36,757 research outputs found

    Energy-water-environment nexus underpinning future desalination sustainability

    Get PDF
    Energy-water-environment nexus is very important to attain COP21 goal, maintaining environment temperature increase below 2 °C, but unfortunately two third share of CO2 emission has already been used and the remaining will be exhausted by 2050. A number of technological developments in power and desalination sectors improved their efficiencies to save energy and carbon emission but still they are operating at 35% and 10% of their thermodynamic limits. Research in desalination processes contributing to fuel World population for their improved living standard and to reduce specific energy consumption and to protect environment. Recently developed highly efficient nature-inspired membranes (aquaporin & graphene) and trend in thermally driven cycle's hybridization could potentially lower then energy requirement for water purification. This paper presents a state of art review on energy, water and environment interconnection and future energy efficient desalination possibilities to save energy and protect environment

    The Calcium-Looping (CaCO3/CaO) Process for Thermochemical Energy Storage in Concentrating Solar Power Plants

    Get PDF
    Articulo aceptado por la revista. * No publicado aún [28-06-2019]Energy storage based on thermochemical systems is gaining momentum as potential alternative to molten salts in Concentrating Solar Power (CSP) plants. This work is a detailed review about the promising integration of a CaCO3/CaO based system, the so-called Calcium-Looping (CaL) process, in CSP plants with tower technology. The CaL process relies on low cost, widely available and non-toxic natural materials (such as limestone or dolomite), which are necessary conditions for the commercial expansion of any energy storage technology at large scale. A comprehensive analysis of the advantages and challenges to be faced for the process to reach a commercial scale is carried out. The review includes a deep overview of reaction mechanisms and process integration schemes proposed in the recent literature. Enhancing the multicycle CaO conversion is a major challenge of the CaL process. Many lab-scale analyses carried out show that residual effective CaO conversion is highly dependent on the process conditions and CaO precursors used, reaching values as different as 0.07-0.82. The selection of the optimal operating conditions must be based on materials, process integration, technology and economics aspects. Global plant efficiencies over 45% (without considering solar-side losses) show the interest of the technology. Furthermore, the technological maturity and potential of the process is assessed. The direction towards which future works should be headed is discussed.Ministerio de Economia y Competitividad CTQ2014-52763-C2, CTQ2017- 83602-C2 (-1-R and -2-R)Unión Europea Horizon 2020 Grant agreement No 727348, project SOCRATCES

    Liquid metal magnetohydrodynamics (LMMHD) technology transfer feasibility study. Volume 1: Summary

    Get PDF
    The potential application of liquid metal magnetohydrodynamics (LMMHD) to central station utility power generation through the period to 1990 is examined. Included are: (1) a description of LMMHD and a review of its development status, (2) LMMHD preliminary design for application to central station utility power generation, (3) evaluation of LMMHD in comparison with conventional and other advanced power generation systems and (4) a technology development plan. One of the major conclusions found is that the most economic and technically feasible application of LMMHD is a topping cycle to a steam plant, taking advantage of high temperatures available but not usable by the steam cycle

    Transcritical Carbon Dioxide Charge-Discharge Energy Storage with Integration of Solar Energy

    Get PDF
    New and improved energy storage technologies are required to overcome non-dispatchability, which is the main challenge for the successful integration of large shares of renewable energy within energy supply systems. Energy storage is proposed to tackle daily variations on the demand side, i.e., storing low-price energy during off-peak or valley periods for utilization during peak periods. Regarding electrical energy storage, several technologies are available with different potentials for scalability, density, and cost. A recent approach for grid-scale applications is based on transcritical carbon dioxide charge and discharge cycles in combination with thermal energy storage systems. This alternative to pumped-hydro and compressed air energy storage has been discussed in scientific literature, where different configurations have been proposed and their efficiency and costs calculated. The potential of the concept has been demonstrated to be an economical alternative, including hybrid concepts with solar thermal storage. Even at low temperatures, the addition of solar energy has proved to be cost effective. This paper explores the effect of introducing solar-based high temperature heat on the performance of different configurations of “Transcritical carbon dioxide ‒ thermal energy storage system” cycles. A base-cycle with 8-hour discharge time is compared with different layouts. Discussions include details on the models, parametric analyses -including solar technology alternatives-, and simulation results. Round trip efficiency of the base case, without solar support and at pressure ratio of 9.4, is 52%. When solar input is considered, the efficiency is above 60%, increasing the turbine inlet temperature to 950 K. Estimated levelized cost of electricity values are in the range of pumped hydro and compressed air energy storage, 90-140 USD/MWh in agreement with other works on this thermal storage technology. The global analysis shows clear advantages for advancing in the study and definition of this technology for exploitation of synergies at different power ranges, integrated with mid/high temperature solar power plants and with smaller-scale renewable installations.Unión Europea. Fondo Europeo de Desarrollo Regional SOE1 / P3 / P0429E

    Energy Production Analysis and Optimization of Mini-Grid in Remote Areas: The Case Study of Habaswein, Kenya

    Get PDF
    Rural electrification in remote areas of developing countries has several challenges which hinder energy access to the population. For instance, the extension of the national grid to provide electricity in these areas is largely not viable. The Kenyan Government has put a target to achieve universal energy access by the year 2020. To realize this objective, the focus of the program is being shifted to establishing off-grid power stations in rural areas. Among rural areas to be electrified is Habaswein, which is a settlement in Kenya’s northeastern region without connection to the national power grid, and where Kenya Power installed a stand-alone hybrid mini-grid. Based on field observations, power generation data analysis, evaluation of the potential energy resources and simulations, this research intends to evaluate the performance of the Habaswein mini-grid and optimize the existing hybrid generation system to enhance its reliability and reduce the operation costs. The result will be a suggestion of how Kenyan rural areas could be sustainably electrified by using renewable energy based off-grid power stations. It will contribute to bridge the current research gap in this area, and it will be a vital tool to researchers, implementers and the policy makers in energy sector

    Identifying opportunities for developing CSP and PV-CSP hybrid projects under current tender conditions and market perspectives in MENA – benchmarking with PV-CCGT

    Get PDF
    Concentrating solar power (CSP) is one of the promising renewable energy technologies provided the fact that it is equipped with a cost-efficient storage system, thermal energy storage (TES). This solves the issue of intermittency of other renewable energy technologies and gives the advantage of achieving higher capacity factors and lower levelized costs of electricity (LCOE). This is the main reason why solar tower power plants (STPP) with molten salts and integrated TES are considered one of the most promising CSP technologies in the short term [1]. On the other hand, solar photovoltaic (PV) is a technology whose costs have been decreasing and are expected to continue doing so thus providing competitive LCOE values, but with relatively low capacity factors as electrical storage systems remain not cost-effective. Combining advantages and eliminating drawbacks of both technologies (CSP and PV), Hybridized PV-CSP power plants can be deemed as a competitive economic solution to offer firm output power when CSP is operated smartly so that its load is regulated in response to the PV output. Indeed previous works, have identified that it would allow achieving lower LCOEs than stand-alone CSP plants by means of allowing it to better utilize the solar field for storing energy during the daytime while PV is used [1]. On the fossil-based generation side, the gas turbine combined cycle (CCGT) occupies an outstanding position among power generation technologies. This is due to the fact that it is considered the most efficient fossil fuel-to-electricity converter, in addition to the maturity of such technology, high flexibility, and the generally low LCOE, which is largely dominated by fuel cost and varies depending on the natural gas price at a specific location. Obviously, the main drawback is the generated carbon emissions. In countries rich in natural gas resources and with vast potential for renewable energies implementation, such as the United Arab Emirates (UAE), abandoning a low LCOE technology with competitively low emissions – compared to coal or oil - and heading to costly pure renewable generation, seems like an aggressive plan. Therefore, hybridizing CCGT with renewable generation can be considered an attractive option for reducing emissions at reasonable costs. This is the case of the UAE with vast resources of both natural gas and solar energy. Previous work have shown the advantages of hybrid PV-CCGT and hybrid PV-CSP plants separately [1][2]. In this thesis, CSP and the two hybrid systems are compared on the basis of LCOE and CO2 emissions for a same firm-power capacity factor when considering a location in the UAE. The results are compared against each other to highlight the benefits of each technology from both environmental and economic standpoints and provide recommendations for future work in the field. The techno-economic analysis of CSP (STPP with TES), PV-CSP(STPP with TES) and PV-CCGT power plants have been performed by DYESOPT, an in-house tool developed in KTH, which runs techno-economic performance evaluation of power plants through multi-objective optimization for specific locations[1]. For this thesis, a convenient location in the UAE was chosen for simulating the performance of the plants. The UAE is endowed by the seventh-largest proven natural gas reserves and average to high global horizontal irradiation (GHI) and direct normal irradiation (DNI) values all year round, values considered to be lower than other countries in the MENA region due to its high aerosol concentrations and sand storms. The plants were designed to provide firm power in two cases, first as baseload, and second as intermediate load of 15 hours from 6:00 until 21:00. The hours of production were selected based on a typical average daily load profile. CSP and PV-CSP model previously developed by [3][1] were used. Ideally in the PV-CSP model, during daytime hours the PV generation is used for electricity production, covering the desired load, while CSP is used partly for electricity production and the rest for storing energy in the TES. Energy in the TES system is then used to supply firm power during both periods of low Irradiance and night hours or according to need. A PV-CCGT model has been developed which operates simultaneously, prioritizing the availability of PV while the CCGT fulfils the remaining requirement. There is a minimum loading for the CCGT plant which is determined by the minimum possible partial loading of the gas turbine restricted by the emission constraints. Accordingly, in some cases during operation PV is chosen to be curtailed due to this limitation. The main results of the techno-economic analysis are concluded in the comparative analysis of the 3 proposed power plant configurations, where the PV-CCGT plant is the most economic with minimum LCOE of 86 USD/MWh, yet, the least preferable option in terms of carbon emissions. CSP and PV-CSP provided higher LCOE, while the PV-CSP plant configuration met the same capacity factor with 11% reduction in LCOE, compared to CSP

    Is There Still Merit in the Merit Order Stack? The Impact of Dynamic Constraints on Optimal Plant Mix

    Get PDF
    corecore