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Abstract—We propose a new parametric macromodeling tech- while preserving stability and passivity over the entire design
nique for complex electromagnetic systems described by scat-space. Unfortunately, these methods are sensitive to some
tering parameters, which are parameterized by multiple design jsq 65 related to the interpolation of state-space matrices [8]
variables such as layout or substrate feature. The proposed . .
technique is based on an efficient and reliable combination of and can .Only d(?al with ra}tllonal models of the same order.
rational identification, a procedure to find scaling and frequency The matrix solution of positive-real and bounded-real lemma
shifting system coefficients, and positive interpolation schemes. are used to perform a passivity preserving interpolation of
Parametric macromodels can be used for efficient and accurate state-space matrices. Its computation can be carried out using
design space exploration and optimization. A design optimization | inear Matrix Inequalities (LMI) or Riccati equation solvers.
example for a complex electromagnetic system is used to val_ldate_l_he complexity of LMI computations can grow quickly with
the proposed parametric macromodeling technique in a practical ;
design process flow. the number of states. For example, the number of operations

required to solve a Riccati equationyn?), while the cost
. INTRODUCTION of solving an equivalent LMI isD(n5) [9].

During a typical design process of electromagnetic (EMhis paper presents a new parametric macromodeling method
systems, design space exploration, design optimization dod scattering $) representations, which indirectly parame-
sensitivity analysis are usually performed and require multipterizes poles and residues and is able to guarantee overall
frequency-domain simulations for different design parametstability and passivity. Initially, a set of univariate frequency-
values (e.g. layout features). Parametric macromodels dependent macromodels related to different values of the
suitable to efficiently and accurately perform these desigiesign variables, callesbot macromode[3], [4], is built by
activities, while using multiple EM simulations may often beneans of the Vector Fitting (VF) technique [10]. Stability
high computationally expensive due to the high computationfalr eachroot macromodels enforced by pole-flipping [10],
cost per simulation. Parametric macromodels are multivariatdile passivity is checked and enforced by means of standard
models that describe the complex behavior of EM systemechniques (see e.g. [11], [12]). Next, the computation and
which is typically characterized by the frequency (or time) anplrameterization of scaling and frequency shifting system
several design parameters, such as layout or substrate featur@stficients for eachoot macromodels performed. Finally,

Over the last years, different parametric macromodelireg parametric macromodel is obtained by a combination of
techniques have been developed. In [1], [2], both poles ar@bt macromodelsand corresponding scaling and frequency
residues are parameterized and it results in accurately modg#lifting coefficients, using positive interpolation schemes that
ing dynamic multivariate data. Overall stability and passivitgreserve stability and passivity over the complete design space.
of parametric macromodels are not guaranteed. Only residddsg proposed technique can deal wittot macromodelsof
are parameterized in [3], [4] and therefore the modelingjfferent orders, it is able to guarantee overall passivity and
capability is reduced in comparison with [1], [2], but thestability without solving positive-real and bounded-real lemma
stability and passivity of parametric macromodels are guand is not sensitive to the well-known issues related to the
anteed. Recently, new parametric macromodeling methodsinterpolation of state-space matrices. The proposed method is
[5]-[7] overcome some limitations of [1], [2] and [3], [4], used in the optimization process of a complex electromag-
since a parameterization of poles and residues is performedtic systems; the numerical results show that the parametric
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macromodel allows significant speed-ups with respect to EM ‘ ‘ ‘ ‘
simulations and, thus, it is well suited to be applied to a real O Estimation grid
design process flow. Rectangles

Il. PARAMETRIC MACROMODELING
0.8¢

The proposed method aims at building a parametric macro-
modelR(s, g) that accurately describes a set of data samples |
{(s,9)k, H(s, g)k}k ‘» and guarantees stability and passivity ~ ~
over the entire de3|gn space. These multivariate data samples
depend on the complex frequengy= jw and several design
variablesg = (¢(™)M_,, such as layout features or substrate
parameters. A parametric macromodel in the form

0.2

o2
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(1)

R(s,g) = C(g) (sI - A(g)) ' B(g) +D(g) (1)
is computed by the proposed parametric macromodeling
method. Two data grids are used in the modeling process:
an estimation grid and a validation grid. The estimation grid
is utilized to build theroot macromodelsThe validation grid
is used to validate the modeling capability of the parametric
macromodel in a set of points of the design space previously %8|
not used for the construction of threot macromodelsThe -
design spaceD(g) is considered as the parameter space & °%¢f
P(s, g) without frequency. The parameter spaegs, g) con-
tains all parametergs, g). If the parameter space is (M+1)- 047
dimensional, the design space is M-dimensional.

Estimation grid
Triangles

0.2
A. Root Macromodels

Starting from a set of data samplg&, g)x, H(s, g)x } 17 s 0> 07 07 0% 08 S

a set of frequency-dependent rational macromodels is built o®

in the estimation design space grid by means of the VF

technigue [10]. A pole-flipping scheme is used to enforded. 1. Design space divided into cells: regular (top) and scattered (bottom).
stability [10], while passivity assessment and enforcement

can be accomplished using the robust standard techniques

[11], [12]. This initial procedure results in a set of stablerequency sh|ft|nga2k( %) j=1,...,Q real coefficients
and passive rational univariate macromodels that weroatl ;¢ found, such that

macromodels

B. Scaling and Frequency Shifting Coefficients a1,k(g?i)R(sa2,k(g§li),g%’) ~ R(s,g?i), itk @
After the computation ofoot macromodelsthe next step

is gluing them together and building a multivariate represen-

tation R(s,g). The design space is divided into cells using arr(gf) = oak(gi) =1, j=k (3)

hyperrectangles (regular grid) [13] or simplices (regular and

scattered grid) [14], [15]. Fig. 1 shows a possible 2-D desighthe response of the system under modeling needs to be

space divided into cells, in the regular and scattered casemputed in a specific design space pgina subdomain that

respectively. containsg is to be found. For each vertawot macromodel
Once the design space is divided into cells, a local par@fthe found subdomain, the correspondmg sets of scaling and

metric model is associated to every cell that is a subdomdfgguency shifting coefficients; x(g "), az k(g 5" ) are inter-

of the entire design space We indicate a cell region of timelated ing and a rational modek; ,R(sao, k,gk *) is built,

design space as);,, i = ., P and the correspondingwherea ; = a1 1(g) andas k = g 1 (9g). Flnally the set of

vertices aSQk', k=1, ,Q We note that each vertexmodlfledroot macromodelsxl kR(stq, k,gk N, k=1,...,Q,

corresponds to &oot macromode[R(s gk "). For each cell, is interpolated at an input/output level as described in [3], [4].

an optimization procedure is used to find the scaling aMile note that if a generimot macromodeR (s ,gk ‘) has the

frequency shifting system coefficients that make each vertexgtate-space representatipA, B, C, D}, then a correspondmg

accurate approximant of the other cell vertlces For each vertgaled and frequency shifted version, kR(saz ,ﬁgk ) has

R(s, g,C ‘), a set of scalingo, k(g7 ), j = .,Q and the state-space representatlm B C D} with



A = (Gop) A 0</tk(g) <1, (7
B-B Ui(9i) = O i, (8)
~ K1 _
C— 62171@((322,;(,)71(3 D ke be(g) = 1. )
D=a,,.D (4) A possible choice is to seledt(g) as in piecewise linear
’ interpolation
C. Multivariate Interpolation of Scaling, Frequency Shifting g—gr_1
- k=L g [gp_1, k], k=2,..., K1, 10
Coefficients and Root Macromodels —gx—1 I (911, 9] ! (10)
Passivity refers to the property of systems that cannot grt1—g _
; : LI - g e gy, k=1, K —1, 11
generate more energy than they absorb through their electrical grri—gx 9 915 9] ! (11)
ports. When the system is terminated on any arbitrary passive
loads, none of them will cause the system to become unstable 0 , otherwise (12)

[16].' P‘?‘SS'.V ity is crucial when the macromodell Is utilized " the general multivariate case, multivariate interpolation
a circuit simulator (e.g. SPICE [17]) for transient analysis, A i
= A : 2~ tethods that belong to the general class of positive interpo
The passivity of scfa.tterlng mput.-output representatlops 'S allsé?ion operators can be used, e.g., the piecewise multilinear
gigﬁgriﬁon;);ﬁ)ggs(':;té [lglsﬁ\/ellir;e[ilg].network described b‘yand multivariate simplicial methods [13]. We note that the
g P ' interpolation kernel functions of these methods only depend

1) S(s*) = S*(s) for all s, where %" is the complex on the design space grid points and their computation does

conju.gate operator. not require the solution of a linear system to impose an
2) S(s) is analytic infe(s) > 0. interpolation constraint. In the case of piecewise multilinear
3) I—-S%(s*)S(s) >0 ; Vs : Re(s) > 0. interpolation, each interpolated functidi(g™, ..., g?)) can

Condition 3) for nonexpansivity is equivalent to the conditioRe written as
[IR(8)]loo <1 (Hs norm) [18], i.e., the largest singular value

of R(s) does not exceed one in the right-halplane. The (1) (M)y _
. ) 2. - T(g'",....,g"") = (13)
interpolated scaling and frequency shifting real coefficients K K
, have to satisfy the conditions -
a1,6(9), a2.1(g) fy _ kzl . kle(g&)w fﬁé))ekl (D) by, (g™
1= M=

1 (5a) where eachy, (¢), i = 1,..., M satisfies constraints (7)-
0 (5b) (9) and is selected as in piecewise linear interpolation. These
positive interpolation schemes have been already used in [3],

to guarantee the passivity of eactoot macromodel [4], where a parametric macromodel is built by interpolating a
a1 x(9)R(sa1(g),g ). set ofro_ot macromodeli_;r_eated as inp_u;-output systems, while
Multivariate interpolation based on a class of positive ifRreserving overall stability and passivity. In the proposed new
terpolation operators [20], [21] is used to parameteriz@rametr'c m_acromodelmg te_chnlque, a powerful n_0\_/elty is the
a1k(g),ask(g). It is able to guarantee the passivity otse Qf§ome interpolated scaling a|jd frequency shlft!ng sy_stem
each scaled and frequency shiftedot macromodelover coefficients. It allows to parameterize poles and residues .Indl-
the entire design space by guaranteeing the properties (5§Etly, hence thg modeling capability of the propo;ed algont'hm
(5b). The same positive multivariate interpolation schemd&s increased with respect to [3], [4], where the interpolation
are used to interpolate the set of modifiedt macromodels Process were only applied to theot macromodels and
&,kR(SaQ,k,g%), k = 1,..,Q, at an input/output level, therefore only residues were parameterized.
which results in a parametric macromodel, stable and passjye
over the entire design space.

In the bivariate casés, g), each interpolated functio®'(g)
can be written as

0<aii(g) <
ask(g) >

Passivity Preserving Interpolation

In this section, we prove that a passive sysie(®) remains
passive if a scaling coefficient; and a frequency shifting
coefficientasy, which satisfy the properties (5a)-(5b), are ap-
&, plieg tq it. T?e scalir|19 cloel;ficri]emzl is a multri]pllicart]ivef factor

_ at the input/output level of the system, while the frequency
Tlg) = kZ::l Tyl (9) © shifting coefficientas is a compression or expansion term for
the Laplace variable. It is easy to prove that ifr; satisfies
where K; represents the number obot macromodelsand (5b), passivity is preserved, and thatdf satisfies (5a), the
each interpolation kernél,(g) is a scalar function satisfying first two conditions for passivity are preserved. Concerning
the following constraints and the third passivity condition



3-D example: SMA structure

larR(@28) o = a1 |R(a28) ]| < a1 < 1 (14) Two SMA launch connecting a single endgd_stripl@ne ilj
a fourteen layer PCB are modeled and optimized in this
Therefore, ifo; satisfies (5a), passivity is preserved. The pro@xample. The trace 549 mils long, 5 mils wide and0.6
of the passivity preserving interpolation mfot macromodels mils tick and it is routed on the fourth layer, in order to also
can be found in [3], [4]. consider the effect of the via stub related to the inner conductor
of each SMA. The width1{/) of the trace and the radiugj
I1l. OPTIMIZATION of the seven grounding vias surrounding the SMA are used
Once the parametric macromodel is built, it can be us@$ parameters to optimize the performance of the launch. In
in an optimization process. The optimization of EM systengyder to excite a pure TEM mode, and therefore generate a
involves formulation of cost functions related to the frequendyeaningful scattering matrix, a waveguide port is used on
behavior. A general cost function can be represented as the top of the SMA to excite the structure. The dielectric
material used for the PCB stack-up is Nelco with permittivity

Fi(g) =Ry — R(s:,9) (15) of e = 3.5 and loss tangentg(s) = 0.009, whereas the
metal is copper. Fig. 2 shows the structure under modeling.
or A trivariate reduced order model is built as a function of
frequency, the with of the trace and the radius of the grounding
F.(g) = R(si,9) — Ry (16) vias. Table | shows their corresponding ranges.
with ¢ = 1,..., N, where N, denotes the number of fre-

guency samplesR; and Ry; represent lower and upper
frequency response thresholds, respectively. A negative error

value indicates that the corresponding specification is satisfied,

while a positive error value denotes that the specification is
violated. The minimization of the cost functions (15)-(16) can

be performed by several optimization algorithms. In this paper, 4 4layers ‘
we use a minimax optimization algorithm [22] that provides r
the optimum set of design parameter valges

G- argmin{max[Fi (g)]} 17) Trace routed on layer 4
g 3

Fig. 2. SMA structure.
IV. NUMERICAL RESULTS

This section presents a design optimization example to
validate the proposed method in a real design process flow. TABLE |
. PARAMETERS OFSMA STRUCTURE
Let us define the absolute error

[ Parameter Min Max
— . _ g . Frequency (freq) 0 Hz 30 GHz
Errg) max(‘ (R“J(S’“’g) H”J(S’“’g)D (18) Trace width (W) | 305 mils | 34.5 mils
i=1,...,Py, j=1,..., P, k=1,..., K, Vias Radius (R) 3 mils 5 mils

where P;,, and P,,; are the number of inputs and outputs h . h
of the system, respectively, anfif, is equal to the number The scattering ;IJara][neters ave been COTE“t_ed by_dme?ns
of frequency samples. The worst case absolute error over ffletn® commercial software [23] over a validation grid o

validation grid is chosen to assess the accuracy and the quaﬁ? x 13 x 13, samples, for frequency}” and i, respectively.
of parametric macromodels We have builtroot macromodeldor 6 values of W and 6

values of R by means of VF, each with an order chosen
by the error-based bottom-up approach described in Section
9max = argmax Err(g), g € validation grid (19) V. Finally, a trivariate macromodel is obtained as explained
9 in Section Il, using multilinear interpolation for the scaling,
shifting coefficients andoot macromodelsFigs. 3-4 show the
Ertmas = Err(g,,..) (20 magnitude Qf the parametr?c macromodelSef (s, W, R) for
the vias radiusk = 32.17 mils andS2; (s, W, R) for the trace
The number of poles for eactoot macromodelis selected width value W = 3.83 mils. Fig. 5 compares$;(s, W, R)
adaptively in VF by a bottom-up approach, in such a wagnd its macromodel for the valug® = {30.83,12.17,33.5}
that the corresponding maximum absolute error is smaller thamls, W = 3.83 mils that have not been used for the
—60 dB. generation of theoot macromodelsThe worst case absolute



error defined in (20) is equal te-35 dB and it occurs for

Gmaz = {W, R} = {3.83 mils, 32.17 mils}. W =335 mils
_15 L
_20 L
o
=
=, -25¢
|
(28
-30 v
-35 W = 30.83 mils Data
- = =Model
-40 ‘ ‘ ‘ ‘ ‘
5 10 15 20 25 30
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Fig. 3. Magnitude of the trivariate macromodel $f1 (s, W, R) for R = 3r M - = =Model |
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Fig. 5. Magnitude and the phase of the trivariate macromodel of

S11(s, W, R) (R = {30.83,12.17,33.5} mils, W = 3.83 mils).

10
Frequency [GHZ]

Vias radius [mils] 30 o

TABLE I

Fig. 4. Magnitude of the trivariate macromodel $$1 (s, W, R) for W = CPUTIME FOR THE OPTIMIZATION.

3.83 mils.

Method CPU time
CST Studio 33h
Parametric macromodel 9.38 s

The parametric macromodel is able to accurately describe
the behavior of the system, while stability and passivity are
guaranteed over the entire design space. Once the parametric
macromodel is built, it is used in an optimization step. The
objective function is ensuring that the magnitudeSaf, is ~ AS clearly seen, the obtained speed up confirms the appli-
below —20 dB in the bandwidth of interest. A minimax cability of the proposed parametric macromodeling techniques
algorithm is used for the optimization. The starting value§ accurate and efficient design optimization. Fig. 6 shows the
gmaz = {W,R} = {3.83 mils,32.17 mils} are used for initial and optimizedS,, response.
the optimization and the optimal values are found to be
g = {W,R} = {4.94 mils,34.5 mils}. Table Il shows the
computational time needed to perform the optimization by We have presented a new parametric macromodeling
means of the commercial software [23] and the parametritethod for scattering representations. Poles and residues are
macromodel. We note that the computation and validation parameterized indirectly, while overall stability and passivity
the parametric macromodel requires an initial set of simulare guaranteed. The proposed method is based on an efficient
tions by means of [23] and therefore an initial computationahd reliable combination of rational identification, a procedure
effort, but once the parametric macromodel is created atalfind scaling and frequency shifting system coefficients, and
validated, it becomes an accurate and efficient surrogate paofsitive interpolation schemes. The proposed method is used
the original system and can be used for every optimizatiamthe optimization process of a complex electromagnetic sys-
that involves the modeled system in the design space defitedh, which shows the speed up obtained using the parametric
during the construction of the parametric macromodel. macromodel instead of EM simulations and its applicability

V. CONCLUSIONS
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to a real design process flow. 2
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