561 research outputs found

    A multi-agent optimisation model for solving supply network configuration problems

    Get PDF
    Supply chain literature highlights the increasing importance of effective supply network configuration decisions that take into account such realities as market turbulence and demand volatility, as well as ever-expanding global production networks. These realities have been extensively discussed in the supply network literature under the structural (i.e., physical characteristics), spatial (i.e., geographical positions), and temporal (i.e., changing supply network conditions) dimensions. Supply network configuration decisions that account for these contingencies are expected to meet the evolving needs of consumers while delivering better outcomes for all parties involved and enhancing supply network performance against the key metrics of efficiency, speed and responsiveness. However, making supply network configuration decisions in the situations described above is an ongoing challenge. Taking a systems perspective, supply networks are typically viewed as socio-technical systems where SN entities (e.g., suppliers, manufacturers) are autonomous individuals with distinct goals, practices and policies, physically inter-connected transferring goods (e.g., raw materials, finished products), as well as socially connected with formal and informal interactions and information sharing. Since the structure and behaviour of such social and technical sub-systems of a supply network, as well as the interactions between those subsystems, determine the overall behaviour of the supply network, both systems should be considered in analysing the overall system

    Opportunity costs calculation in agent-based vehicle routing and scheduling

    Get PDF
    In this paper we consider a real-time, dynamic pickup and delivery problem with timewindows where orders should be assigned to one of a set of competing transportation companies. Our approach decomposes the problem into a multi-agent structure where vehicle agents are responsible for the routing and scheduling decisions and the assignment of orders to vehicles is done by using a second-price auction. Therefore the system performance will be heavily dependent on the pricing strategy of the vehicle agents. We propose a pricing strategy for vehicle agents based on dynamic programming where not only the direct cost of a job insertion is taken into account, but also its impact on future opportunities. We also propose a waiting strategy based on the same opportunity valuation. Simulation is used to evaluate the benefit of pricing opportunities compared to simple pricing strategies in different market settings. Numerical results show that the proposed approach provides high quality solutions, in terms of profits, capacity utilization and delivery reliability

    Applying revenue management to agent-based transportation planning

    Get PDF
    We consider a multi-company, less-than-truckload, dynamic VRP based on the concept of multi-agent systems. We focus on the intelligence of one vehicle agent and especially on its bidding strategy. We address the problem how to price loads that are offered in real-time such that available capacity is used in the most profitable way taking into account possible future revenues. We develop methods to price loads dynamically based on revenue management concepts.\ud We consider a one leg problem, i.e., a vehicle travels from i to j and can wait at most Ď„ time units in which it can get additional loads from i to j. We develop a DP to price loads given a certain amount of remaining capacity and an expected number of auctions in the time-to-go. Because a DP might be impractical if parameters change frequently and bids has to be determined in real-time, we derived two approximations to speed up calculations. The performance of these approximations are compared with the performance of the DP. Besides we introduce a new measure to calculate the average vehicle utilisation in consolidated shipments. This measure can be calculated based on a limited amount of data and gives an indication of the efficiency of schedules and the performance of vehicles

    Intelligent Personalized Trading Agents that facilitate Real-time Decisionmaking for Auctioneers and Buyers in the Dutch Flower Auctions

    Get PDF
    In this case the Dutch Flower Auctions (DFA) are discussed. The DFA are part of the supply network in which flowers are produced, stocked, and then sold through either mediation or auctioning. This case focuses on the buyers’ and auctioneers’ positions when flowers are traded through auctions. This case deals with the application of personalized agents as part of a Decision Support System which empowers the decision maker. The decision makers discussed in this case are the auctioneers who control the auction process, and the buyers who bid at the clock auction. Agents are defined as software programs that sense their environment and react autonomously on their environment in order to maximize a certain outcome. The agents, as envisioned in this case, are able to determine users’ preferences and based on these preferences agents can proactively make recommendations. Agents as applied to the auction process could empower the auctioneers in their decisions. Another type of agent could empower the buyer, since buyers have the high-pressure task of buying at the clock auction

    Web Auctions in Europe

    Get PDF
    This paper argues that a better understanding of the business model of web auctions can be reached if we adopt a broader view and provide empirical research from different sites. In this paper the business model of web auctions is refined into four dimensions. These are auction model, motives, exchange processes, and stakeholders. One of the objects of this research is to redefine the blurry concept of the business model by analyzing one business model, the web auction model. We show in this research the complexity and diversity of factors contributing to the success of the web auction model. By generalizing the results to the level of business model we also show how complex and diverse business models can be. Motivated by the lack of empirically grounded justification for the mixed business results of web auctions, this paper adopts a qualitative approach that includes telephone interviews with web auctions developed in different European countries.exchange processes;stakeholders;Web auctions

    Decentralized Multi-Agent Production Control through Economic Model Bidding for Matrix Production Systems

    Get PDF
    Due to increasing demand for unique products, large variety in product portfolios and the associated rise in individualization, the efficient use of resources in traditional line production dwindles. One answer to these new challenges is the application of matrix-shaped layouts with multiple production cells, called Matrix Production Systems. The cycle time independence and redundancy of production cell capabilities within a Matrix Production System enable individual production paths per job for Flexible Mass Customisation. However, the increased degrees of freedom strengthen the need for reliable production control systems compared to traditional production systems such as line production. Beyond reliability a need for intelligent production within a smart factory in order to ensure goal-oriented production control under ever-changing manufacturing conditions can be ascertained. Learning-based methods can leverage condition-based reactions for goal-oriented production control. While centralized control performs well in single-objective situations, it is hard to achieve contradictory targets for individual products or resources. Hence, in order to master these challenges, a production control concept based on a decentralized multi-agent bidding system is presented. In this price-based model, individual production agents - jobs, production cells and transport system - interact based on an economic model and attempt to maximize monetary revenues. Evaluating the application of learning and priority-based control policies shows that decentralized multi-agent production control can outperform traditional approaches for certain control objectives. The introduction of decentralized multi-agent reinforcement learning systems is a starting point for further research in this area of intelligent production control within smart manufacturing

    Robust and cheating-resilient power auctioning on Resource Constrained Smart Micro-Grids

    Get PDF
    The principle of Continuous Double Auctioning (CDA) is known to provide an efficient way of matching supply and demand among distributed selfish participants with limited information. However, the literature indicates that the classic CDA algorithms developed for grid-like applications are centralised and insensitive to the processing resources capacity, which poses a hindrance for their application on resource constrained, smart micro-grids (RCSMG). A RCSMG loosely describes a micro-grid with distributed generators and demand controlled by selfish participants with limited information, power storage capacity and low literacy, communicate over an unreliable infrastructure burdened by limited bandwidth and low computational power of devices. In this thesis, we design and evaluate a CDA algorithm for power allocation in a RCSMG. Specifically, we offer the following contributions towards power auctioning on RCSMGs. First, we extend the original CDA scheme to enable decentralised auctioning. We do this by integrating a token-based, mutual-exclusion (MUTEX) distributive primitive, that ensures the CDA operates at a reasonably efficient time and message complexity of O(N) and O(logN) respectively, per critical section invocation (auction market execution). Our CDA algorithm scales better and avoids the single point of failure problem associated with centralised CDAs (which could be used to adversarially provoke a break-down of the grid marketing mechanism). In addition, the decentralised approach in our algorithm can help eliminate privacy and security concerns associated with centralised CDAs. Second, to handle CDA performance issues due to malfunctioning devices on an unreliable network (such as a lossy network), we extend our proposed CDA scheme to ensure robustness to failure. Using node redundancy, we modify the MUTEX protocol supporting our CDA algorithm to handle fail-stop and some Byzantine type faults of sites. This yields a time complexity of O(N), where N is number of cluster-head nodes; and message complexity of O((logN)+W) time, where W is the number of check-pointing messages. These results indicate that it is possible to add fault tolerance to a decentralised CDA, which guarantees continued participation in the auction while retaining reasonable performance overheads. In addition, we propose a decentralised consumption scheduling scheme that complements the auctioning scheme in guaranteeing successful power allocation within the RCSMG. Third, since grid participants are self-interested we must consider the issue of power theft that is provoked when participants cheat. We propose threat models centred on cheating attacks aimed at foiling the extended CDA scheme. More specifically, we focus on the Victim Strategy Downgrade; Collusion by Dynamic Strategy Change, Profiling with Market Prediction; and Strategy Manipulation cheating attacks, which are carried out by internal adversaries (auction participants). Internal adversaries are participants who want to get more benefits but have no interest in provoking a breakdown of the grid. However, their behaviour is dangerous because it could result in a breakdown of the grid. Fourth, to mitigate these cheating attacks, we propose an exception handling (EH) scheme, where sentinel agents use allocative efficiency and message overheads to detect and mitigate cheating forms. Sentinel agents are tasked to monitor trading agents to detect cheating and reprimand the misbehaving participant. Overall, message complexity expected in light demand is O(nLogN). The detection and resolution algorithm is expected to run in linear time complexity O(M). Overall, the main aim of our study is achieved by designing a resilient and cheating-free CDA algorithm that is scalable and performs well on resource constrained micro-grids. With the growing popularity of the CDA and its resource allocation applications, specifically to low resourced micro-grids, this thesis highlights further avenues for future research. First, we intend to extend the decentralised CDA algorithm to allow for participants’ mobile phones to connect (reconnect) at different shared smart meters. Such mobility should guarantee the desired CDA properties, the reliability and adequate security. Secondly, we seek to develop a simulation of the decentralised CDA based on the formal proofs presented in this thesis. Such a simulation platform can be used for future studies that involve decentralised CDAs. Third, we seek to find an optimal and efficient way in which the decentralised CDA and the scheduling algorithm can be integrated and deployed in a low resourced, smart micro-grid. Such an integration is important for system developers interested in exploiting the benefits of the two schemes while maintaining system efficiency. Forth, we aim to improve on the cheating detection and mitigation mechanism by developing an intrusion tolerance protocol. Such a scheme will allow continued auctioning in the presence of cheating attacks while incurring low performance overheads for applicability in a RCSMG

    Agent-based distributed manufacturing scheduling: an ontological approach

    Get PDF
    The purpose of this paper is the need for self-sequencing operation plans in autonomous agents. These allow resolution of combinatorial optimisation of a global schedule, which consists of the fixed process plan jobs and which requires operations offered by manufacturers. The proposed agent-based approach was adapted from the bio-inspired metaheuristic- particle swarm optimisation (PSO), where agents move towards the schedule with the best global makespan. The research has achieved a novel ontology-based optimisation algorithm to allow agents to schedule operations whilst cutting down on the duration of the computational analysis, as well as improving the performance extensibility amongst others. The novelty of the research is evidenced in the development of a synchronised data sharing system allowing better decision-making resources with intrinsic manufacturing intelligence. The multi-agent platform is built upon the Java Agent Development Environment (JADE) framework. The operation research case studies were used as benchmarks for the evaluation of the proposed model. The presented approach not only showed a practical use case of a decentralised manufacturing system, but also demonstrated near optimal makespans compared to the operational research benchmarks
    • …
    corecore