2,122 research outputs found

    Enterprise Analysis of Strategic Airlift to Obtain Competitive Advantage through Fuel Efficiency

    Get PDF
    The rising cost of fuel has led to increasing emphasis on fuel efficiency in the aviation industry. As fuel costs become a larger proportion of total costs, those entities with a dynamic capability to increase their fuel efficiency will obtain competitive advantage. Assessing cargo throughput and fuel efficiency requires the creation of all routes of potential value for a given set of requirements that need to be airlifted from source to destination airfield. The time required for route computation can be significantly reduced through the use of nodal reduction. Use of the proposed model can assist evaluation of enterprise wide efficiency and effectiveness

    Sustainable Disruption Management

    Get PDF

    Identifying Key Issues and Potential Solutions for Integrated Arrival, Departure, Surface Operations by Surveying Stakeholder Preferences

    Get PDF
    NASA's Aeronautics Research Mission Directorate (ARMD) collaborates with the FAA and industry to provide concepts and technologies that enhance the transition to the next-generation air-traffic management system (NextGen). To facilitate this collaboration, ARMD has a series of Airspace Technology Demonstration (ATD) sub-projects that develop, demonstrate, and transitions NASA technologies and concepts for implementation in the National Airspace System (NAS). The second of these sub-projects, ATD-2, is focused on the potential benefits to NAS stakeholders of integrated arrival, departure, surface (IADS) operations. To determine the project objectives and assess the benefits of a potential solution, NASA surveyed NAS stakeholders to understand the existing issues in arrival, departure, and surface operations, and the perceived benefits of better integrating these operations. NASA surveyed a broad cross-section of stakeholders representing the airlines, airports, air-navigation service providers, and industry providers of NAS tools. The survey indicated that improving the predictability of flight times (schedules) could improve efficiency in arrival, departure, and surface operations. Stakeholders also mentioned the need for better strategic and tactical information on traffic constraints as well as better information sharing and a coupled collaborative planning process that allows stakeholders to coordinate IADS operations. To assess the impact of a potential solution, NASA sketched an initial departure scheduling concept and assessed its viability by surveying a select group of stakeholders for a second time. The objective of the departure scheduler was to enable flights to move continuously from gate to cruise with minimal interruption in a busy metroplex airspace environment using strategic and tactical scheduling enhanced by collaborative planning between airlines and service providers. The stakeholders agreed that this departure concept could improve schedule predictability and suggested several key attributes that were necessary to make the concept successful. The goals and objectives of the planned ATD-2 sub-project will incorporate the results of this stakeholder feedback

    Aircraft Maintenance Routing Problem – A Literature Survey

    Get PDF
    The airline industry has shown significant growth in the last decade according to some indicators such as annual average growth in global air traffic passenger demand and growth rate in the global air transport fleet. This inevitable progress makes the airline industry challenging and forces airline companies to produce a range of solutions that increase consumer loyalty to the brand. These solutions to reduce the high costs encountered in airline operations, prevent delays in planned departure times, improve service quality, or reduce environmental impacts can be diversified according to the need. Although one can refer to past surveys, it is not sufficient to cover the rich literature of airline scheduling, especially for the last decade. This study aims to fill this gap by reviewing the airline operations related papers published between 2009 and 2019, and focus on the ones especially in the aircraft maintenance routing area which seems a promising branch

    FLIGHT RISK MANAGEMENT AND CREW RESERVE OPTIMIZATION

    Get PDF
    There are two key concerns in the development process of aviation. One is safety, and the other is cost. An airline running with high safety and low cost must be the most competitive one in the market. This work investigates two research efforts respectively relevant to these two concerns. When building support of a real time Flight Risk Assessment and Mitigation System (FRAMS), a sequential multi-stage approach is developed. The whole risk management process is considered in order to improve the safety of each flight by integrating AHP and FTA technique to describe the framework of all levels of risks through risk score. Unlike traditional fault tree analysis, severity level, time level and synergy effect are taken into account when calculating the risk score for each flight. A risk tree is designed for risk data with flat shape structure and a time sensitive optimization model is developed to support decision making of how to mitigate risk with as little cost as possible. A case study is solved in reasonable time to approve that the model is practical for the real time system. On the other hand, an intense competitive environment makes cost controlling more and more important for airlines. An integrated approach is developed for improving the efficiency of reserve crew scheduling which can contribute to decrease cost. Unlike the other technique, this approach integrates the demand forecasting, reserve pattern generation and optimization. A reserve forecasting tool is developed based on a large data base. The expected value of each type of dropped trip is the output of this tool based on the predicted dropping rate and the total scheduled trips. The rounding step in current applied methods is avoided to keep as much information as possible. The forecasting stage is extended to the optimization stage through the input of these expected values. A novel optimization model with column generation algorithm is developed to generate patterns to cover these expected level reserve demands with minimization to the total cost. The many-to-many covering mode makes the model avoid the influence of forecasting errors caused by high uncertainty as much as possible

    airline revenue management

    Get PDF
    With the increasing interest in decision support systems and the continuous advance of computer science, revenue management is a discipline which has received a great deal of interest in recent years. Although revenue management has seen many new applications throughout the years, the main focus of research continues to be the airline industry. Ever since Littlewood (1972) first proposed a solution method for the airline revenue management problem, a variety of solution methods have been introduced. In this paper we will give an overview of the solution methods presented throughout the literature.revenue management;seat inventory control;OR techniques;mathematical programming

    Advancing sustainability in the maritime sector: energy design and optimization of large ships through information modelling and dynamic simulation

    Get PDF
    This paper deals with a new energy design approach for ships to reduce the fuel consumption and the related environmental impact. The proposed method is based on the application of the Building Information Modeling (BIM) to Building Energy Modeling (BEM) technique. Specifically, by a BIM model of the ship a 3D physics-based model (BEM) can be suitably created. Then, by BEM the ship energy performance is simulated under real and dynamic operating conditions. By the presented method the whole design-to-delivery process of the ship can be simplified and speeded up with respect to traditional approaches, without losing reliability. As an example, HVAC systems design is easier through BIM since a high number of thermal zones can be effectively handled. Due to BEM, also the optimal design for exploiting waste heat recoveries of on-board combustion engines is easier and faster. To show the capability of the proposed approach a suitable case study was developed. Basically, it concerns the energy performance analysis of the Allure of the Seas, a 6000-passenger cruise ship operating in the Caribbean Sea. Two different scenarios for recovering the waste heat of the ship diesel generators are investigated. Simulation results highlight that significant primary energy saving can be obtained by optimizing the strategy to recover the available thermal energies (up to 600 MWh per trip), with a remarkable amount of avoided pollutant emissions (58, 0.06, 4.0, 0.2, 2.0 kg/km of CO2, PM2.5, NOx, HC, SOx, respectively).The presented new approach can be easily adopted to design and optimize the energy system of any new or existing ships, with the twofold aim to achieve economic savings and to fulfil environmental sustainability standards

    Future pathways for decarbonization and energy efficiency of ports: Modelling and optimization as sustainable energy hubs

    Get PDF
    The increasing energy demand in harbour areas, coupled with the need to reduce pollutant emissions, has led to the development of renewable energy-based polygeneration systems to face the carbon footprint of ports and ships at berth. In this way, in the coming years, ports can be converted into modern energy hubs. From this point of view, this paper presents a new dynamic simulation model for assessing and optimizing the energy and economic impact of ports. Here, energy systems and renewable sources can be designed to be connected to national electricity and natural gas grids and can include also alternative fuels (hydrogen, biomethane, etc.) and thermal energy networks, as well as different biomass fluxes (to be exploited for energy aims). Energy availability/demands of near towns and port buildings/infrastructures, as well as on-shore power supply are also included in the dynamic assessments. Hourly weather data and different prices for all the considered energy carriers are taken into account hour by hour. A multi-objective optimization approach is also implemented in the model considering energy and economic indexes to be optimized. The whole model is implemented in a computer tool written in MATLAB. For showing the capability of the developed model, a novel case study referred to the port of Naples (South-Italy) is presented. Here, several renewable energy sources are considered, including an anaerobic biodigester for producing biogas from the organic waste of docked cruise ships. A combined heat and power system (fed by biogas) is implemented in the port energy hub also for supplying absorption chillers. PV panels, and marine power generators are also included. In the conducted analysis, optimization targets are the maximization of system self-consumption and self-sufficiency as well as the minimum simple payback period. The proposed system can effectively contribute to the decarbonization of the port energy demand and reduce harmful pollutant emissions. Results showed that very high rate of renewable energy produced on-site can be exploited (up to 84%) by the considered port facilities, ensuring increasing independency from utility power grid (self-sufficiency index up to 40%). By the obtained results and through the developed simulation/optimization tool, novel design and operating criteria can be achieved for future port energy hubs featured by renewables and bi-directional energy exchange between ships and port
    • …
    corecore