1,114,622 research outputs found
A linear optimization technique for graph pebbling
Graph pebbling is a network model for studying whether or not a given supply
of discrete pebbles can satisfy a given demand via pebbling moves. A pebbling
move across an edge of a graph takes two pebbles from one endpoint and places
one pebble at the other endpoint; the other pebble is lost in transit as a
toll. It has been shown that deciding whether a supply can meet a demand on a
graph is NP-complete. The pebbling number of a graph is the smallest t such
that every supply of t pebbles can satisfy every demand of one pebble. Deciding
if the pebbling number is at most k is \Pi_2^P-complete. In this paper we
develop a tool, called the Weight Function Lemma, for computing upper bounds
and sometimes exact values for pebbling numbers with the assistance of linear
optimization. With this tool we are able to calculate the pebbling numbers of
much larger graphs than in previous algorithms, and much more quickly as well.
We also obtain results for many families of graphs, in many cases by hand, with
much simpler and remarkably shorter proofs than given in previously existing
arguments (certificates typically of size at most the number of vertices times
the maximum degree), especially for highly symmetric graphs. Here we apply the
Weight Function Lemma to several specific graphs, including the Petersen,
Lemke, 4th weak Bruhat, Lemke squared, and two random graphs, as well as to a
number of infinite families of graphs, such as trees, cycles, graph powers of
cycles, cubes, and some generalized Petersen and Coxeter graphs. This partly
answers a question of Pachter, et al., by computing the pebbling exponent of
cycles to within an asymptotically small range. It is conceivable that this
method yields an approximation algorithm for graph pebbling
Image processing using miniKanren
An integral image is one of the most efficient optimization technique for
image processing. However an integral image is only a special case of delayed
stream or memoization. This research discusses generalizing concept of integral
image optimization technique, and how to generate an integral image optimized
program code automatically from abstracted image processing algorithm. In oder
to abstruct algorithms, we forces to miniKanren
Efficient design optimization of complex electromagnetic systems using parametric macromodeling techniques
We propose a new parametric macromodeling technique for complex electromagnetic systems described by scattering parameters, which are parameterized by multiple design variables such as layout or substrate feature. The proposed technique is based on an efficient and reliable combination of rational identification, a procedure to find scaling and frequency shifting system coefficients, and positive interpolation schemes. Parametric macromodels can be used for efficient and accurate design space exploration and optimization. A design optimization example for a complex electromagnetic system is used to validate the proposed parametric macromodeling technique in a practical design process flow
Strongly Polynomial Primal-Dual Algorithms for Concave Cost Combinatorial Optimization Problems
We introduce an algorithm design technique for a class of combinatorial
optimization problems with concave costs. This technique yields a strongly
polynomial primal-dual algorithm for a concave cost problem whenever such an
algorithm exists for the fixed-charge counterpart of the problem. For many
practical concave cost problems, the fixed-charge counterpart is a well-studied
combinatorial optimization problem. Our technique preserves constant factor
approximation ratios, as well as ratios that depend only on certain problem
parameters, and exact algorithms yield exact algorithms.
Using our technique, we obtain a new 1.61-approximation algorithm for the
concave cost facility location problem. For inventory problems, we obtain a new
exact algorithm for the economic lot-sizing problem with general concave
ordering costs, and a 4-approximation algorithm for the joint replenishment
problem with general concave individual ordering costs
Bayesian optimization for materials design
We introduce Bayesian optimization, a technique developed for optimizing
time-consuming engineering simulations and for fitting machine learning models
on large datasets. Bayesian optimization guides the choice of experiments
during materials design and discovery to find good material designs in as few
experiments as possible. We focus on the case when materials designs are
parameterized by a low-dimensional vector. Bayesian optimization is built on a
statistical technique called Gaussian process regression, which allows
predicting the performance of a new design based on previously tested designs.
After providing a detailed introduction to Gaussian process regression, we
introduce two Bayesian optimization methods: expected improvement, for design
problems with noise-free evaluations; and the knowledge-gradient method, which
generalizes expected improvement and may be used in design problems with noisy
evaluations. Both methods are derived using a value-of-information analysis,
and enjoy one-step Bayes-optimality
- …
