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Abstract—We propose a new parametric macromodeling tech-
nique for complex electromagnetic systems described by scat-
tering parameters, which are parameterized by multiple design
variables such as layout or substrate feature. The proposed
technique is based on an efficient and reliable combination of
rational identification, a procedure to find scaling and frequency
shifting system coefficients, and positive interpolation schemes.
Parametric macromodels can be used for efficient and accurate
design space exploration and optimization. A design optimization
example for a complex electromagnetic system is used to validate
the proposed parametric macromodeling technique in a practical
design process flow.

I. I NTRODUCTION

During a typical design process of electromagnetic (EM)
systems, design space exploration, design optimization and
sensitivity analysis are usually performed and require multiple
frequency-domain simulations for different design parameter
values (e.g. layout features). Parametric macromodels are
suitable to efficiently and accurately perform these design
activities, while using multiple EM simulations may often be
high computationally expensive due to the high computational
cost per simulation. Parametric macromodels are multivariate
models that describe the complex behavior of EM systems,
which is typically characterized by the frequency (or time) and
several design parameters, such as layout or substrate features.

Over the last years, different parametric macromodeling
techniques have been developed. In [1], [2], both poles and
residues are parameterized and it results in accurately model-
ing dynamic multivariate data. Overall stability and passivity
of parametric macromodels are not guaranteed. Only residues
are parameterized in [3], [4] and therefore the modeling
capability is reduced in comparison with [1], [2], but the
stability and passivity of parametric macromodels are guar-
anteed. Recently, new parametric macromodeling methods in
[5]–[7] overcome some limitations of [1], [2] and [3], [4],
since a parameterization of poles and residues is performed,

while preserving stability and passivity over the entire design
space. Unfortunately, these methods are sensitive to some
issues related to the interpolation of state-space matrices [8]
and can only deal with rational models of the same order.
The matrix solution of positive-real and bounded-real lemma
are used to perform a passivity preserving interpolation of
state-space matrices. Its computation can be carried out using
Linear Matrix Inequalities (LMI) or Riccati equation solvers.
The complexity of LMI computations can grow quickly with
the number of statesn. For example, the number of operations
required to solve a Riccati equation isO(n3), while the cost
of solving an equivalent LMI isO(n6) [9].
This paper presents a new parametric macromodeling method
for scattering (S) representations, which indirectly parame-
terizes poles and residues and is able to guarantee overall
stability and passivity. Initially, a set of univariate frequency-
dependent macromodels related to different values of the
design variables, calledroot macromodel[3], [4], is built by
means of the Vector Fitting (VF) technique [10]. Stability
for eachroot macromodelis enforced by pole-flipping [10],
while passivity is checked and enforced by means of standard
techniques (see e.g. [11], [12]). Next, the computation and
parameterization of scaling and frequency shifting system
coefficients for eachroot macromodelis performed. Finally,
a parametric macromodel is obtained by a combination of
root macromodelsand corresponding scaling and frequency
shifting coefficients, using positive interpolation schemes that
preserve stability and passivity over the complete design space.
The proposed technique can deal withroot macromodelsof
different orders, it is able to guarantee overall passivity and
stability without solving positive-real and bounded-real lemma
and is not sensitive to the well-known issues related to the
interpolation of state-space matrices. The proposed method is
used in the optimization process of a complex electromag-
netic systems; the numerical results show that the parametric
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macromodel allows significant speed-ups with respect to EM
simulations and, thus, it is well suited to be applied to a real
design process flow.

II. PARAMETRIC MACROMODELING

The proposed method aims at building a parametric macro-
modelR(s, g) that accurately describes a set of data samples
{(s, g)k, H(s, g)k}Ktot

k=1 and guarantees stability and passivity
over the entire design space. These multivariate data samples
depend on the complex frequencys = jω and several design
variablesg = (g(m))M

m=1, such as layout features or substrate
parameters. A parametric macromodel in the form

R(s, g) = C(g) (sI−A(g))−1 B(g) + D(g) (1)

is computed by the proposed parametric macromodeling
method. Two data grids are used in the modeling process:
an estimation grid and a validation grid. The estimation grid
is utilized to build theroot macromodels. The validation grid
is used to validate the modeling capability of the parametric
macromodel in a set of points of the design space previously
not used for the construction of theroot macromodels. The
design spaceD(g) is considered as the parameter space
P(s, g) without frequency. The parameter spaceP(s, g) con-
tains all parameters(s, g). If the parameter space is (M+1)-
dimensional, the design space is M-dimensional.

A. Root Macromodels

Starting from a set of data samples{(s, g)k, H(s, g)k}Ktot

k=1 ,
a set of frequency-dependent rational macromodels is built
in the estimation design space grid by means of the VF
technique [10]. A pole-flipping scheme is used to enforce
stability [10], while passivity assessment and enforcement
can be accomplished using the robust standard techniques
[11], [12]. This initial procedure results in a set of stable
and passive rational univariate macromodels that we callroot
macromodels.

B. Scaling and Frequency Shifting Coefficients

After the computation ofroot macromodels, the next step
is gluing them together and building a multivariate represen-
tation R(s, g). The design space is divided into cells using
hyperrectangles (regular grid) [13] or simplices (regular and
scattered grid) [14], [15]. Fig. 1 shows a possible 2-D design
space divided into cells, in the regular and scattered case,
respectively.

Once the design space is divided into cells, a local para-
metric model is associated to every cell that is a subdomain
of the entire design space. We indicate a cell region of the
design space asΩi, i = 1, ..., P and the corresponding
vertices asg Ωi

k , k = 1, ..., Q. We note that each vertex
corresponds to aroot macromodelR(s, g Ωi

k ). For each cell,
an optimization procedure is used to find the scaling and
frequency shifting system coefficients that make each vertex an
accurate approximant of the other cell vertices. For each vertex
R(s, g Ωi

k ), a set of scalingα1,k(g Ωi
j ), j = 1, . . . , Q and
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Fig. 1. Design space divided into cells: regular (top) and scattered (bottom).

frequency shiftingα2,k(g Ωi
j ), j = 1, . . . , Q real coefficients

are found, such that

α1,k(g Ωi
j )R(sα2,k(g Ωi

j ), g Ωi

k ) ' R(s, g Ωi
j ), j 6= k (2)

α1,k(g Ωi
j ) = α2,k(g Ωi

j ) = 1, j = k (3)

If the response of the system under modeling needs to be
computed in a specific design space pointĝ, a subdomain that
containsĝ is to be found. For each vertexroot macromodel
of the found subdomain, the corresponding sets of scaling and
frequency shifting coefficientsα1,k(g Ωi

j ), α2,k(g Ωi
j ) are inter-

polated inĝ and a rational model̂α1,kR(sα̂2,k, g Ωi

k ) is built,
whereα̂1,k = α1,k(ĝ) and α̂2,k = α2,k(ĝ). Finally, the set of
modified root macromodelŝα1,kR(sα̂2,k, g Ωi

k ), k = 1, ..., Q,
is interpolated at an input/output level as described in [3], [4].
We note that if a genericroot macromodelR(s, g Ωi

k ) has the
state-space representation{A, B, C, D}, then a corresponding
scaled and frequency shifted version̂α1,kR(sα̂2,k, g Ωi

k ) has
the state-space representation{Ã, B̃, C̃, D̃} with



Ã = (α̂2,k)−1A

B̃ = B

C̃ = α̂1,k(α̂2,k)−1C

D̃ = α̂1,kD (4)

C. Multivariate Interpolation of Scaling, Frequency Shifting
Coefficients and Root Macromodels

Passivity refers to the property of systems that cannot
generate more energy than they absorb through their electrical
ports. When the system is terminated on any arbitrary passive
loads, none of them will cause the system to become unstable
[16]. Passivity is crucial when the macromodel is utilized in
a circuit simulator (e.g. SPICE [17]) for transient analysis.
The passivity of scattering input-output representations is also
called nonexpansivity [18] A linear network described by
scattering matrixS(s) is passive if [19]:

1) S(s∗) = S∗(s) for all s, where “∗” is the complex
conjugate operator.

2) S(s) is analytic in<e(s) > 0.
3) I− St(s∗)S(s) ≥ 0 ; ∀s : <e(s) > 0.

Condition 3) for nonexpansivity is equivalent to the condition
‖R(s)‖∞ ≤ 1 (H∞ norm) [18], i.e., the largest singular value
of R(s) does not exceed one in the right-halfs-plane. The
interpolated scaling and frequency shifting real coefficients
α1,k(g), α2,k(g) have to satisfy the conditions

0 ≤ α1,k(g) ≤ 1 (5a)

α2,k(g) ≥ 0 (5b)

to guarantee the passivity of eachroot macromodel
α1,k(g)R(sα2,k(g), g Ωi

k ).
Multivariate interpolation based on a class of positive in-
terpolation operators [20], [21] is used to parameterize
α1,k(g), α2,k(g). It is able to guarantee the passivity of
each scaled and frequency shiftedroot macromodelover
the entire design space by guaranteeing the properties (5a)-
(5b). The same positive multivariate interpolation schemes
are used to interpolate the set of modifiedroot macromodels
α̂1,kR(sα̂2,k, g Ωi

k ), k = 1, ..., Q, at an input/output level,
which results in a parametric macromodel, stable and passive
over the entire design space.

In the bivariate case(s, g), each interpolated functionT(g)
can be written as

T(g) =
K1∑

k=1

Tgk
`k(g) (6)

where K1 represents the number ofroot macromodelsand
each interpolation kernel̀k(g) is a scalar function satisfying
the following constraints

0 ≤ `k(g) ≤ 1, (7)

`k(gi) = δk,i, (8)∑K1

k=1 `k(g) = 1. (9)

A possible choice is to select̀k(g) as in piecewise linear
interpolation

g−gk−1

gk−gk−1
, g ∈ [gk−1, gk] , k = 2, ..., K1, (10)

gk+1−g
gk+1−gk

, g ∈ [gk, gk+1] , k = 1, ..., K1 − 1, (11)

0 , otherwise (12)

In the general multivariate case, multivariate interpolation
methods that belong to the general class of positive interpo-
lation operators can be used, e.g., the piecewise multilinear
and multivariate simplicial methods [13]. We note that the
interpolation kernel functions of these methods only depend
on the design space grid points and their computation does
not require the solution of a linear system to impose an
interpolation constraint. In the case of piecewise multilinear
interpolation, each interpolated functionT(g(1), ..., g(M)) can
be written as

T(g(1), ..., g(M)) = (13)

=
K1∑

k1=1

· · ·
KM∑

kM =1

T(
g

(1)
k1

,...,g
(M)
kM

)`k1(g(1)) · · · `kM (g(M))

where each̀ ki(g
(i)), i = 1, ..., M satisfies constraints (7)-

(9) and is selected as in piecewise linear interpolation. These
positive interpolation schemes have been already used in [3],
[4], where a parametric macromodel is built by interpolating a
set ofroot macromodelstreated as input-output systems, while
preserving overall stability and passivity. In the proposed new
parametric macromodeling technique, a powerful novelty is the
use of some interpolated scaling and frequency shifting system
coefficients. It allows to parameterize poles and residues indi-
rectly, hence the modeling capability of the proposed algorithm
is increased with respect to [3], [4], where the interpolation
process were only applied to theroot macromodels, and
therefore only residues were parameterized.

D. Passivity Preserving Interpolation

In this section, we prove that a passive systemR(s) remains
passive if a scaling coefficientα1 and a frequency shifting
coefficientα2, which satisfy the properties (5a)-(5b), are ap-
plied to it. The scaling coefficientα1 is a multiplicative factor
at the input/output level of the system, while the frequency
shifting coefficientα2 is a compression or expansion term for
the Laplace variables. It is easy to prove that ifα2 satisfies
(5b), passivity is preserved, and that ifα1 satisfies (5a), the
first two conditions for passivity are preserved. Concerningα1

and the third passivity condition



‖α1R(α2s)‖∞ = α1‖R(α2s)‖∞ ≤ α1 ≤ 1 (14)

Therefore, ifα1 satisfies (5a), passivity is preserved. The proof
of the passivity preserving interpolation ofroot macromodels
can be found in [3], [4].

III. O PTIMIZATION

Once the parametric macromodel is built, it can be used
in an optimization process. The optimization of EM systems
involves formulation of cost functions related to the frequency
behavior. A general cost function can be represented as

Fi(g) = RLi −R(si, g) (15)

or

Fi(g) = R(si, g)−RUi (16)

with i = 1, . . . , Ns, where Ns denotes the number of fre-
quency samples,RLi and RUi represent lower and upper
frequency response thresholds, respectively. A negative error
value indicates that the corresponding specification is satisfied,
while a positive error value denotes that the specification is
violated. The minimization of the cost functions (15)-(16) can
be performed by several optimization algorithms. In this paper,
we use a minimax optimization algorithm [22] that provides
the optimum set of design parameter valuesg̃

g̃ = argmin
g

{max
i

[Fi(g)]} (17)

IV. N UMERICAL RESULTS

This section presents a design optimization example to
validate the proposed method in a real design process flow.
Let us define the absolute error

Err(g) = max
(∣∣∣

(
Ri,j(sk, g)−Hi,j(sk, g)

∣∣∣
)

(18)

i = 1, . . . , Pin, j = 1, . . . , Pout, k = 1, . . . , Ks

where Pin and Pout are the number of inputs and outputs
of the system, respectively, andKs is equal to the number
of frequency samples. The worst case absolute error over the
validation grid is chosen to assess the accuracy and the quality
of parametric macromodels

gmax = argmax
g

Err(g), g ∈ validation grid (19)

Errmax = Err(gmax) (20)

The number of poles for eachroot macromodelis selected
adaptively in VF by a bottom-up approach, in such a way
that the corresponding maximum absolute error is smaller than
−60 dB.

3-D example: SMA structure

Two SMA launch connecting a single ended stripline in
a fourteen layer PCB are modeled and optimized in this
example. The trace is549 mils long, 5 mils wide and0.6
mils tick and it is routed on the fourth layer, in order to also
consider the effect of the via stub related to the inner conductor
of each SMA. The width (W ) of the trace and the radius (R)
of the seven grounding vias surrounding the SMA are used
as parameters to optimize the performance of the launch. In
order to excite a pure TEM mode, and therefore generate a
meaningful scattering matrix, a waveguide port is used on
the top of the SMA to excite the structure. The dielectric
material used for the PCB stack-up is Nelco with permittivity
of εr = 3.5 and loss tangenttg(δ) = 0.009, whereas the
metal is copper. Fig. 2 shows the structure under modeling.
A trivariate reduced order model is built as a function of
frequency, the with of the trace and the radius of the grounding
vias. Table I shows their corresponding ranges.

14layers

Trace routed on layer 4

Fig. 2. SMA structure.

TABLE I
PARAMETERS OFSMA STRUCTURE.

Parameter Min Max
Frequency (freq) 0 Hz 30 GHz
Trace width (W) 30.5 mils 34.5 mils
Vias Radius (R) 3 mils 5 mils

The scattering parameters have been computed by means
of the commercial software [23] over a validation grid of
135× 13× 13 samples, for frequency,W andR, respectively.
We have builtroot macromodelsfor 6 values ofW and 6
values of R by means of VF, each with an order chosen
by the error-based bottom-up approach described in Section
IV. Finally, a trivariate macromodel is obtained as explained
in Section II, using multilinear interpolation for the scaling,
shifting coefficients androot macromodels. Figs. 3-4 show the
magnitude of the parametric macromodels ofS11(s,W,R) for
the vias radiusR = 32.17 mils andS21(s,W,R) for the trace
width value W = 3.83 mils. Fig. 5 comparesS11(s,W,R)
and its macromodel for the valuesR = {30.83, 12.17, 33.5}
mils, W = 3.83 mils that have not been used for the
generation of theroot macromodels. The worst case absolute



error defined in (20) is equal to−35 dB and it occurs for
gmax = {W,R} = {3.83 mils, 32.17 mils}.
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Fig. 3. Magnitude of the trivariate macromodel ofS11(s, W, R) for R =
32.17 mils.
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The parametric macromodel is able to accurately describe
the behavior of the system, while stability and passivity are
guaranteed over the entire design space. Once the parametric
macromodel is built, it is used in an optimization step. The
objective function is ensuring that the magnitude ofS11 is
below −20 dB in the bandwidth of interest. A minimax
algorithm is used for the optimization. The starting values
gmax = {W,R} = {3.83 mils, 32.17 mils} are used for
the optimization and the optimal values are found to be
g̃ = {W,R} = {4.94 mils, 34.5 mils}. Table II shows the
computational time needed to perform the optimization by
means of the commercial software [23] and the parametric
macromodel. We note that the computation and validation of
the parametric macromodel requires an initial set of simula-
tions by means of [23] and therefore an initial computational
effort, but once the parametric macromodel is created and
validated, it becomes an accurate and efficient surrogate of
the original system and can be used for every optimization
that involves the modeled system in the design space defined
during the construction of the parametric macromodel.
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Fig. 5. Magnitude and the phase of the trivariate macromodel of
S11(s, W, R) (R = {30.83, 12.17, 33.5} mils, W = 3.83 mils).

TABLE II
CPU TIME FOR THE OPTIMIZATION.

Method CPU time
CST Studio 33 h
Parametric macromodel 9.38 s

As clearly seen, the obtained speed up confirms the appli-
cability of the proposed parametric macromodeling techniques
to accurate and efficient design optimization. Fig. 6 shows the
initial and optimizedS11 response.

V. CONCLUSIONS

We have presented a new parametric macromodeling
method for scattering representations. Poles and residues are
parameterized indirectly, while overall stability and passivity
are guaranteed. The proposed method is based on an efficient
and reliable combination of rational identification, a procedure
to find scaling and frequency shifting system coefficients, and
positive interpolation schemes. The proposed method is used
in the optimization process of a complex electromagnetic sys-
tem, which shows the speed up obtained using the parametric
macromodel instead of EM simulations and its applicability
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to a real design process flow.
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