4,539 research outputs found

    Distributed Clustering in Cognitive Radio Ad Hoc Networks Using Soft-Constraint Affinity Propagation

    Get PDF
    Absence of network infrastructure and heterogeneous spectrum availability in cognitive radio ad hoc networks (CRAHNs) necessitate the self-organization of cognitive radio users (CRs) for efficient spectrum coordination. The cluster-based structure is known to be effective in both guaranteeing system performance and reducing communication overhead in variable network environment. In this paper, we propose a distributed clustering algorithm based on soft-constraint affinity propagation message passing model (DCSCAP). Without dependence on predefined common control channel (CCC), DCSCAP relies on the distributed message passing among CRs through their available channels, making the algorithm applicable for large scale networks. Different from original soft-constraint affinity propagation algorithm, the maximal iterations of message passing is controlled to a relatively small number to accommodate to the dynamic environment of CRAHNs. Based on the accumulated evidence for clustering from the message passing process, clusters are formed with the objective of grouping the CRs with similar spectrum availability into smaller number of clusters while guaranteeing at least one CCC in each cluster. Extensive simulation results demonstrate the preference of DCSCAP compared with existing algorithms in both efficiency and robustness of the clusters

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Low Complexity Energy-Efficient Collaborative Spectrum Sensing for Cognitive Radio Networks

    Get PDF
    Clustering approach is considered a management technology that arranged the distributed cognitive radio users into logical groups to improve the sensing performance of the network. A lot of works in this area showed that cluster-based spectrum sensing (CBSS) technique efficiently tackled the trade-off between performance and overhead issue. By employing the tree structure of the cluster, a multilevel hierarchical cluster-based spectrum sensing (MH-CBSS) algorithm was proposed to compromise between the gained performance and incurred overhead. However, the MH-CBSS iterative algorithm incurs high computational requirements. In this thesis, an energy-efficient low computational hierarchical cluster-based algorithm is proposed which reduces the incurred computational burden. This is achieved by predetermining the number of cognitive radios (CRs) in the cluster, which provides an advantage of reducing the number of iterations of the MH-CBSS algorithm. Furthermore, for a comprehensive study, the modified algorithm is investigated over both Rayleigh and Nakagami fading channels. Simulation results show that the detection performance of the modified algorithm outperforms the MH-CBSS algorithm over Rayleigh and Nakagami fading channels. In addition, a conventional energy detection algorithm is a fixed threshold based algorithm. Therefore, the threshold should be selected properly since it significantly affects the sensing performance of energy detector. For this reason, an energy-efficient hierarchical cluster-based cooperative spectrum sensing algorithm with an adaptive threshold is proposed which enables the CR dynamically adapts its threshold to achieve the minimum total cluster error. Besides, the optimal threshold level for minimizing the overall cluster detection error rate is numerically determined. The detection performance of the proposed algorithm is presented and evaluated through simulation results

    Energy-efficient spectrum sensing approaches for cognitive radio systems

    Get PDF
    Designing an energy efficient cooperative spectrum sensing for cognitive radio network is our main research objective in this dissertation. Two different approaches are employed to achieve the goal, clustering and minimizing the number of participating cognitive radio users in the cooperative process. First, using clustering technique, a multilevel hierarchical cluster-based structure spectrum sensing algorithm has been proposed to tackle the balance between cooperation gain and cost by combining two different fusion rules and exploiting the tree structure of the cluster. The algorithm considerably minimizes the reporting overhead while satisfying the detection requirements. Second, based on reducing the number of participating cognitive radio users, primary user protection is considered to develop an energy efficient algorithm for cluster-based cooperative spectrum sensing system. An iterative algorithm with low complexity has been proposed to design energy efficient spectrum sensing for cluster-based cooperative systems. Simulation results show that the proposed algorithm can significantly minimize the number of contributing of cognitive radio users in the collaboration process and can compromise the performance gain and the incurred overhead. Moreover, a variable sensing window size is also considered to propose three novel strategies for energy efficient centralized cooperative spectrum sensing system using the three hard decision fusion rules. The results show that strategies remarkably increase the energy efficiency of the cooperative system; furthermore, it is shown optimality of k out of N rule over other two hard decision fusion rules. Finally, joint optimization of transmission power and sensing time for a single cognitive radio is considered. An iterative algorithm with low computational requirements has been proposed to jointly optimize power and sensing time to maximize the energy efficiency metric. Computer results have shown that the proposed algorithm outperforms those existing works in the literature
    • …
    corecore