each of the

EC2 regions. While the duration of the entire experiment was scaled to 16 hours, care was

taken to ensure that the fraction of requests to all objects from each DC was proportional

to what was observed in the trace data.

Figure 6 shows the CDF comparing the read and write latency observed with our BA

scheme and Cassandra’s random partitioner. The Y-Axis shows the CDF of the fraction
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Fig. 3.7. Boxplot showing the distribution of read latency with BA and
N-1C models for every half hour period. Whiskers show the 10th and
90th percentiles.

of all requests seen in the system (approx 6 million each for BA and Random) while the

X-Axis shows the observed per request latency in msec. To ensure a fair comparison of

schemes, the observed latency values for BA includes directory lookup latency as well.

From the figure, we see that our flexible replication scheme is able to outperform the default

replication scheme by 50 msec (factor of 3) at the 50th%ile and by 100msec at the 90th%ile

(factor of 2). A keen observer might note that Random performs marginally better than

(approx 3−8msec) BA at the initial percentiles due to the latency overhead incurred for the

directory lookup.

3.8.5 Availability and performance under failures

In this section, we study the performance of the BA and N-1C schemes under the failures

of different DCs using our multi-region Cassandra cluster on EC2. We perform this study

using the trace data from Wikipedia for the English wiki articles for which the accesses

arrive from all the 8 EC2 regions including 50% from the US, 23% from Europe, 10% from

Singapore, 5% from Sydney and the rest from South America and Tokyo. Failures were

created by terminating the Cassandra process in a DC and redirecting requests from the
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application to the Cassandra process in the closest DC. The duration of the experiment was

approximately 9 hours.

For the English wiki articles, our BA scheme placed two replicas in the west coast

(USW-1a and USW-2a) and the 3rd replica in Tokyo (APN-1a) with R = 2 and W =

2. This is reasonable since nodes in the US West are reasonably equidistant from Asia,

Australia, Europe and US East while placing the 3rd replica in Asia also reduces the 90%ile

latency under normal operation. Figure 3.7(a) shows the performance of the BA scheme

under failure of different DCs. The corresponding events for every half hour period is

marked at the top of the plots. From the figure, we see that the 90%ile latency increases

significantly from 200msec (under normal operation) to 280msec when the west coast DCs

fail (40% increase), while the failure of Tokyo DC (APN-1a) has only a marginal impact

on the performance.

In contrast, the N-1C scheme explicitly optimizes for latency under a failure and places

the 3rd replica in USW-1a instead of Tokyo. Figure 3.7(b) shows the performance of the

N-1C scheme under failures of different DCs. The figure shows that our N-1C scheme

performs similar to the BA scheme (median of 90msec and 90%ile of 200ms) during nor-

mal operation. However, unlike the BA configuration, the 90%ile latency remains largely

unaffected under all failures. Our results highlight the need to explicitly optimize for per-

formance under failure and show the benefits of N-1C over the BA scheme. Further, the

median and 90%ile latencies from our experiments were found to be very close to our

model predictions under normal and failure conditions for both the models, thereby vali-

dating our models.

3.9 Large scale evaluation

We adopt a trace driven simulation approach for our large scale evaluation on the three

application traces, where we consider the datastore cluster to comprise of nodes from each

of 27 distinct DCs world-wide, whose locations were obtained from AWS Global Infras-

tructure [88]. Inter-DC delays were measured between Planet-lab nodes close to each DC
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(b) Benefits of heterogeneous replication

Fig. 3.8. Trace driven study with all keys in the application.

and delay measurements were collected simultaneously between all pairs of locations over

a few hours and median delays were considered. Users were mapped to the closest DCs

as in our EC2 experiments. We pick this extended set of DCs as the EC2 regions are lim-

ited in number. For example, EC2 has no regions in the Mid-west US, but AWS Global

Infrastructure provides multiple DCs in those areas. Moreover, we expect these DCs to be

expanded to offer more services in the future. Experiments in this section use traces of one

month (Dec 2010) in Twitter, one month (Oct 2010) in Gowalla and one quarter (Q4 2011)

in Wikipedia.

3.9.1 Performance of our optimal schemes

Figure 3.8(a) shows the CDF of the observed read latency across both schemes for all

keys in Twitter and Wikipedia traces under normal and failure conditions. For each key,

we plot the read latency under normal conditions (all replicas are alive) and when the most

critical replica (replica whose failure results in the worst latency) for that key fails. From

the figure, we see that the read latency observed by the BA scheme deteriorates drastically

under failure for almost all keys in both the applications. For instance, more than 40% of

the keys in Twitter observed an increase of 50+ msec (more than 20% of the keys observed

an increase of 100+ msec in Wikipedia) under failure conditions. However, read latency for

N-1C observed only a marginal variation under failure (most keys in Twitter observed less

than 30msec increase in latency on its replica failures). Surprisingly, we find that the N-1C

scheme incurs an almost negligible penalty in its latency under normal conditions despite
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optimizing the replica configuration explicitly for the failure of a replica. Further, we found

that BA was often able to optimize latency with two of the chosen replicas and the third

choice did not significantly impact performance. In contrast, the N-1C scheme carefully

selects the 3rd replica ensuring good performance even under failures. Overall, our results

clearly show the benefit of explicitly optimizing the replication for failure conditions.

3.9.2 Need for heterogeneous configuration policy

In this section, we highlight the importance of allowing heterogeneous replica config-

urations in datastores and show why a uniform replication configuration for all data in the

application can often have poor performance. We analyzed the configurations generated by

N-1C for all keys in the Twitter trace. From our analysis we find that there were as many

as 1985 distinct configurations (combination of replica location, N , R, W ) that were used

in the optimal solutions.

Interestingly, we find that the benefits are not only due to optimizing the location of

replicas but also due to careful configuration of the replication parameters - N , R and W .

To isolate such cases we consider a variant of our N-1C model that we call 3− 2− 2 which

has fixed replication parameters N = 3, R = 2 and W = 2, but allows flexibility in the

location of the replicas. Figure 3.8(b) shows the difference in the access latency between

the 3− 2− 2 and N-1C schemes for Twitter. The X-axis has the various replication factors

observed in the optimal solutions and each corresponding box plot shows the 25th, median

and 75th percentiles (whiskers showing the 90th percentile) of the difference in access

latency between the two schemes. Our results clearly show that a uniform configuration

policy for all data in the application can be sub-optimal and allowing heterogeneity in

replica configuration can greatly lower the latency (as much as 70msec in some cases).

3.9.3 History-based vs Optimal

So far, we had assumed that the workloads for the applications are known. However, in

practice, this may need to be obtained from historical data. In this section, we analyze this
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(c) Gowalla

Fig. 3.9. Optimal performance vs performance using replica placements
from the previous period.

gap by comparing the performance of our schemes using historical and actual workloads

for all three applications.

Figure 3.9(a) shows the CDF comparing the performance of Wikipedia during the first

quarter of 2012 when using the history-based and the optimal replication configuration. The

curves labeled history-based correspond to the read and write latency observed when using

the replica configuration predicted from the fourth quarter of 2011. The curves labeled

optimal correspond to the read and write latency observed when using the optimal replica

configuration for the first quarter of 2012. Figures 3.9(b) and 3.9(c) show similar graphs

for Twitter and Gowalla. These figures show that history-based configuration performs

close to optimal for Wikipedia and Twitter, while showing some deviation from optimal
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performance for Gowalla. This is because users in Gowalla often move across geographical

regions resulting in abrupt workload shifts. For such abrupt shifts, explicit hints from the

user when she moves to a new location or automatically detecting change in the workload

and rerunning the optimization are potential approaches for improving the performance.

3.9.4 Robustness to delay variations

Our experiments on EC2 (Section 3.8) show that our strategies are fairly robust to nat-

ural delay variations across cloud DCs. In this section, we extend our analysis over a larger

set of keys. We compute about 1800 time snapshots of the entire 27*27 inter-DCs delays

for our extended DC set. All delay values in the snapshot were measured approximately

at the same time. Next, we computed the optimal replica configurations (using our BA and

N-1C schemes) for 500 random keys from the Twitter trace for each of 1800 snapshots. We

call these the SNAP configurations. Similarly, replica configurations are computed using

the median delay values of the 1800 snapshots. We call these the MED configurations. We

then compare the performance of the MED configuration using delays observed at each

snapshot with the performance of the optimal SNAP configuration at the same snapshot.

Figure 3.10 shows the CDF of the difference in access latency between the MED and

SNAP configurations. Each curve in the figure corresponds to a range of latencies observed

using the SNAP configurations. For SNAP latencies less than 100msec, and for over 90% of

snapshots, MED only incurs less than 5msec additional latency. Also, for almost 80% of all

the SNAPs, the corresponding MED configuration was optimal. While the penalty is higher

for SNAP latencies over 100 msec, we believe they are still acceptable (less than 15msec

for 90% of the cases) given the relatively higher SNAP latencies. Overall, the results further

confirm our EC2 results and show that delay variation impacts placement modestly.

3.9.5 Asymmetric read and write thresholds

Thus far, we assumed that read and write latencies are equally desirable to optimize.

However, in practice, some applications may prioritize read latencies, and others might pri-
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Fig. 3.10. Comparing SNAP and MED performance.

oritize writes. We have explored solutions generated by our approach when our models are

modified to explicitly constrain the read and write thresholds. For Twitter, we found that a

bound of 100msec on the write latency has no noticeable impact on the read latency, though

the tail was more pronounced. Interestingly, we also found that the bound of 50msec in-

creases the read latency by less than 20msec for 60% of the keys. We found that constraints

on write latency resulted in configurations that had a significantly higher replication factor

and higher read quorum sizes. This is expected because our models tries to minimize the

latency by moving the replica closer to the write locations in order to meet the constraint.

We omit results for lack of space.

3.10 Related Work

SPAR [89] presents a middle-ware for social networks which co-locates data related to

each user within the same DC to minimize access latency. [89] achieves this by having a

master-slave arrangement for each data item, creating enough slave replicas, and updating

them in an eventually consistent fashion. However, master-slave solutions are susceptible

to issues related to data loss, and temporary downtime (see Section 3.2). In contrast, we

consider a strict quorum requirement, and allow updates on any replica.
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Owing to consistency constraints, quorum placement is different from facility location

(FL) problems, and known variants [62]. The classical version of FL seeks to pick a subset

of facilities (DCs) that would minimize the distance costs (sum of distances from each de-

mand point to its nearest facility), plus the opening costs of the facilities. Without opening

cost or capacity constraints, FL is trivial (a replica is introduced at each demand point) –

however quorum placement is still complex. For e.g., in Figure 3.4, the optimal FL so-

lution places 3 replicas at the triangle vertices which is twice the quorum latency of our

solution. Increasing the number of replicas can hurt quorum latencies owing to consistency

requirements, but does not increase distance costs with FL.

Volley [90] addresses the problem of placing data considering both user locations and

data inter-dependencies. However, [90] does not address replication in depth, simply treat-

ing replicas as different items that communicate frequently. [90] does not model consis-

tency requirements, a key focus of our work. Also, unlike [90], our models automatically

determine the number of replicas and quorum parameters while considering important prac-

tical aspects like latency percentiles and performance under failures.

While systems like Spanner [8] and Walter [64] support flexible replication policies,

they require these policies to be manually configured by administrators. In contrast, our

formulations enable quorum based datastores to make these replica configuration deci-

sions in an automated and optimal fashion. Recent works like Vivace [91] suggest novel

read/write algorithms that employ network prioritization which enable geo-replicated data-

stores adapt to network congestion. Unlike these systems, we focus on the more general

and important problem of automatically configuring the replication parameters including

the number of replicas, location of replicas and quorum sizes. SPANStore [92] focuses

on placing replicas across multiple cloud providers with the primary aim of minimizing

costs exploiting differential provider pricing. In contrast, we focus on supporting flexible

replication policies at different granularities that can be tuned to a variety of objectives

such as minimizing latencies under failure. Also, the quorum protocol implemented by

SPANStore is different from the ones used in quorum based systems like Cassandra, and

hence our model formulations are different. [93] proposes algorithms extending scalable
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deferred update replication (SDUR) in the context of geographically replicated systems. In

contrast, we focus on the orthogonal problem of configuring optimal replication policies

for geo-distributed datastores.

While there has been much theoretical analysis of quorum protocols, our work is dis-

tinguished by our focus on widely used quorum datastores, and issues unique to datastore

settings. Prior work has considered communication delays with quorum protocols [24–26].

In particular, [24, 25] consider problems that minimize the maximum node delays. How-

ever, none of these works optimize latency percentiles, latency under failures, or consider

different priorities for read and write traffic. To our knowledge, our framework is the first

to consider these factors, all of which are key considerations for geo-distributed datastores.

We also note that [24–26] are in the context of coteries [94], and do not immediately apply

to cloud datastores which are adapted from weighted voting-based quorum protocols [23].

Several works have examined availability in quorum construction [95–99]. Most of

these works do not consider the impact of failures on latency. Recent work [98] has con-

sidered how to dynamically adapt quorums to changes in network delays. Given that sys-

tems like Cassandra and Dynamo contact all replicas and not just the quorum, we focus

on the orthogonal problem of replica selection so that failure of one DC does not impact

latency. Several early works [95, 96] assume independent identically distributed (IID) fail-

ures, though non-IID failures are beginning to receive attention [97]. Instead, we focus on

choosing replication strategies that are resilient and low-latency under failures of a single

DC, or a small subset of DCs which are prone to correlated failures (Section 3.6.2).

3.11 Discussion and Implications

We discuss the implications of our findings:

Implications for datastore design: Our results in Section 3.9.2 show the importance of

diverse replica configurations for the same application given heterogeneity in workloads for

different groups of items – 1985 distinct replica configurations were required for Twitter.

Many geo-replicated datastores are not explicitly designed with this requirement in mind
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and may need to revisit their design decisions. For e.g., Eiger [12] replicates all data items

in the same set of DCs. Cassandra [9] and Dynamo [7] use consistent hashing which makes

it difficult to flexibly map replicas to desirable DCs (we effectively bypass consistent hash-

ing with multiple keyspaces in Section 3.8). In contrast, Spanner [8] explicitly maintain

directories that list locations of each group of items, and is thus better positioned to support

heterogeneous replication policies.

Delay variation: Our multi-region EC2 evaluations (Section 3.8) and simulation results

(Section 3.9.4) show that placements based on median delays observed over several hours

of measurement are fairly robust to short-term delay variations. We believe delay variation

impacts placement modestly since links with lower median delay also tend to see smaller

variations. These results indicate that the benefits of explicitly modeling stochasticity in

delay is likely small, and these benefits must be weighed against the fact that stochastic

delay values are hard to quantify in practice especially when not independent. Further, we

note that placements from our N-1C model can tolerate congestion close to any DC. Finally,

more persistent variations in delay over longer time-scales are best handled by recomputing

placements on a periodic basis or on a prolonged change in network delays.

Workload variation: Section 3.9.3 shows that for many applications, the optimal solution

based on historical access patterns performs well compared to the solution obtained with

perfect information of future access patterns. Consider the case where workloads exhibit

seasonal patterns (for e.g. diurnal effects) and data-migration costs over short time-scales

are large enough that one chooses to maintain same replicas across the seasons. Then, our

models optimize placement assuming a percentage of total requests across seasons are sat-

isfied within the specified latency. Instead, if one wants to have a certain service level for

each season, our models may be extended by replicating the model for each season and

imposing the constraint that placement decisions are season independent. Finally, we also

evaluated our models with placement recomputations performed at different time granular-

ities. We found that daily, weekly and monthly recomputations perform similarly, while

hourly recomputation benefits a modest fraction(15%) of requests but incurs higher mi-
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gration overheads. Hence, recomputation at coarser granularities seems to be the more

appropriate choice.

Computational Complexity: Our optimization framework allows a systematic approach

to analyzing replication strategies in cloud datastores, and delivers insights on the best

latency achievable for a given workload with consistency constraints. With our proto-

type implementation LAT, BA, and N-1C models solve within 0.16, 0.17 and 0.41 sec-

onds respectively using a single core on a 4 core, 3GHz, 8GB RAM machines. While

already promising, we note that (i) our implementation is not optimized. Many opportuni-

ties (heuristics, valid cuts, modeling interface) exist for better efficiency; (ii) systems like

Spanner [8] require applications to bucket items, and computations would be performed at

coarser bucket granularities; (iii) our per-bucket formulations are embarrassingly parallel;

and (iv) our placements are stable over days (Sec 3.9.3) and placement recomputations are

not frequent.

3.12 Conclusions

In this chapter, we make several contributions. First, we have developed a system-

atic framework for modeling geo-replicated quorum datastores in a manner that captures

their latency, availability and consistency requirements. Our frameworks capture require-

ments on both read and write latencies, and their relative priority. Second, we have demon-

strated the feasibility and importance of tailoring geo-distributed cloud datastores to meet

the unique workloads of groups of items in individual applications, so latency SLA require-

ments (expressed in percentiles) can be met during normal operations and on the failure of a

DC. Third, we explore the limits on latency achievable with geo-replicated storage systems

for three real applications under strict quorum requirement. Our evaluations on a multi-

region EC2 test-bed, and longitudinal workloads of three widely deployed applications

validate our models, and confirm their importance.
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4. MAKING MULTI-TIER APPLICAITONS RESILIENT TO
PERFORMANCE VARIABILITY IN THE CLOUD

4.1 Introduction

Cloud computing promises to reduce the cost of IT organizations by allowing them to

purchase as much resources as needed, only when needed, and through lower capital and

operational expense stemming from the cloud’s economies of scale. Further, moving to

the cloud greatly facilitates the deployment of applications across multiple geographically

distributed data-centers. Geo-distributing applications, in turn, facilitates service resilience

and disaster recovery, and could enable better user experience by having customers directed

to DCs close to them.

While these advantages of cloud computing are triggering much interest among devel-

opers and IT managers [100, 101], a key challenge is meeting the stringent Service Level

Agreement (SLA) requirements on availability and response times for interactive applica-

tions (e.g. customer facing web applications, enterprise applications). Application laten-

cies directly impact business revenue [2, 3]– e.g., Amazon found every 100ms of latency

costs 1% in sales [3]. Further, the SLAs typically require bounds on the 90th (and higher)

percentile latencies [102, 103].

Multi-tier applications consist of potentially hundreds of components with complex

inter-dependencies and hundreds of different transactions all involving different subsets of

components [104]. Meeting such stringent SLA requirements for these applications is a

challenge, given outages in cloud DCs [18,19], and the high variability in the performance

of cloud services [20–22]. This variability arises from a variety of factors such as the

sharing of cloud services across a large number of tenants, and limitations in virtualization

techniques [20]. For example, [21] showed that the 95%ile latencies of cloud storage
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services such as tables and queues is 100% more than the median values for four different

public cloud offerings.

In this chapter, we make the following contributions. First, we show the importance

of designing multi-tier applications to be intrinsically resilient to cloud performance vari-

ations. We deploy three real-world multi-tier applications on commercial cloud platforms

like Windows Azure and Amazon AWS and perform extensive measurement study on the

performance of these applications. Second, we present Dealer, a system that enables ap-

plications to meet their stringent SLA requirements on response times by finding the com-

bination of replicas –potentially located across multiple DCs– that should be used to serve

any given request. This is motivated by the fact that only a small number of application

components of large multi-tier applications experience poor performance at any time.

Dealer abstracts application structure as a component graph, with nodes being appli-

cation components and edges capturing inter-component communication patterns. To pre-

dict which combination of replicas can result in the best performance, Dealer continually

monitors the performance of individual component replicas and communication latencies

between replica pairs. Operating at a component-level granularity offers Dealer several

advantages over conventional approaches that merely pick an appropriate DC to serve user

requests [105–108]. Modern web applications consist of many components, not all of

which are represent in each DC, and the costs are extremely high to over-provision each

component in every DC to be able to handle all the traffic from another DC. Dealer is able

to redistribute work away from poorly performing components by utilizing the capacity of

all component replicas that can usefully contribute to reducing the latency of requests.

We evaluate Dealer on two stateful multi-tier applications on Azure cloud deployments.

The first application is data-intensive, while the second application involves interactive

transaction processing. Under natural cloud dynamics, using Dealer improves application

performance by a factor of 3 for the 90th and higher delay percentiles, compared to DNS-

based DC-level redirection schemes which are agnostic of application structure. Overall,

the results indicate the importance and feasibility of Dealer.
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Fig. 4.1. Applications Testbed.

4.2 Performance and Workload Variability

In this section, we present observations that motivate Dealer’s design. In §4.2.1, we

characterize the extent and nature of the variability in performance that may be present in

cloud DCs. Our characterization is based on our experiences running different multi-tier

applications on the cloud.
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We measure the performance variability with the following three applications. Fig-

ure 4.1(a), Figure 4.1(b) and Figure 4.1(c) respectively show the component architecture

and data-flow for each application.

Thumbnail: Thumbnail is a three tier web application provided as a part of the Windows

Azure SDK. The application is data-intensive involving users uploading an image to the

server and receiving the thumbnail version of the image in turn. Figure 4.1(a) shows the

architecture of Thumbnail. The application consists of a Front-End (FE), Back-End (BE),

and Business-Logic (BL) components. It has a simple and linear data flow where users

upload pictures to the FE (t0). The FE writes the image to the BE (t1-b) and notifies the

BL(t1-a). The BL in turn creates a thumbnail, and stores it in BE (t3). The FE retrieves

the thumbnail (t4) and sends it to back the user (t5). The FE components were deployed as

Azure Web roles, BL as Azure worker roles and BE as an Azure Blob storage service.

StockTrader: StockTrader is a tiered enterprise web application that allows a user to

buy/sell stocks, view her portfolio information, modify her profile and perform other tasks

like viewing a stock quote or her recent transactions. StockTrader follows the Model-

View-Controller (MVC) architecture and all the components are deployed as web services.

Figure 4.1(b) shows the component architecture and data-flow for the application. The

components include a user facing front-end (FE), a business logic server (BS) that handles

computation associated with most requests, the Order Service (OS) that handles buy and

sell operations, a Database (DB) and a Config Service (CS) that binds these components.

While the components interact amongst themselves (sometimes multiple times) to serve a

user request, the precise data-flow and the components involved depends on the transaction

type. The FE, BS, OS and CS were hosted as Azure web roles (small instances) while the

DB was hosted on SQL Azure. We used the version of StockTrader from Apache Stone-

henge Interoperability Project [109] and re-wrote parts of it to make it compatible with

Azure cloud.

Twissandra: Unlike the applications described above, Twissandra is a social networking

application similar to Twitter, providing a simple but core set of Twitter features. Fig-

ure 4.1(c) shows the application architecture of Twissandra consisting of a FE (Django
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Fig. 4.2. CDF of total response-time for all applications, dissected by transaction types.

web server) and database (Cassandra cluster). Cassandra [9] is distributed storage system

that is designed to scale to a very large size across many commodity servers, with no single

point of failure and provides a simple schema-optional data model designed to allow good

performance at scale. The FE receives user requests and initiates a request with a local

Cassandra node to retrieve data from the DB cluster. Our deployment of Cassandra cluster

consists of four nodes hosted on Amazon EC2 instances, and spread across two data-centers

(the recommended multi data-center configuration) for availability and performance.

The workload for Thumbnail consists of fixed size 1.4 MB images. The workloads for

StockTrader were obtained from the associated DaCapo benchmarks [110], which consists

of several user sessions, each involving a series of transactions like login, view home page,

view quote(s), buy/sell quotes, etc. Finally, for Twissandra, we made use of the Twitter

Streaming API [111] to obtain a real data stream (Spritzer stream) to drive our experiments.

4.2.1 Performance variability in the cloud

We ran each application simultaneously in two separate data-centers (DC1 and DC2),

both located in the United States, and subjected them to the same workload simultane-

ously. We instrumented each application to measure the total response-time, as well as

the delays contributing to total response-time. The contributing delays include processing

delays encountered at individual application components, communication delay between

components (internal DC communication delays), and the upload/download delays (Inter-

net communication delays between users and each DC). We now present our key findings:
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Fig. 4.3. Comparing the latency of DB transactions in DC1 and DC2 across two
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therefore omitted.

User-perceived performance of applications in the cloud (total response-time): Fig-

ure 4.2 shows the CDF of the user-perceived performance for each of the three applica-

tions. Each graph shows the CDF of the total response-time, separated by different trans-

action types in the applications. From the figure, we observe that that there is significant

variation in total response-time across all applications and transaction types. Further, the

total response-time across all applications shows a significant tail highlighting the need for

a system like Dealer.

Performance of component replicas in multiple data centers is not correlated: Fig-

ure 4.3 shows a two hour snapshot from an experiment comparing the latency of database(DB)

transactions for StockTrader across two consecutive days. The figure shows that the DB

latency for DC1 on Day1 is significantly higher than on Day2, and has more prominent

variation. The figure also shows that on Day1, the DB in DC2 performed significantly bet-

ter than the DB in DC1 on the same day. This illustrates that the performance of similar

components across multiple DCs is not correlated. Further investigation revealed that the

performance variability was due to high load on the DC during a 9 day period [112]. Our

interaction with the cloud providers indicated that during this period, different subsets of

databases were impacted at different time snapshots.

Figure 4.4 shows the correlation coefficients across all pairs of elements, for Stock-

Trader. In general, there is little correlation in performance across elements. In cases

where there is some correlation, we found that the degradation in the performance of a

downstream element in the application graph affected the upstream elements (e.g., degra-
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Fig. 4.4. Correlations across various elements of StockTrader. Values range
between -1 (strongly anti-correlated) and +1 (strongly correlated).

(a) Home transactions (b) Quote transactions

(c) Post transactions

Fig. 4.5. Boxplots showing total response-time and its constituent component
and link delays (processing and communication delays) for 3 transaction types
for StockTrader.

dation of BS-CS affected FE-BS in StockTrader). Similar trends were also observed for

other applications.

All application components show performance variability: Figure 4.5 considers the

StockTrader application and presents a box plot for the total response-time (first) and its

per-component delays (component processing times and inter-component communication
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latencies). The X-axis is annotated with the component or link whose delay is being mea-

sured. For example, FE-BS represents the delay between the Business-Logic server (BS)

and the Front-End (FE) instances. The bottom and top of each box represent the 25th

and 75th percentiles, and the line in the middle represents the median. The vertical line

(whiskers) extends to the highest datum within 3*IQR of the upper quartile, where IQR

is the inter-quartile range. Points larger than this value are considered outliers and shown

separately. From the figure, we can see that while some components or links show more

variation than others (e.g., FE-CS, DB in StockTrader), in general there is variability in all

the components.

4.3 Dealer Design Rationale

In this section, we present the motivation behind Dealer’s design, and argue why tradi-

tional approaches don’t suffice. Dealer is designed to enable applications meet their SLA

requirements despite performance variations of cloud services. Dealer is motivated by two

observations: (i) in any DC, only instances corresponding to a small number of application

components see poor performance at any given time; and (ii) the latencies seen by instances

of the same component located in different DCs are often uncorrelated.

Dealer’s main goal is to dynamically identify a replica of each component that can best

serve a given request. Dealer may choose instances located in different DCs for different

components, offering a rich set of possible choices. In doing so, Dealer considers per-

formance and loads of individual replicas, as well as intra- and inter-DC communication

latencies.

Dealer is distinguished from DNS-based [105–107] and server-side [108] redirection

mechanisms, which are widely used to map users to appropriate DCs. Such techniques fo-

cus on alleviating performance problems related to Internet congestion between users and

DCs, or coarse-grained load-balancing at the granularity of DCs. Dealer is complemen-

tary and targets performance problems of individual cloud services inside a DC. There are

several advantages associated with the Dealer approach:
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• Exploit heterogeneity in margins across different components: In large multi-tier ap-

plications with potentially hundreds of components [104], only a few services might be

temporarily impacted in any given DC. Dealer can reassign work related to these services

to other replicas in remote DCs if they have sufficient margins. For instance, Dealer could

tackle performance problems with storage elements (e.g., a blob) by using a replica in

a remote DC, while leveraging compute instances locally. Complete request redirection,

however, may not be feasible since instances of other components (e.g., business-logic

servers) in the remote DC may not be over-provisioned adequately over their normal load

to handle the redirected requests. In fact,

• Utilize functional cloud services in each DC: Dealer enables applications to utilize cloud

services that are functioning satisfactorily in all DCs, while only avoiding services that

are performing poorly. In contrast, techniques that redirect entire requests fail to utilize

functional cloud services in a DC merely due to performance problems associated with a

small number of other services. Further, the application may be charged for the unutilized

services (for example, they may correspond to already pre-paid reserved compute instances

[113]). While Dealer does incur additional inter DC communication cost, our evaluations

in §4.5.4 indicate these costs are small.

• Responsiveness: Studies have shown that DNS-based redirection techniques may have

latencies of over 2 hours and may not be well suited for applications which require quick

response to link failures or performance degradations [114]. In contrast, Dealer targets

adaptations over the time-scale of tens of seconds.

4.4 System Design

In this section, we present the design of Dealer. We begin by presenting an overview

of the design, and then discuss its various components.
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Fig. 4.6. System overview

4.4.1 System Overview

Consider an application with multiple components {C1..Cl}. We consider a multi-cloud

deployment where the application is deployed in d DCs, with instances corresponding to

each component located in every one of the DCs. Note that there might be components like

databases which are only present in one or a subset of DCs. We represent all replicas of

component Ci in DC m as Cim.

Traffic from users is mapped to each DC using standard mapping services used today

based on metrics such as geographical proximity or latencies [106]. Let Uk denote the set

of users whose traffic is mapped to DC k. We refer to DC k as the primary DC for Uk,

and to all other DCs as the secondary DCs. The excess capacity of each component replica

is the additional load that can be served by that replica which is not being utilized for the

primary traffic of that DC. Traffic corresponding to Uk can use the entire available capacity

of all components in DC k, as well as the excess capacity of components in all other DCs.

For each user group Uk, Dealer seeks to determine how application transactions must

be split in the multi-cloud deployment. In particular, the goal is to determine TFim,jn, that

is the number of user transactions that must be directed between component i in DC m

to component j in DC n, for every pair of <component,DC > combinations. In doing

so, the objective is to ensure the overall delay of transactions can be minimized. Further,
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Dealer periodically recomputes how application transactions must be split given dynamics

in behavior of cloud services.

Complex multi-tier applications may have hundreds of different transactions all involv-

ing different subsets of application components. Detailed knowledge of the components

involved in every single type of transaction is hard to obtain. Instead, Dealer dynamically

learns a model of the application that captures component interaction patterns. In particu-

lar, Dealer estimates the fraction of requests that involve communication between each pair

of application components, and the average size of transactions between each component

pair. In addition, Dealer estimates the processing delays of individual components repli-

cas, and communication delays between components, as well as the available capacity of

component replicas in each DC, (i.e., the load each replica can handle).

We now briefly discuss how this information is estimated and dynamically updated by

Dealer.

4.4.2 Determining delays

There are three key components to the estimation algorithms used by Dealer when

determining the processing delay of components and communication delays between them.

These include: (i) passive monitoring of components and links over which application

requests are routed; (ii) heuristics for smoothing and combining multiple estimates of delay

for a link or component; and (iii) active probing of links and components which are not

being utilized to estimate the delays that may be incurred if they were used. We describe

each of these in turn:

Monitoring: Monitoring distributed applications is a well studied area [115–117], and we

use X-Trace [116], since it can track application performance at the granularity of individual

requests. To facilitate easy integration of X-Trace with the application, we automate a large

part of the integration effort using Aspect Oriented Programming (AOP) techniques [118].

The measured latency at each component is reported periodically to a central monitor. A
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smaller reporting time ensures greater agility of Dealer. We use reporting times of 10

seconds in our implementation, which we believe is reasonable.

Smoothing delay estimates: It is important to trade-off the agility in responding to perfor-

mance dips in components or links with potential instability that might arise if the system is

overly aggressive. To handle this, Dealer uses a weighted moving average (WMA) scheme.

For each link and component, the average delay seen during the last W time windows of

observation is considered. Briefly, the weight depends on the number of samples seen dur-

ing a time window, and the recency of the estimate (i.e., recent windows are given a higher

weight). Our empirical experience has shown choosing W values between 3 and 5 are most

effective for good performance.

Probing: Dealer uses active probes to estimate the performance of components and links

that are not currently being used. This enables Dealer to decide if it should switch trans-

actions to a replica of a component in a different DC, and determine which replica must

be chosen. Probe traffic is generated by test-clients using application workload generators

(e.g., [119]). We restrict active probes to read-only requests that do not cause changes in

persistent application state. While this may not accurately capture the delays for transac-

tions involving writes, we have found the probing scheme to work well for the applications

we experiment with. We also note that many applications tend to be read-heavy and it is

often more critical to optimize latencies of transactions involving reads. To bound probes’

overhead, we limit the probe rate to 10% of the application traffic rate. Also, Dealer probes

5% of the paths at random to ensure more choices can be explored.

While probing may add a non-negligible overhead on applications, we are investigating

ways to restrict our use of active probing to only measuring inter-DC latency and band-

width. The key insights behind our approach are to (i) use passive user-generated traffic to

update component processing delays and inter-component link latencies 1; and (ii) limit ac-

tive probes to measuring inter-DC latency and bandwidth. These measurements can then be

combined, along with passive measurements on transaction sizes observed between com-

1We expect each DC to continually receive some traffic which would ensure such passive observations are
feasible.



89

ponents, to estimate the performance of any combination. Further, rather than having each

application measure the bandwidth and latency between every pair of DCs, cloud providers

could provide such services in the future, amortizing the overheads across all applications.

We leave further exploration of this as future work.

4.4.3 Determining transaction split ratios

We now discuss how Dealer uses the processing delays of components and communica-

tion times of links to compute the split ratio matrix TF. Here, TFim,jn is the number of user

transactions that must be directed between component i in DC m to component j in DC n,

for every <component, DC > pair. In determining the split ratio matrix, Dealer considers

several factors including i) the total response-time; ii) stability of the overall system; and

iii) capacity constraints of application components. A combination refers to an assignment

of each component to exactly one DC. For e.g., in Figure 4.6, a mapping of C1 to DC1, C2

to DCk, Ci to DCm and Cj to DCm represents a combination. Dealer iteratively assigns a

fraction of transactions to each combination. The split ratio matrix is easily computed once

the fraction of transactions assigned to each combination is determined. The details of the

assignment algorithm are available in our paper [120].

Considering total response-time: Dealer computes the mean delay for each possible

combination like in [104]. It is the weighted sum of the processing delays of nodes and

communication delay of links associated with that combination, where the weights are

determined by the fraction of user transactions that traverse that node or link. The fractions

may be determined by monitoring the application in its past window like in § 4.4.2. Once

the delays of combinations are determined, Dealer sorts the combinations in ascending

order of mean delay such that the best combinations get utilized the most, thereby ensuring

a better performance.

Ensuring system stability: To ensure stability of the system and prevent oscillations,

Dealer avoids abrupt changes in the split ratio matrix in response to minor performance

changes. To achieve this, Dealer limits the maximum fraction of transactions that may be
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assigned to a given combination. The limit (which we refer to as the damping ratio) is

based on how well that combination has performed relative to others, and how much traffic

was assigned to that combination in the recent past.

Honoring capacity constraints: In assigning transactions to a combination of application

components, Dealer ensures the capacity constraints of each of the components is honored

(details of the algorithm in [120]. Briefly, Dealer considers the combinations in ascending

order of mean delay, and determines the maximum fraction of transactions that can be as-

signed to that combination without saturating any component. Dealer assigns this fraction

of transactions to the combination, and updates the available capacities of each component

to reflect this assignment. If the assignment of transactions is not completed at this point,

the process is repeated with the next best combination.

4.4.4 Estimating capacity of components

We now discuss how Dealer determines the capacity of components in terms of the load

each component can handle. Typically, application delays are not impacted by an increase

in load up to a point which we term as the threshold. Beyond this, application delays

increase gradually with load, until a breakdown region is entered where vastly degraded

performance is seen. Ideally, Dealer must operate at the threshold to ensure the component

is saturated while not resulting in degraded performance. The threshold is sensitive to

transaction mix changes. Hence, Dealer dynamically estimates the threshold, and seeks

to operate just above the threshold. If Dealer operated exactly at thresh, it would not

be possible to know if thresh has increased, and hence discover if Dealer is operating

too conservatively. The details of the capacity estimation algorithm are available in our

paper [120]. Finally, while Dealer uses component delays to estimate if the component is

saturated, one could also use other metrics such as CPU, memory utilization and queues

sizes.
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Algorithm 1 Integration with stateful applications.
Original code:

procedure SENDREQUEST(Component cmp, Request req)

Replica replica← cmp.Replica

replica.Send(req)

end procedure

With Dealer:

procedure SENDREQUEST(Component cmp, Request req)

Replica replica← metaData[req.ID][cmp]

if replica is null then . Not in meta-data.

replica← GetDealerReplica(cmp) . Use Dealer suggestion.

if cmp is stateful then . Cmp is stateful but its information has not been propagated

yet in meta-data.

metaData[req.ID][cmp]← replica

end if

end if

replica.Send(req)

end procedure

4.4.5 Integrating Dealer with applications

We integrated Dealer with both Thumbnail and StockTrader, and we found that the

overall effort involved was small. Integrating Dealer with applications involves: i) adding

logic to re-route requests to replicas of a downstream component across different DCs; and

ii) maintaining consistent state in stateful applications.

Re-routing requests. To use Dealer, application developers need to make only a small

change to the connection logic – the code segment inside a component responsible for

directing requests to downstream components. Dealer provides both push and pull API’s

for retrieving the split ratios. Instead of forwarding all requests to a single service endpoint,
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the connection logic now allocates requests to downstream replicas in proportion to the split

ratios provided by Dealer.

Integration with stateful applications. While best practices emphasize that cloud ap-

plications should use stateless services whenever possible [121, 122], some applications

may have stateful components. In such cases, the application needs to affinitize requests to

component replicas so that each request goes to the replicas that hold the state for process-

ing the request. Integrating Dealer with such applications does not change the consistency

semantics of the application. Dealer does not try to understand the application’s policy

for allocating requests to components. Instead, it proposes the desired split ratios to the

application, and the application uses its own logic to determine which replicas can handle

a request.

In integrating Dealer with stateful applications, it is important to ensure that related re-

quests get processed by the same set of stateful replicas due to data consistency constraints.

For instance, the StockTrader application involves session state. To integrate Dealer, we

made sure all requests belonging to the same user session use the same combination, and

Dealer’s split-ratios only determine the combination taken by the first request of that ses-

sion. StockTrader persists user session information (users logged in, session IDs, etc.) in

a database. We modified the application so that it also stores the list of stateful replicas

for each session. We also note that some web applications maintain the session state in the

client side through session cookies. Such information could again be augmented to include

the list of stateful replicas.

To guarantee all requests within the same session follow the same combination, the

application must be modified to propagate meta-data (such as a unique session ID and the

list of stateful replicas associated with it) along all requests between components. Many

web applications (such as StockTrader) use SOAP and RESTful services that provide Inter-

ceptors which can be easily used to propagate meta-data with very minimal modifications.

In the StockTrader application, we used SOAP Extensions [123] to propagate meta-data.

In other cases where Interceptors cannot be used, endpoint interfaces can be changed or

overloaded to propagate such data.
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The propagated meta-data is used by components to guide the selection of downstream

replicas. Algorithm 1 illustrates this. A component initiating a request must first check if

the downstream component is stateful (by examining the meta-data), and if it is, it picks

the replica specified in the meta-data. Otherwise, it picks the replica suggested by Dealer.

If a downstream stateful component is visited for the first time, it picks the replica that

Dealer suggests and saves this information into the meta-data which gets propagated along

requests to the front-end.

While handling such state may require developer knowledge, we found this required

only moderate effort from the developer in the applications we considered. As future work,

we would like to integrate Dealer with a wider set of applications with different consistency

requirements and gain more experience with the approach.

4.5 Experimental Evaluation

In this section, we evaluate the importance and effectiveness of Dealer in ensuring

good performance of applications in the cloud. We begin by discussing our methodology

in §4.5.1. We then evaluate the effectiveness of Dealer in responding to various events that

occur naturally in a real cloud deployment (§4.5.2). These experiments both highlight the

inherent performance variability in cloud environments, and evaluate the ability of Dealer

to cope with them. We then evaluate Dealer using a series of controlled experiments which

stress the system and gauge its effectiveness in coping with extreme scenarios such as sharp

spikes in application load, failure of cloud components, and abrupt shifts in application

transaction sizes.

4.5.1 Evaluation Methodology

We study and evaluate the design of Dealer by conducting experiments on Thumbnail

and StockTrader (introduced in §4.2).

Cloud testbed and application workloads: All experiments were conducted on Mi-

crosoft Azure by deploying each application simultaneously in two DCs located geograph-
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ically apart in the U.S. (North and South Central). In all experiments, application traffic

to one of the DCs (referred to as DCA) is controlled by Dealer, while traffic to the other

one (DCB) was run without Dealer. The objective was to not only study the effectiveness

of Dealer in enhancing performance of traffic to DCA, but also ensure that Dealer did not

negatively impact performance of traffic to DCB.

Application traffic to both DCs was generated using a Poisson arrival process when the

focus of an experiment is primarily to study the impact of cloud performance variability. In

Thumbnail, we set the transaction mix (fraction of requests to BL1 and BL2) according to

the fraction of requests to Component1 and Component2 in the trace. Another key work-

load parameter that we did vary was the size of pictures uploaded by users. Requests in

Thumbnail had an average upload size of 1.4 MB (in the form of an image) and around 3.2

(860) KB download size for BL1 (BL2) transactions. StockTrader, on the other hand, had

a larger variety of transactions (buying/selling stocks, fetching quotes, etc.) with relatively

smaller data size. To generate a realistic mix of transactions, we used the publicly available

DaCapo benchmark [110], which contains a set of user sessions, with each session consist-

ing of a series of requests (e.g., login, home, fetch quotes, sell stocks, and log out). A total

of 66 PlanetLab users, spread across the U.S., were used to send requests to DCA. Further,

another set of users located inside a campus network were used to generate traffic to DCB.

Application Deployments: Applications were deployed with enough instances of each

component so that they could handle typical loads along with additional margins. We es-

timated the capacities of the components through a series of stress-tests. For instance,

with an average load of 2 req
sec

and 100% margin (typical of real deployments as shown

in §4.2), we found empirically that 2/5/16 instances of FE/BL1/BL2 components were re-

quired. Likewise, for StockTrader, handling an average load of 1 req
sec

(0.25 session
sec

) required

1/2/1 instances of FE/BS/OS.

In StockTrader, we deployed the DB in both DCs and configured it in master-slave

mode. We used SQL Azure Data Sync [124] for synchronization between the two databases.

We note that Dealer can be integrated even if the application uses sharding or has weaker

consistency requirements (§4.4.5) – the choice of master-slave is made for illustration pur-
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poses. While reads can occur at either DB, writes are made only at the master DB (DCB).

Therefore, transactions involving writes (e.g., buy/sell) can only occur through the BS and

OS instances in DCB. Thus, the BS component would see a higher number of requests

(by ≈ 20%) than the FE and therefore requires higher provisioning than FE. Further, each

component can only connect to its local CS and DB to obtain communication credentials

of other components. Finally, all requests belonging to a user session must use the same

set of components given the stateful nature of the application.

Comparison with existing schemes: We evaluate Dealer against two prominent load-

balancing and redirection techniques used today:

• DNS-based redirection: Azure provides Windows Azure Traffic Manager (WATM) [125]

as its solution for DNS-based redirection. WATM provides Failover, Round-Robin and

Performance distribution policies. Failover deals with total service failures and sends all

traffic to the next available service upon failure. Round-robin routes traffic in a round-

robin fashion. Finally, Performance forwards traffic to the closest DC in terms of network

latency. In our experiments, we use the Performance policy because of its relevance to

Dealer. In WATM, requests are directed to a single URL which gets resolved through DNS

to the appropriate DC based on performance tables that measure the round trip time (RTT)

of different IP addresses around the globe to each DC. We believe WATM is a good rep-

resentative of DNS-based redirection schemes for global traffic management. However, its

redirection is based solely on network latency and is agnostic to application performance.

We therefore compare Dealer with another scheme that considers overall application per-

formance.

• Application-level Redirection: We implemented a per-request load-balancer, that we call

Redirection, which re-routes each request as a single unit, served completely by a single

DC. Redirection re-routes requests based on the overall performance of the application, cal-

culated as the weighted average of total response-time (excluding Internet delays) across

all transactions. If it finds the local response time of requests higher than that of the remote

DC, it redirects clients to the remote DC by sending a 302 HTTP response message upon

receiving a client request. It re-routes requests as long as the remote DC is performing bet-
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Fig. 4.7. CDF of total response-time under natural cloud dynamics.

ter, or until capacity limits are reached remotely (limited by the capacity of lowest margin

component). Similar to Dealer, re-routing in Redirection does not depend on transaction

types. We use the same monitoring and probing infrastructure described in §4.4.2.

4.5.2 Dealer under natural cloud dynamics

In this section, we evaluate the effectiveness of Dealer in responding to the natural dy-

namics of real cloud deployments. Our goal is to explore the inherent performance variabil-

ity in cloud environments and evaluate the ability of Dealer to cope with such variability.

We experiment with Thumbnail and compare its performance with and without Dealer.

Ideally it is desirable to compare the two schemes under identical conditions. Since this

is not feasible on a real cloud, we ran a large number of experiments alternating between

the two approaches. The experiment was 48 hours, with each hour split into two half-hour

runs; one without activating Dealer, and another with it. Traffic was generated using a

Poisson process with an average request rate of 2 req
sec

to each DC.

Figure 4.7 shows the CDF of the total response-time for the whole experiment. Dealer

performs significantly better. The 50th, 75th, 90th, and 99th percentiles with Dealer are

4.6, 5.4, 6.6 and 12.7 seconds respectively. The corresponding values without Dealer are
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Fig. 4.8. Fraction of Dealer traffic sent from DCA to DCB .

4.9, 6.8, 43.2 and 90.9 seconds. The reduction is more than a factor of 6.5x for the top 10

percentiles.

Further investigation showed these high delays were caused by the BL instances in

DCA, which had lower capacity to absorb requests during those periods of high delay, and

consequently experienced significant queuing. Such a sudden dip in capacity is an example

of the kind of event that may occur in the cloud, and highlights the need for Dealer.

While Dealer too experienced the same performance problem with BL in DCA, Dealer

mitigated the problem by tapping into the margin available at DCB. Figure 4.8 shows the

fraction of requests directed to one or more components in DCB by Dealer. Each bar

corresponds to a run and is split according to the combination of components chosen by

Dealer. Combinations are written as the location of FE, BE, BL1 and BL2 components2

respectively, where A refers to DCA and B to DCB. For example, for run 0 around 9%

of all requests handled by Dealer used one or more components from DCB. Further, for

this run, 5% of requests used the combination AAB, while 1% used ABA, and 3% used

ABB. Further, most requests directed to DCB during the problem take the path AAB,

which indicates the BL component in DCB is used.

Further, Dealer’s handles transient spikes in workload by directing transactions to the

BL replica in DCB. There were also some instances of congestion in the blob of DCA

which led Dealer to direct transactions to the blob of DCB.
2Since all transactions in this experiment were of type BL1, we drop the 4th tuple.
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4.5.3 Dealer vs. DNS-based redirection

Global Traffic Managers (GTM) are used to route user traffic across DCs to get better

application performance and cope with failures. We conducted an experiment with the

same setup mentioned in §4.5.2 to compare Dealer against WATM (§4.5.1). Figure 4.9

shows that Dealer achieves a reduction of at least 3x times in total response-time for the

top 10 percentiles. Like before, we found the BL instances had lower capacity in some of

the runs leading to a higher total response-time in GTM. Since the GTM approach only

takes into account the network latency and not the application performance, it was unable

to react to performance problems involving the BL instances.

4.5.4 Dealer vs. application-level redirection

In this section, we evaluate the effectiveness of Dealer in adapting to transient perfor-

mance issues and compare its performance with application-level redirection described in

§4.5.1.
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Fig. 4.10. Performance of Dealer vs. Redirection using traces collected during
the DB performance issue. A combination (FE, BS, OS) is represented using
the DC (DCA or DCB) to which each component belongs. 20% of transactions
perform DB writes (combination ABB), hence we exclude them for better visu-
alization.

Reaction to transient performance problems

We present our evaluation of Dealer’s response to performance variation in the cloud

by deploying StockTrader at both DCs, using the master-slave mode as described in §4.5.1.

We emulate a performance degradation in the database (DB) at DCA using the traces we

collected during the DB performance issue in §4.2.1 by taking a 10 minutes period with

high DB latency and using the corresponding data points to induce delay at the DB.

Figure 4.10 shows that during the period of performance degradation at the DB (9-18th

and 27-36th min), the average response time of Dealer is significantly better than that of

Redirection. Figure 4.10(b) shows that Dealer takes ABB and switches requests over to

the BS and OS at DCB to avoid the high latency at DB. Similarly, Figure 4.10(c) shows the

path (BBB) taken by Redirection and how this scheme switches a fraction of the requests

entirely to the DC, DCB. The fraction of traffic redirected to BBB in (c) is less than the

fraction of traffic sent through ABB in (b). This is because Dealer is able to better utilize

the margin available at the BS by switching a larger fraction of requests to the BS in DCB.
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Fig. 4.11. Request rate for each component in both DCs. BL2 in DCA not shown
for better visualization.

On the other hand, Redirection is constrained by the available capacity at the FE (DCB)

and hence is not able to completely utilize the margin available at the BS (DCB).

Reaction to failures in the cloud

Applications in the cloud may see failures which reduce their margins, making them

vulnerable to even modest workload spikes. Failures can happen due to actual physical

outages or due to maintenance and upgrades. For example, Windows Azure’s SLA states

that a component has to have 2 or more instances to get 99.95% availability [126] as in-

stances can be taken off for maintenance and upgrades at any time.

In Figure 4.12, we reproduced the case of a single fault-domain failure at time 300

affecting BL2 instances in DCB
3. The combination AABA represents requests which were

served by FE, BE, BL2 at DCA and BL1 at DCB. The increased response time is due to a

surge in traffic at the DCA. Dealer handled this surge by redirecting requests to the BL1

replica in DCB. Redirection, on the other hand, could not re-direct all excess traffic to DCB

since the other components did not have sufficient capacity in the remote DC to handle

3This involved bringing 4 BL2 VM’s offline since Azure deploys each component’s VMs on 2 or more fault-
domains.
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Fig. 4.12. Performance of Dealer vs. Redirection using real workload trace
with cloud failures (Thumbnail).

all the load from DCA. Therefore, Dealer maintained a significantly lower response time

during the surge in workload (130% lower). The results show that Dealer is effective in

handling failures in the cloud.

Inter DC bandwidth costs

A potential concern arises due to wide-area traffic that Dealer introduces in re-routing

requests across DCs. In this section, we compute the cost percentage increase for Thumb-

nail and StockTrader based on the experiments described in §4.5.4.

We consider the bandwidth, storage and compute (small instances) costs based on Mi-

crosoft Azure tariffs in January, 2012. The bandwidth cost is based on all transactions

exiting each DC (incoming transactions do not incur bandwidth costs in Azure). The av-

erage size of each request in Thumbnail (StockTrader) is 1.5MB (2 KB). StockTrader uses

SQL Azure DB (Web Ed.) and Thumbnail uses Azure blobs for storage. We calculate the

storage cost for Thumbnail based on the number of storage transactions and storage size
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consumed. The cost of the DB and compute instances is normalized to the duration of the

experiments.

The cost percentage increase for Thumbnail and StockTrader were found to be 1.94%

and 0.06% respectively. This shows that the cost introduced due to inter DC bandwidth

is minimal, even for data-intensive applications such as Thumbnail. We have repeated

our calculations using the Amazon EC2 pricing scheme [113], and we have found similar

results. Finally, we note that in our evaluations we assume compute instances in both DCs

cost the same. However, in practice, application architects are likely to provision reserved

instances in each DC [113] (i.e., instances contracted over a longer period for a lower rate).

Under such scenarios, Dealer has the potential to incur lower costs than Redirection by

leveraging reserved instances in each DC to the extent possible.

4.6 Related Work

Several researchers have pointed out the presence of performance problems with the

cloud (e.g., [20–22]). In contrast, our focus is on designing systems to adapt to short-term

variability in the cloud.

The cloud industry already provides mechanisms to scale up or down the number of

server instances in the cloud (e.g., [127,128]). However, it takes tens of minutes to invoke

new cloud instances in commercial cloud platforms today. Recent research has shown the

feasibility of starting new VMs at faster time scales [129,130]. For instance, [129] presents

a VM-fork abstraction which enables the cloning of a VM into multiple replicas on-the-fly.

While such schemes are useful for handling variability in performance due to excess load

on a component, they cannot handle all types of dynamics in the cloud (e.g., problems

in blob storage, network congestion, etc.). Further, ensuring the servers are warmed up

to serve requests after instantiation (e.g., by filling caches, running checks, copying state,

etc.) demands additional time. In contrast, Dealer can enable faster adaptation at shorter

time-scales, and is intended to complement solutions for dynamic resource invocation.
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DNS-based techniques [105–107] and server-side redirection mechanisms [108] are

widely used to map users to appropriate DCs. However, such techniques focus on alle-

viating performance problems related to Internet congestion between users and DCs, and

load-balance user traffic coarsely at the granularity of DCs. In contrast, Dealer targets

performance problems of individual cloud components inside a DC, and may choose com-

ponents that span multiple DCs to service an individual user request. This offers several

advantages in large multi-tier applications (with potentially hundreds of components [104])

where possibly only a small number of components are temporarily impacted. When en-

tire user requests are redirected to a remote DC as in [105–108], not all components in the

remote DC may be sufficiently over-provisioned to handle the redirected requests. Further,

redirecting entire user requests does not utilize functional resources in the local DC that

have already being paid for. For instance, the local DC may have underutilized reserved

instances [113], while the remote DC might require the use of more expensive on-demand

instances. The cost could be substantial over a large number of components. Finally, stud-

ies have shown that the use of DNS-based redirection techniques may lead to delays of

more than 2 hours and thus may not be suitable for applications which require quick re-

sponse to failures [114]. We note that [108] does mention doing the redirection at the level

of the bottleneck component; however, Dealer is distinguished in that it makes no apriori

assumption about which component is the bottleneck, and dynamically reacts to whichever

component or link performs poorly at any given time.

Several works [131–133] study utility resource planning and provisioning for appli-

cations. [131] studies resource planning for compute batch tasks by building predictive

models in shared computing utilities. Further, [132, 133] build analytic models for han-

dling workload variability (changing transaction mix and load) in multi-tier applications.

For example, [132] aims at handling peak workloads by provisioning resources at two lev-

els; predictive provisioning that allocates capacity at the time-scale of hours or days, and

reactive provisioning that operates at time scales of minutes. While such techniques are

complementary to Dealer, their focus is not applications deployed in public clouds. Dealer

not only deals with workload variability, but also handles all types of performance vari-
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ability (e.g., due to service failures, network congestion, etc.) in geo-distributed multi-tier

applications, deployed in commercial public clouds. Dealer provides ways to avoid com-

ponents with poor performance and congested links via re-routing requests to replicas in

other DCs at short time scales.

Other works [134, 135] study the performance of multi-tier applications. [134] tries

to control the performance of such applications by preventing overload using self-tuning

proportional integral (PI) controller for admission control. Such a technique can be inte-

grated with Dealer to control the load directed to each component replica. Further, [135]

combines performance modeling and profiling to create analytical models to accomplish

SLA decomposition. While SLA decomposition is outside the scope of Dealer, compo-

nent profiling may be incorporated with Dealer to capture component’s performance as a

function of allocated resources (e.g., CPU) to achieve performance prediction.

4.7 Conclusions

In this chapter, we have shown that it is important and feasible to architect latency-

sensitive applications in a manner that is robust to the high variability in performance of

cloud services. We have presented Dealer, a system that can enable applications to meet

their SLA requirements by dynamically splitting transactions for each component among

its replicas in different DCs. Under natural cloud dynamics, the 90th and higher percentiles

of application response times were reduced by more than a factor of 3 compared to a system

that used traditional DNS-based redirection. Further, Dealer not only ensures low latencies

but also significantly out-performs application-level redirection mechanisms under a range

of controlled experiments.
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5. CONCLUSIONS AND FUTURE WORK

As commercial cloud deployments scale by building new datacenters, more applications

and their content are expected move to the cloud for better performance and availability,

which present many opportunities for improving user experience. While many techniques

and systems like SPDY, DNS-based request redirection, and geo-replicated datastores have

been proposed to improve application performance, these solutions often tend to improve

the performance of a specific application component, and may have different impact on the

user perceived latency. This thesis takes the first steps towards improving user experience

in a holistic manner, by presenting solutions that helps reduce the front-end and back-end

latency, while simultaneously ensuring reductions in the end-to-end user perceived latency.

5.1 Contributions

This thesis makes the following contributions. First, it reduces the user-facing latency

by priority-aware organization of web content within the CDNs. Next, it reduces the back-

end latency through optimal data-replication and placement at the storage layer. Finally,

it improves the application performance by carefully rerouting requests across different

application component replicas.

Improving application performance by page-aware prioritization of content within

CDNs: The quest to reduce user-perceived web-application latencies has led to the large-

scale adoption of widely distributed CDNs that involve placing caches at thousands of In-

ternet vantage points, close to users. With more applications opting for all-content delivery

through CDNs, there is an opportunity to improve the end-user experience by optimizing

the delivery of entire web pages, rather than just individual objects. The key idea behind

our approach is that the objects in a web page having the largest impact on page latency

should be served out of the closest or fastest caches in the hierarchy. We presented a family
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of prioritization schemes for identifying important objects for the page and develop mecha-

nisms that serve them with higher priority from the CDN, while balancing traditional CDN

concerns such as optimizing the delivery of popular objects and minimizing bandwidth

costs. Through extensive experiments on 100 real world pages (across all popularities from

Alexa Top pages), we showed that latency reductions of over 100ms can be obtained for

more than 50% of the pages.

Balancing latency, availability and replication-cost in geo-distributed datastores: In

response to the stringent latency and availability requirements of modern applications, sev-

eral geo-distributed cloud datastores have emerged in recent years. Despite the presence

of many tools and techniques that improve the performance of these datastores, meeting

application SLAs is still challenging, given the scale of applications, and their diverse

and dynamic workloads which are not entirely exposed to the datastores. Using appli-

cation level data access patterns as a focal input, we developed data-replication models

for quorum-based systems that optimize percentiles of response time under normal op-

eration and under a datacenter (DC) failure. These models also consider various factors

like the geographic spread of users, DC locations, consistency requirements and inter-DC

communication costs when determining data placements. We showed the benefits of our

approach using real-world traces of three geo-distributed applications: Twitter, Wikipedia

and Gowalla deployed along with a Cassandra cluster across the 8 DCs in Amazon EC2.

Application-aware request splitting for multi-tier cloud applications: A key factor af-

fecting the performance of applications deployed in the cloud is the high variability in

performance of cloud services. To understand the impact of performance variability on

user perceived performance, we conducted extensive measurement studies using three real-

world applications deployed on commercial cloud platforms like Windows Azure and Ama-

zon AWS. Leveraging on insights from our measurement study, we built Dealer a system

that helps geo-distributed, multi-tier applications meet their stringent requirements on re-

sponse time in the presence of these variabilities. Dealer is motivated by the fact that, at

any time, only a small number of application components of large multi-tier applications

experience poor performance. It abstracts application structure as a component graph, with
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nodes being application components and edges capturing inter-component communication

patterns. Dealer continually monitors the performance of individual component replicas

and communication latencies between replica pairs, and seeks to minimize user response

times by picking the best combination of replicas (potentially located across different DCs).

By integrating Dealer with two multi-tier applications on real cloud deployments, we show

that the 90th percentile of application response times could be reduced by a factor of 3

under natural cloud dynamics compared to the conventional, application-structure-agnostic

redirection techniques.

5.2 Future directions

Mobile web application performance: Mobile applications present unique challenges

due to their higher last-mile latencies and diversity in client conditions. The performance

of mobile applications depends on the two key contributing factors - compute and network

activities of the applications. Our priority-based schemes can be potentially extended to

help schedule these activities in a priority aware manner to optimize the overall perfor-

mance. The key idea here is to make both the client and server-side application (including

third party components) aware of its impact on the user performance by explicitly modeling

its deadlines and priorities. This allows the server to serve content to the client in a timely

manner, while being aware of the client conditions and requirements. Such models can

also easily incorporate various practical aspects like bandwidth cost, power and policies as

constraints while constructing the schedules.

Priority-based push for improving end-user experience: Protocols like SPDY provide

an important feature called server push that has the potential to reduce page-load latency,

by pushing objects to the client without waiting for explicit client requests. However, a key

challenge with enabling server push is the extensive personalization of web pages. Specifi-

cally, web pages are extensively customized to individual users, and identifying the objects

for a given user typically involves executing JS code. In addition, even across back-to-back

runs for a given user, there is significant variability in the fetched objects, and identifying
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objects may require executing JS code. Thus, server push today is restricted to static objects

(i.e., objects that are common to all users and across runs of a single user which limits its

potential). However, recent efforts like PARCEL [136], that perform redundant web-page

execution at the proxy, have opened up the opportunity for improving the accuracy in push

schemes. The spectrum of prioritization and proactive refresh strategies proposed in this

thesis can be extended to these proxies, which can significantly lower the page-load latency

and improve the user experience.
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