1,982 research outputs found

    Optimization of the settings of multiphase induction heating system

    Get PDF
    This paper deals with the setting parameter optimization procedure for a multi-phase induction heating system considering transverse flux heating. This system is able to achieve uniform static heating of different thin/size metal pieces without movable inductor parts, yokes or magnetic screens. The goal is reached by the predetermination of the induced power density distribution using an optimization procedure that leads to the required inductor supplying currents. The purpose of the paper is to describe the optimization program with the different solution obtained and to show that some compromise must be done between the accuracy of the temperature profile and the energy consumption, with the calculation of the losses

    Robustness of a resonant controller for a multiphase induction heating system

    Get PDF
    This paper presents a robustness study of the current control scheme for a multiphase induction heating system. Resonant control has been chosen in order to achieve a perfect currentreference tracking in the inductors with different solutions from the literature. A simplified model of the system is given; it is based on data extracted from finite-element software, including a model of the energy transfer between the dc source and the currents. The metal sheet resistivity will change with temperature, inducingsome modifications in the system parameters. These disturbances will be rejected by the resonant controllers whose pole and zerovariations are investigated. In addition, the tuning method forthe resonant controllers is detailed when the sampling frequency/switching frequency ratio is very low. Some specific stability zones are defined for the resonant controller gains. The application is currently developed on a test bench devoted to disc induction heating

    Parameter Identification Method for a 3-phase Induction Heating System

    Get PDF
    This paper describes a new method for the on-line parameter estimation of an induction heating system. Simulations and experiments are presented in order to measure its impedance matrix for more exact control in closed loop. In previous papers, various parameter identification methods including off-line methods were introduced and compared for current inverters. It has been demonstrated that parameter identification is necessary to achieve good control of the inductor currents. A “pseudo-energy” method for a simple and fast implementation is compared to a classical “V/I with phase shift” method. They are experienced on a reduced power 3-phase coupled resonant system supplied with voltage inverters with satisfying results

    Trade-off analysis and design of a Hydraulic Energy Scavenger

    Get PDF
    In the last years there has been a growing interest in intelligent, autonomous devices for household applications. In the near future this technology will be part of our society; sensing and actuating will be integrated in the environment of our houses by means of energy scavengers and wireless microsystems. These systems will be capable of monitoring the environment, communicating with people and among each other, actuating and supplying themselves independently. This concept is now possible thanks to the low power consumption of electronic devices and accurate design of energy scavengers to harvest energy from the surrounding environment. In principle, an autonomous device comprises three main subsystems: an energy scavenger, an energy storage unit and an operational stage. The energy scavenger is capable of harvesting very small amounts of energy from the surroundings and converting it into electrical energy. This energy can be stored in a small storage unit like a small battery or capacitor, thus being available as a power supply. The operational stage can perform a variety of tasks depending on the application. Inside its application range, this kind of system presents several advantages with respect to regular devices using external energy supplies. They can be simpler to apply as no external connections are needed; they are environmentally friendly and might be economically advantageous in the long term. Furthermore, their autonomous nature permits the application in locations where the local energy grid is not present and allows them to be ‘hidden' in the environment, being independent from interaction with humans. In the present paper an energy-harvesting system used to supply a hydraulic control valve of a heating system for a typical residential application is studied. The system converts the kinetic energy from the water flow inside the pipes of the heating system to power the energy scavenger. The harvesting unit is composed of a hydraulic turbine that converts the kinetic energy of the water flow into rotational motion to drive a small electric generator. The design phases comprise a trade-off analysis to define the most suitable hydraulic turbine and electric generator for the energy scavenger, and an optimization of the components to satisfy the systems specification

    Improving multiphase induction-heating systems: several configurations and resonant control show promise

    Get PDF
    This article presents a new configuration for multiphase induction-heating (IH) systems and their control schemes. Instead of using separate voltage inverters to supply the required current to the inductors in each phase, we specifically configured the inverters to reduce the number of power switches. A modification of the inverter-setting parameters ensured the proper operation of the system. We obtained the best references through a specific optimization procedure and tested several solutions for neutral current minimization, including a new arrangement of the coils. In addition, proportional-resonant (PR) controllers allowed us to achieve current control in the different phases. We developed the application on a reduced-power, three-phase coupled resonant test bench, which provided simulation and experimental results

    Induction Heating of Two Magnetically Independent Loads With a Single Transmitter

    Get PDF
    This article introduces the design of a system capable of heating two magnetically independent ferromagnetic loads placed on different horizontal planes, which uses a combination of induction heating and inductive coupling, called inductively coupled heating. The system uses a single primary inductor acting as a transmitter to transfer power to a secondary inductor attached to the bottom load, which is connected electrically with a third inductor that heats the top load. Since power of the whole system is supplied by a simple half-bridge inverter, the ratio of the delivered power to each of the loads, which is critical for cooking results, is entirely dependent on the system's geometry, coil's number of turns, and compensation capacitors. A finite-element model is used to simulate the magnetic fields generated by inductor currents and calculate the impedance matrix. With the impedance, capacitor values and inductors’ number of turns are selected with the objective of achieving a high power ratio between the top and bottom zones, as well as minimizing stress in the electronics. First, a prototype was built to validate the impedance results in the small-signal regime, and then, the full power regime was used to verify power and current simulation

    High-Performance and Cost-Effective ZCS Matrix Resonant Inverter for Total Active Surface Induction Heating Appliances

    Get PDF
    Flexible cooking surfaces represent the most innovative and high-performance induction heating appliances nowadays. This paper presents a multiple-output resonant inverter for multicoil systems featuring high efficiency and flexible output power control for modern induction heating appliances. By adopting a matrix structure, the number of controlled devices can be significantly reduced while high control versatility is ensured. The proposed converter is first analyzed and, in order to prove the feasibility of the proposal, a multiple-output prototype is designed and implemented. The experimental results prove the correct converter operation and output power control with multiple induction heating loads, validating the proposed approach

    Special section on induction heating systems

    Get PDF
    This special section aims at bringing some of the most recent and interesting ideas in this area by the worldwide research community and at presenting some of the latest advancements and developments in the field of induction heating technology

    Engineering Education and Research Using MATLAB

    Get PDF
    MATLAB is a software package used primarily in the field of engineering for signal processing, numerical data analysis, modeling, programming, simulation, and computer graphic visualization. In the last few years, it has become widely accepted as an efficient tool, and, therefore, its use has significantly increased in scientific communities and academic institutions. This book consists of 20 chapters presenting research works using MATLAB tools. Chapters include techniques for programming and developing Graphical User Interfaces (GUIs), dynamic systems, electric machines, signal and image processing, power electronics, mixed signal circuits, genetic programming, digital watermarking, control systems, time-series regression modeling, and artificial neural networks

    Evaluation of near-field electromagnetic shielding effectiveness at low frequencies

    Get PDF
    corecore